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Abstract

Electrolytes featuring negatively-charged polymers such as nonaqueous polyelec-

trolyte solutions and polymerized ionic liquids are currently under investigation as

potential high cation transference number (t+) electrolytes for lithium ion batteries.

Herein, we use coarse-grained molecular dynamics simulations to characterize the On-

sager transport coefficients of polyelectrolyte solutions as a function of chain length

and concentration. For all systems studied, we find that the rigorously computed

transference number is substantially lower than that approximated by the ideal solu-

tion (Nernst-Einstein) equations typically used to characterize these systems due to

the presence of strong anion-anion and cation-anion correlations. None of the poly-

electrolyte solutions achieve t+ greater than that of the conventional binary salt elec-

trolyte, with some solutions having negative t+. This work demonstrates that the

Nernst-Einstein assumption does not provide a physically meaningful estimate of the
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transference number in these solutions and calls into question the expectation of poly-

electrolytes to exhibit high cation transference number.

Introduction

High cation transference number (t+) electrolytes, in which the majority of the electrolyte

conductivity is attributed to the cation rather than the anion, have the potential to improve

the power density and attainable state of charge of lithium ion batteries (LIBs).1–3 A common

strategy in increasing t+ is to covalently append the electrolyte anion to the backbone of

a polymer, thereby immobilizing the anion to yield a single-ion conductor.4,5 Maintaining

acceptable conductivity in a dry (neat) single-ion conducting polymer, however, has proved

challenging due to incomplete ion dissociation and/or low ion mobility.3,6,7

Polyelectrolyte solutions in which a lithium-neutralized polyanion is dissolved in a non-

aqueous solvent have recently been proposed as alternatives to conventional solid-state single-

ion conductors.8–14 As these polyelectrolytes are entirely in the liquid phase, they could serve

as a means to increase transference number without drastic conductivity losses and be di-

rectly used in existing cell designs. Indeed, initial studies have reported transference numbers

greater than 0.8 (t+ ∼ 0.4 for conventional LIB electrolytes)15 with conductivities on the

order of 0.1-1 mS/cm.8,10,11,14 As the transference number is challenging to measure exper-

imentally,3 the reported t+ values in these works are typically estimated by assuming that

the solution behaves ideally, i.e., there are no correlations between ions in the electrolyte.

This is referred to as the Nernst-Einstein (NE) approximation and yields an expression for

transference number in terms of the self-diffusion coefficients of the cation and anion, D+

and D−, respectively:

tNE
+ =

D+

D+ +D−
. (1)

While these experimental results seem promising, our previous work16 on one polyelec-

trolyte system, poly(allyl glycidyl ether-lithium sulfonate) (PAGELS) in dimethyl sulfoxide
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(DMSO), found that tNE
+ drastically overestimates the true transference number (tNE

+ � t+).

Using atomistic molecular dynamics simulations, it was shown that the anion-anion correla-

tions inherently present between monomers on the same chain make a substantial contribu-

tion to the overall conductivity and therefore decrease the transference number relative to

the ideal case.

It remains to be seen, however, whether the failure of Eq. (1) generalizes beyond the

PAGELS system, and whether we can make any more general claims about the extent of

non-idealities (ion correlations) in polyelectrolytes which hold independent of the electrolyte

chemistry. Furthermore, we wish to understand (i) the emergence of polyelectrolytes’ unique

transport properties as we transition from a conventional monomeric electrolyte to oligo- and

polyanions and (ii) how transport properties change as a function of concentration, including

the extreme limit of solvent-free systems or polymerized ionic liquids, which are also under

investigation as LIB electrolyte alternatives.17–19 While existing polyelectrolyte studies have

extensively explored the polyion transport properties in these solutions,20,21 the behavior of

the counterion and thus the battery-relevant transport properties of polyelectrolytes such as

t+ are largely unexplored.

Herein, we use coarse-grained molecular dynamics simulations with explicit solvent to

systematically study transport as a function chain length and concentration for a generic

polyelectrolyte solution. We begin with an overview of the theoretical framework used to

study electrolyte transport. This theory is based on the formulation of transport coefficients,

denoted Lij, which provide insight into the ion correlations between species in solution. We

then present the transport coefficients computed for the coarse-grained polyelectrolyte model,

providing a direct comparison between a conventional binary electrolyte and the polyelec-

trolyte systems. Next, we use the transport coefficients to calculate the transference number

for these solutions, rationalizing the resulting trends based on ion correlations and ion pair-

ing behavior. We find that the strong ion correlations in polyelectrolyte solutions generally

yield conductivity and transference number values lower than in monomeric electrolytes,
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suggesting that – from a transport perspective – polyelectrolytes may not be a promising

alternative to conventional battery electrolytes.

Theory

Herein, we analyze transport in electrolytes using the Onsager transport coefficients. The

theoretical framework required to define these transport equations is derived and discussed

in detail in Fong et al.22 Here we summarize only the main components of the theory.

The reader may be more familiar with the Stefan-Maxwell equations for multicomponent

diffusion, and by extension Newman’s concentrated electrolyte theory,2 rather than the

Onsager equations presented in this work. As discussed in Fong et al.,22 both frameworks

are thermodynamically consistent, and it is possible to map between the transport coefficients

from the two approaches.22,23 However, the Onsager transport coefficients Lij have a more

direct physical interpretation in terms of ion correlations, and only Lij may be computed

directly from molecular simulations using Green-Kubo relations. Furthermore, while it is

possible to obtain experimental quantities from the Stefan-Maxwell coefficients Kij, the

expressions for doing so are more complex than with Lij, especially for systems with more

than two ionic species. These advantages make the Onsager transport equations a clear

choice for the analysis in this work. Nevertheless, we provide the Stefan-Maxwell coefficients

Kij for the polyelectrolyte solutions studied herein in the SI for comparison (Figure S6).

The theory of nonequilibrium thermodynamics applied to electrolytes yields the following

set of Onsager transport equations:

ci(vi − v) = −
∑
j

Lij∇µj . (2)

These equations relate the flux of species i J i = ci(vi−v) to the thermodynamic driving force

in the system: gradients in the electrochemical potential of each species j, µj. In Eq. (2), ci

and vi are the concentration and velocity of species i, respectively, and v is the mass-averaged

4



velocity of the entire system. The constants of proportionality in this linear relationship are

the transport coefficients Lij. The transport matrix is symmetric by the Onsager reciprocal

relations (Lij = Lji) and subject to the constraint that
∑

iMiL
ij = 0, where Mi is the

molecular weight of species i. The latter relation is a consequence of the fact that all mass

fluxes must sum to zero, i.e.,
∑

iMiJ i = 0. Based on these two constraints, an electrolyte

of n components has n(n − 1)/2 independent transport coefficients. The polyelectrolyte

solutions studied herein have three components (polyanion, cation, and solvent), yielding

three independent transport coefficients: L++, L−−, and L+−.

On a molecular level, Lij may be interpreted as giving the degree of correlation between

the motion of species i and j. This is apparent quantitatively from the Green-Kubo relations

for Lij, where the correlation function in the fluxes of species i and j gives the transport

coefficients directly from molecular simulations:

Lij =
V

3kBT

∫ ∞
0

dt
〈
J i(t) · J j(0)

〉
, (3)

where V is volume and kBT is the thermal energy. Note that the overall flux of species i,

J i = ci(vi − v), is based on the average motion of all particles of species i. The quantity

vi can be expressed as vi = 1
Ni

∑
α v

α
i , where the index α refers to an individual particle of

type i and Ni is the number of particles of type i in the system.

The Green-Kubo relations of Eq. (3) may be equivalently written in terms of particle

positions, rather than velocities. This form of the equation, which is analogous to computing

self-diffusion coefficients from the mean-squared displacement of particle positions, is the one

used to compute Lij in this work:

Lij =
1

6kBTV
lim
t→∞

d

dt

〈∑
α

[rαi (t)− rαi (0)] ·
∑
β

[rβj (t)− rβj (0)]
〉
, (4)

where rαi is the position of particle α relative to the center-of-mass position of the entire

system.
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Let us further consider the diagonal terms of the transport matrix, Lii:

Lii =
1

6kBTV
lim
t→∞

d

dt

∑
α

∑
β

〈
[rαi (t)− rαi (0)] · [rβi (t)− rβi (0)]

〉
. (5)

These transport coefficients are composed of two contributions: when α = β, we take the

autocorrelation function of the flux of particle α, and when α 6= β, we compute the cross-

correlations between two distinct particles. These two contributions may be denoted as self

and distinct terms, respectively:

Liiself =
1

6kBTV
lim
t→∞

d

dt

∑
α

〈
[rαi (t)− rαi (0)]2

〉
, (6)

Liidistinct =
1

6kBTV
lim
t→∞

d

dt

∑
α

∑
β 6=α

〈
[rαi (t)− rαi (0)] · [rβi (t)− rβi (0)]

〉
. (7)

Note that Lii = Liiself + Liidistinct. The distinct terms capture correlations between particles

(non-idealities) while the self terms may be considered ideal or Nernst-Einstein contributions

to transport. The latter may be directly related to the self-diffusion coefficient by

Liiself =
Dici
kBT

. (8)

The second law of thermodynamics imposes some restrictions on the possible values of each

transport coefficient. While the distinct terms may take on positive or negative values, the

self terms and the overall L++ and L−− must always be positive. The physical interpretation

of each Lij will be discussed in more detail in the Results and Discussion.

The transport coefficients may be combined to yield experimentally-relevant transport

properties, namely the ionic conductivity κ, the electrophoretic mobility ui, and the trans-

ference number ti:

κ = F 2
∑
i

∑
j

Lijzizj , (9)
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ui =
∑
j

Lij
zjF

ci
, (10)

and

ti =
Fziciui
κ

=

∑
j L

ijzizj∑
k

∑
l L

klzkzl
, (11)

where F is Faraday’s constant and zi is the charge valence of species i.

The ideal solution transference number, tNE
i , can be computed analogously by assuming

there are no ion correlations, thereby eliminating the off-diagonal components of the trans-

port matrix (L+−) as well as the distinct terms. This yields an expression in terms of only

the self transport coefficients:

tNE
i =

z2iL
ii
self∑

j z
2
jL

jj
self

. (12)

For the cation transference number of a binary electrolyte, incorporating Eq. (8) and the

condition of electroneutrality,
∑

i zici = 0, yields

tNE
+ =

z+D+

z+D+ − z−D−
. (13)

When computing transport coefficients for a polyelectrolyte system, we may treat either

individual monomers or polymer chains as a whole as the anionic species. In the analysis in

this work, we choose the former. While this will necessarily impact the transport coefficients,

experimentally-measurable properties such as the conductivity, mobility, and transference

number will be equivalent with either approach (see the SI for a more detailed discussion).

In Eq. (1), it has implicitly been assumed that z− = −1, i.e., that each monomer is considered

to be an independent anionic species.
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Results and Discussion

Onsager transport coefficients

Here we present the computed the Onsager transport coefficients for polyelectrolyte solu-

tions using a coarse-grained molecular dynamics model based on the classical Kremer-Grest

bead-spring chain24,25 with explicit solvent. We simulate chain lengths ranging from 1 to 25,

noting that based on previous studies using similar polymer models we do not expect signif-

icant entanglement effects for these chain lengths.24,26,27 These polyelectrolytes are studied

at four concentrations ranging from 0.001 σ−3 to 0.05 σ−3, where σ is the Lennard-Jones

unit of distance and the diameter of each particle in the system. Mapping the size of one

monomer bead to that of a polystyrene sulfonate monomer (2.5 Å), this concentration range

approximately corresponds to 0.1 to 5 M (see the Methods section for a more detailed dis-

cussion).

In this section, we discuss the transport coefficients in these solutions and show how they

may be interpreted to gain physical insight into transport phenomena in polyelectrolytes.

Each of the transport coefficients Lij quantifies a different aspect of ion motion or ion-ion

correlation, illustrated qualitatively in Figure 1a. As a representative example, let us analyze

Lij as a function of chain length at a concentration of 0.01 σ−3, given in Figure 1b with the

diagonal terms Lii split into self and distinct components. The other concentrations studied

give similar trends, as shown in Figures S1 and S2.

The two self terms (L++
self and L−−self ) given in Figure 1b are proportional to the self-

diffusion coefficients (Eq. (8); diffusion coefficient data are given directly in Figure S8). For

the monomeric systems (N = 1) corresponding to conventional binary electrolytes, L++
self is

necessarily equal to L−−self , as the cation and anion in the model are equivalent in their mass,

size, and excluded volume (Lennard-Jones) interactions. As N increases, both L++
self and

L−−self decrease, a trend which aligns with the intuitive expectation of diffusion coefficients to

decrease as the chain becomes larger and the overall solution more viscous. The decrease in
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Figure 1: Transport coefficients in polyelectrolyte solutions. (a) Schematics illustrating the
ion correlations captured by each transport coefficient. The arrows on each ion indicate
direction of motion, and the shaded regions give qualitative information on the correlation
between groups of ions according to the colorbar in the upper right. Note that solvent
molecules are modeled explicitly but are omitted from the schematic for clarity. (b) Each
Lij as a function of chain length at a concentration of 0.01 σ−3, split into self and distinct
contributions.

L−−self is more pronounced due to the bulky nature of the polymer chain.

The L+− transport coefficient captures correlations between cations and anions. The

value of L+− is much lower than that of either L++ or L−− for the N = 1 system but

becomes increasingly significant as chain length increases. This trend suggests an increased

prevalence of ion pairing at higher N , as expected from theories for counterion condensation

in polyelectrolytes28 and confirmed directly in these simulations vide infra. Note that when

computing ionic conductivity via Eq. (9), the L+− term will be subtracted from the total

value. Thus, as expected, cation-anion correlations decrease the overall conductivity.

Let us now turn to the distinct terms, L++
distinct and L−−distinct, which describe cation-cation

and anion-anion correlations, respectively. In general, one would expect distinct ions of the

same species to interact very little, in which case the distinct terms would be approximately

zero, or to repel, leading to negative values of the distinct terms reflecting anti-correlated

motion. Indeed, the monomeric (N = 1) systems studied here show very small contributions

of L++
distinct and L−−distinct, with the values at high concentration being slightly negative (Figure

S2d). As chain length increases, however, we deviate from this expected behavior and observe
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that L++
distinct and L−−distinct increase with chain length. These very positive values suggest highly

correlated motion, i.e. groups of like-charge ions moving together for appreciable periods of

time. Like the trend in L+−, this behavior can be rationalized by increased ion aggregation.

The increase of L++
distinct with chain length reflects the presence of multiple cations bound to

the same chain, which will move together for the lifetime of the ion aggregate. As chain

length increases (and with it the extent ion pairing), we expect more cations on average

to be bound to a given chain, resulting in an increase in the correlations between distinct

cations. The increase in L−−distinct with chain length is even more pronounced: for most chain

lengths, this term dominates over all other transport coefficients and will thus strongly impact

conductivity and transference number. The total value of L−−distinct contains contributions

from correlations between anions tethered to the same chain as well as anions on different

chains. The former will generate a positive contribution to L−−distinct, as anions on a given

chain are constrained to move together and are thus highly correlated, while the latter will

give a negative contribution, as two negatively-charged macroions will repel each other and

move in an anti-correlated manner. In all systems studied, we observe that intra-chain

correlations dominate over inter-chain correlations (Figure S5), yielding the strong positive

trend in L−−distinct with chain length.

Transference numbers

Having computed the transport coefficients for a range of polyelectrolyte solutions, we may

now combine these Lij to obtain experimentally relevant quantities. Of particular interest is

the cation transference number, shown in Figure 2a. We observe that for all concentrations

studied, the transference number decreases as chain length increases, with the monomeric

electrolyte having the highest transference number. Given that ionic conductivity generally

decreases as chain length increases (Figure S7), these results suggest that the polyelectrolyte

solutions studied herein would not yield any advantages in battery performance relative to

a conventional monomeric electrolyte.
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Figure 2: Cation transference number as a function of chain length. (a) Rigorously computed
t+ obtained from the Onsager transport coefficients and accounting for all ion correlations
present in solution. (b) and (c) tNE

+ , the ideal solution transference number ignoring cor-
relations between ions. These are written in terms of the self-diffusion coefficients, rather
than Onsager transport coefficients, using Eq. (8). (b) Treating entire polymer chains as
the anionic species (z− = −N) accounts for intra-chain correlations but ignores correlations
between chains and between cations and anions. (c) Treating individual monomers as the an-
ionic species (z− = −1) ignores all ionic correlations. Ion correlations are depicted according
to the colormap in Figure 1.

The values of the rigorously computed t+ stand in stark contrast with the ideal solution

transference number, tNE
+ . Recall from Eq. (13) that there are two options for computing

tNE
+ : we may choose to treat each monomer as a separate ion, in which case the z− appearing

in Eq. (13) is −1, or we may treat the entire polymer chain as the anionic species, in

which case z− = −N . The resulting tNE
+ values based on each of these choices are given in

Figures 2b and c. We observe that tNE
+ (z− = −N) qualitatively reproduces the trend that

transference number decreases as chain length increases, but in most cases it overestimates

the rigorously computed t+. This equation ignores correlations between different chains and
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between cations and anions, but it captures intra-chain correlations by treating the entire

chain as a single unit. In contrast, tNE
+ (z− = −1) does not account for any correlations

between ions, capturing only self-diffusion. This assumes that monomers on the same chain

move completely independently, which is obviously incorrect given the fact that they are

covalently bonded. The resulting values for tNE
+ (z− = −1) in Figure 2c increase with

chain length, reaching values as high as 0.86. This approximation drastically overestimates

the true t+ and clearly does not provide a physically meaningful estimate of transference

number in polyelectrolytes. In experimental systems where the transference number cannot

be rigorously measured and only self-diffusion coefficients are available, tNE
+ (z− = −N)

provides a much more reasonable estimate of t+.

We now seek to rationalize the transference number trends in Figure 2 based on the

ion correlations in the electrolyte. While each of the Lij affect the observed trends in the

transference number, the general decrease in t+ with increasing chain length can be most

directly understood through the trends in L−−self and L−−distinct, which are shown in Figure 3a.

The data in this figure are divided by the total concentration to yield the contribution to each

transport coefficient per ion; each of the other transport coefficients is plotted in this manner

in Figure S3. For each concentration, the L−−self term (and thus the self-diffusion coefficient)

decreases with N. Indeed, the fact that a long polymer chain moves more slowly than a

monomer is the basis for the intuitive notion that the anion in a polyelectrolyte solution

should carry less current than the cation to yield a high t+. As Eq. (13) for tNE
+ includes

only the self terms (assuming all distinct terms to be zero), it is clear why tNE
+ (z− = −1) in

Figure 2c exhibits such high values. In polyelectrolyte systems, however, it is unreasonable

to ignore the distinct terms when estimating t+, as we observe that the magnitude of L−−distinct

surpasses that of L−−self for all but the shortest chain lengths. As mentioned above, this

increase in L−−distinct is due to the fact that increasing N leads to more anions being covalently

bound and thus constrained to move together, a phenomena which will be general to any

polyelectrolyte regardless of the chemical properties of the polymer or solvent. The sum
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of the self and distinct terms, i.e., the overall L−−, increases with respect to chain length

(Figure S1), corresponding to a decreasing cation transference number.

Figure 3: Comparison of anion transport coefficients for each concentration and chain length.
(a) L−−self (dashed lines) and L−−distinct (solid lines), all divided by concentration to give the
contributions to each transport coefficient per ion. (b) L+− divided by concentration.

In addition to the trend with respect to chain length, we also note that t+ increases with

concentration, similarly to previous results obtained with all-atom simulations on PAGELS

in DMSO.16 This can be most clearly understood in terms of cation-anion correlations, quan-

tified in Figure 3b. The contribution to L+− per ion decreases as the concentration increases,
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yielding higher t+ for more concentrated solutions. In order to rationalize the trend of de-

creasing cation-anion correlations as concentration increases, let us consider the ion pairing

behavior of the solutions. Ion pairing is conventionally defined based on a structural analysis

of the solution: a cation is considered to be paired at a given time if it is within some specific

distance of an anion. The fraction of cations in ion pairs or larger aggregates based on this

type of analysis is given in Figure 4a. The resulting trend that ion pairing increases with

concentration, however, is not consistent with the trend of decreasing L+−/c with concentra-

tion, suggesting that this static structural analysis does not provide a meaningful assessment

of ion correlations in the system. Instead, the trends in L+−/c must be understood with

a dynamic analysis of ion pairing, shown in Figure 4b. Here we quantify the ion pair res-

idence time, or the characteristic time for an ion pair to exist before breaking apart.29–31

Despite the fact that more ions are paired at high concentrations, each of these pairs has

a shorter lifetime, resulting in overall less correlated cation-anion motion and higher cation

transference number. This phenomenon is illustrated schematically in Figures 4c and d. The

negative correlation between static ion pairing fraction and dynamic ion pair lifetime was

similarly observed in MD simulations of PAGELS in DMSO,16 suggesting that this may be

a common phenomenon in polyelectrolyte solutions.

The lowest concentrations studied yield negative t+ at high chain lengths. This phe-

nomenon corresponds to the presence of negatively charged aggregates which contribute

substantially to the conductivity. For example, if a single cation is bound to a polyanion

chain to yield an aggregate with large negative charge, upon application of an electric field

that bound cation will move along with the polymer towards higher electric potential (in

the “wrong direction”). As these negatively-charged aggregates are a natural occurrence in

polyelectrolytes, it is unsurprising that we observe t+ < 0 (or equivalently t− > 1) for cases

at low concentration when ion pairs are long-lived. In fact, solutions with t− > 1 have been

widely reported experimentally for dilute, aqueous polyelectrolytes.32–36
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Figure 4: Ion pairing analysis. (a) Fraction of cations in ion pairs or aggregates based on
static structural analysis. (b) Ion pair residence times. (c) and (d) Schematic illustration of
cation-anion correlations (L+−) at low (c) and high (d) concentrations. Ion correlations are
depicted according to the colormap in Figure 1.

Solvent-free systems

Given the trend of increasing cation transference number with concentration, the question

naturally arises as to whether further increasing concentration may yield polyelectrolytes

with t+ greater than that of the monomeric solution. We can answer this question by

considering the limit of a solvent-free system, i.e., a polymerized ionic liquid.

We must first revisit our theoretical framework for the case of a solvent-free system. As

mentioned above, a system with n components will have n(n− 1)/2 independent transport

coefficients. A two-component electrolyte will thus only have one independent transport

coefficient. We remind the reader that
∑

iMiL
ij = 0 as a consequence of our center-of-mass

reference frame, where Mi is the molar mass of species i. Noting that the masses of all
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Figure 5: Transport data for the solvent-free solution. (a) Transport coefficients as a function
of chain length. The markers for L++ and L−− directly overlap. (b) Transference number as
a function of chain length, computed rigorously (t+) and using the Nernst-Einstein approx-
imation (tNE

+ ).

species in our system are equivalent, we can conclude that L++ = L−− = −L+− in these

solvent-free systems. Indeed, the computed transport coefficients follow exactly this relation

(Figure 5a; self and distinct transport coefficients for these systems are provided in Figure

S9). The implications of this data are twofold. First, L+− is necessarily negative in a two-

component electrolyte, suggesting anti-correlated cation-anion motion. This phenomena has

been previously noted in the ionic liquids literature.18,37,38 Second, from Eq. (11) it can be

shown that the transference number of these solvent-free solutions is determined solely by

the ion charges and masses: t+ = z+M−/(z+M−− z−M+). This phenomenon, too, has been

noted previously for polymerized ionic liquids18 and molten salts.39,40 In the polyelectrolyte

solutions modeled here where the cation and monomer masses are the same, t+ = 0.5 for all

chain lengths. As with the polyelectrolyte solutions with solvent, we observe that the Nernst-

Einstein approximation of the transference number (tNE
+ ) drastically overestimates the true

t+ (Figure 5b). It is important to note that the main utility of the transference number is in

dictating the extent of concentration gradients in an electrolyte, which limit a battery’s rate
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capability.3 As electroneutrality dictates that no concentration gradients may be formed in a

solvent-free electrolyte, however, the transference number of these systems is of little physical

relevance in predicting battery performance. Regardless, even in this superconcentrated

limit, we do not observe any polyelectrolyte solutions with cation transference number greater

than the conventional monomeric systems.

Conclusions

In this work, we have computed the Onsager transport coefficients in polyelectrolytes solu-

tions as a function of chain length and concentration using coarse-grained molecular dynamics

simulations with explicit solvent. These transport coefficients provide insight into the ion

correlations dictating ion motion and allow us to rigorously compute the transference number

of the solutions. We demonstrate that the intrinsic anion-anion correlations within chains

result in decreasing t+ as chain length increases and cause substantial deviation between the

true t+ and the ideal solution quantity tNE
+ . Furthermore, the decrease in t+ with decreasing

concentration can be attributed to stronger cation-anion correlations for more dilute solu-

tions. These stronger correlations are primarily attributed to the longer lifetime of existing

ion pairs rather than an increased quantity of ion pairs (defined based on a structural pic-

ture of the solution). Even in the case of a solvent-free system (polymerized ionic liquid), we

do not observe any polyelectrolyte solutions with transference number greater than that of

a conventional monomeric electrolyte. These results suggest that unentangled, short-chain

polyelectrolyte solutions may not be useful as high t+ alternatives to conventional LIB elec-

trolytes. It is possible that more promising systems may be developed using entangled or

cross-linked polymer chains, where polymer transport will slow down more dramatically, as

well as systems where only a fraction of the monomers are negatively charged. Balancing

the increased viscosity and decreased total conductivity inherent to these approaches will be

a challenging subject of future work.
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Methods

Coarse-grained polyelectrolyte model

Polyanions were represented by the Kremer-Grest bead-spring chain model.24,25 Adjacent

beads, each representing one monomer, interacted via finitely extensible nonlinear elastic

(FENE) bonds, where interaction energies take the form

UFENE(r) = −0.5KR2
0 ln

[
1−

(
r

R0

)2]
. (14)

Here r is the distance between two monomers, the spring constant K = 30 ε/σ2, and the

maximum extension of the bond R0 = 1.5 σ. These bonding parameters yield an average

bond length of 0.97 σ and avoid unphysical crossing of bonds.41,42

Counterions and solvent molecules were modeled explicitly as charged and neutral beads,

respectively. Although it increases the computational cost of the simulations, including

explicit solvent has been shown in several works to be crucial for accurately capturing dy-

namics in the solution.43–45 All particles (monomers, cations, and solvent) were subject to a

truncated-shifted Lennard-Jones (LJ) potential to account for excluded volume,

ULJ(r) =


4εLJ

[(
σLJ

r

)12 − (σLJ

r

)6 − ( σLJ

rcut

)12
+
(
σLJ

rcut

)6]
r ≤ rcut

0 r > rcut

. (15)

For all interactions, εLJ = ε (the LJ unit of energy) and σLJ = σ, where σ is the LJ unit of

distance and the diameter of each of the beads in the system. We choose rcut = 21/6σ, which

yields good solvent conditions.46 All species are given unit mass.

Cations and (poly)anions were additionally subject to the Coulomb potential,

UCoulomb(r) =
zizje

2

4πε0εrr
= kBT

lBzizj
r

, (16)
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where e is the elementary charge, ε0 is the vacuum permittivity, εr is the dielectric constant

of the medium, and zi is the charge of species i. Each cation was assigned z+ = +1 and

each monomer was given z− = −1. The quantity lB = e2/(4πε0εrkBT ) is the Bjerrum

length, which defines the length scale at which the energy of electrostatic interactions is

equal to the thermal energy, kBT . As the simulations in this work capture a wide range of

polymer concentrations (from the semi-dilute regime to the limit of a solvent-free system),

the dielectric constant was varied linearly as a function of fraction of solvent.47 The lower

limit of the dielectric constant, corresponding to a system with only solvent, was chosen

to mimic the dielectric properties of water with a Bjerrum length of 7.1 Å. We follow the

common procedure44,46 of mapping the average distance between polymers beads, 0.97 σ,

to the size of a polystyrene sulfonate monomer, 2.5 Å, which yields a Bjerrum length of

lB = 7.1 Å× (0.97 σ/2.5 Å) = 2.75 σ. The upper limit of the Bjerrum length for the system

with no solvent was chosen to be 30 σ, in the range commonly chosen to study melts of

charged polymers.27,41

Note that with the length scale mapping of 2.5 Å ≈ 0.97 σ, the ion concentrations simu-

lated in this work (0.001, 0.005, 0.01, and 0.05 σ−3) can be roughly mapped to concentrations

of 0.1, 0.48, 0.97, and 4.8 M.

Simulation details

Polymer chains were initially prepared using a self-avoiding random walk. The polymers,

cations, and solvent particles were randomly packed into a cubic simulation box using PACK-

MOL48 at a density of 0.8 σ−3, a value in the range commonly used to study both dilute

polyelectrolyte solutions as well as polymer melts.27,41,49–52 With the exception of the systems

at the lowest concentration studied, 0.001 σ−3, each simulation consisted of approximately

40,000 particles, with the exact number varied slightly to precisely reach the target concen-

tration. It was verified that doubling the number of particles in the simulation box did not

have any appreciable effect on the computed transport properties. At 0.001 σ−3, however,
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finite size effects were more pronounced due to the smaller number of polymer chains in

the system and the larger charge screening length. Simulations at this concentration were

run with 80,000 particles, with one run using 120,000 particles verifying that there were no

appreciable finite size effects with this larger box size. The systems with the longest chain

length (N = 25) had 4, 10, 20, and 100 polymer chains for concentrations of 0.001, 0.005,

0.01, and 0.05 σ−3, respectively.

Molecular dynamics (MD) simulations were performed using the LAMMPS code.53,54

The as-prepared system was equilibrated using a conjugate gradient energy minimization.

Simulations were run for a total of 107 steps, with a time step of 0.005 τ . The first 4× 105

steps (2000 τ) were considered to be an equilibration period and not used for data analysis.

This equilibration period was long enough for the polymer end-to-end vector autocorrelation

function to decay to less than 0.1 for all systems (Figure S10), suggesting that there were

minimal effects of the initial system configuration by the time data collection began. We

further confirmed that the polymers’ radii of gyration and the total system energy had

stabilized by the end of the equilibration period.

The equations of motion were numerically integrated using the velocity-Verlet algorithm,

with periodic boundary conditions in all three spatial directions. A Nosé-Hoover style ther-

mostat was used to maintain the temperature of the system at kBT/ε = 1. Long-range

Coulombic interactions were evaluated using the PPPM method.55

Data analysis

Transport coefficients were computed using Eq. (4):

Lij =
1

6kBTV
lim
t→∞

d

dt

〈∑
α

[rαi (t)− rαi (0)] ·
∑
β

[rβj (t)− rβj (0)]
〉
.

The angular brackets denote averaging over all time origins within the trajectory. The self

terms Liiself (and thus the diffusion coefficients, by Eq. (8)) are computed in an analogous
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manner using Eq. (6), and the distinct terms were computed by Liidistinct = Lii − Liiself . All

experimentally-relevant quantities such as the transference number were computed from Lij

using Eqs. (9)-(11).

In order to capture true diffusive transport, the term in angular brackets of Eqs. (4) or

(6) must be linear with respect to time, i.e.
〈∑

α[rαi (t)−rαi (0)] ·
∑

β[rβj (t)−rβj (0)]
〉
∝ tβ and∑

α

〈
[rαi (t)− rαi (0)]2

〉
∝ tβ, with β = 1. For most simulations in this work, β was computed

to be between 0.94 and 1.05, with analysis performed over at least a decade of time. This

suggests that the simulations have been run long enough to reach and adequately sample

the diffusive regime. Representative data demonstrating this linear behavior is given in Fig.

S4. There are a two classes of exceptions in which β deviates more substantially from unity.

The first is for L+− in the monomer simulations (N = 1) at the three lowest concentrations

studied, in which case β became as low as 0.84. This deviation from linearity is due to

the small overall magnitude of L+−, which results in more noise in the fitting procedure.

As L+− ≈ 0 for these systems, the fact that we do not observe linear behavior does not

impact any of our conclusions. The second case where β departs from unity is for L−−self in

the solvent-free systems for chain lengths of 15, 20, and 25, where β reached as low as 0.73.

This sub-diffusive behavior can be attributed to anion motion corresponding to intra-chain

degrees of freedom, such as chain rotations. While the values of L−−self for these three chain

lengths presented in Fig. S9 can not be rigorously interpreted as transport coefficients due

to this deviation from linearity, this does not affect any of the conclusions drawn in this

work.

The extent of ion pairing as shown in Figure 4a was evaluated using a distance criterion:

all cations within a given cutoff distance of any anion were considered paired. This cutoff

distance was chosen as the first minimum of the cation-anion radial distribution function

(1.6 σ, see Figure S12), which was consistent across all chain lengths and concentrations.

The residence times of ion pairs given in Figure 4b were evaluated by computing the lifetime

correlation function Pαβ(t) =
〈
Hαβ(t)Hαβ(0)

〉
, where Hαβ(t) is one if particles α and β are
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neighbors at time t and zero otherwise.16,29–31 Two particles are deemed neighbors if they

fall within a distance cutoff, chosen based on the radial distribution function to be 2.5 σ to

coincide with the minimum after the second solvation shell of the ions. This distance cutoff

was larger than that used for the static evaluation of ion pairing, as we observed that ions

moved very frequently back and forth between the first and second solvation shells. The

residence time was defined as the time for Pαβ(t) to decay to 10% of its original value.

Error bars throughout this text are given as the standard deviation of five independent

replicates. Trajectories were analyzed using an in-house code which utilized the Python pack-

age MDAnalysis.56,57 Code is available at https://github.com/kdfong/transport-coefficients-

MSD.

No unexpected or unusually high safety hazards were encountered.
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Transport coefficients

Analyzing monomer vs polymer motion

When computing the anion transport coefficients (L−− and L+−) in a polyelectrolyte, we

may treat either the polymer chain as a whole or individual monomers as the anionic species.

The analysis presented in the main text uses the latter convention. In this section, we

describe the relationship between the transport coefficients obtained from using each choice

and show how the experimentally-relevant quantities (with the exception of the Nernst-

Einstein transference number) are equivalent regardless of the analysis method. We show

how combining both choices of anionic species can be used to decouple correlations between
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ions within a given chain and those between ions on different chains (intra- versus inter-chain

interactions).

Let us denote the transport coefficients obtained by treating individual monomers as

the anion with a subscript “m”, and those obtained using the whole polymer chain with a

subscript “p”. The transport coefficients presented in the main text are Lijm. In order to

derive relations between Lijm and Lijp , we begin by writing the Green-Kubo relation for L−−p

as

L−−p =
1

6kBTV
lim
t→∞

d

dt

〈∑
a

[ra(t)− ra(0)] ·
∑
b

[rb(t)− rb(0)]
〉
. (S1)

Here we use the indices a and b to denote a sum over each polymer chain, whereas we use

the indices α and β to denote individual monomers. The quantity ra is the center-of-mass

position of the chain relative to the center of mass of the entire system, which can be written

as ra = 1
N

∑
α r

α
a , noting that the masses of all monomers are equal. The quantity rαa is

the position (relative to the center of mass of the entire system) of monomer α on chain a.

Equation (S1) may be written in terms of individual monomer positions as

L−−p =
1

6kBTV N2
lim
t→∞

d

dt

〈∑
a

∑
α

[rαa (t)− rαa (0)] ·
∑
b

∑
β

[rβb (t)− rβb (0)]
〉
. (S2)

Comparing to Eq. (4) in the main text, we can conclude that

L−−p =
1

N2
L−−m . (S3)

Similar arguments allow us to relate L+−
p and L+−

m via

L+−
p =

1

N
L+−
m . (S4)

We can also relate the self anion transport coefficients, L−−m,self and L−−p,self , by assuming

that the self-diffusion coefficients of the polymer and monomer will be identical over long

enough time scales, i.e., D−,p = D−,m. Further, note that the concentrations of polymer and
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monomer are related by by cm = Ncp. Using Eq. (8) of the main text, we can thus conclude

that

L−−p,self =
1

N
L−−m,self . (S5)

As mentioned in the main text, the distinct anion transport coefficients obtained from

analyzing monomer motion, L−−m,distinct, captures two forms of anion-anion correlations: those

between anions on the same chain (intra-chain) and those between anions on different chains

(inter-chain), i.e., L−−m,distinct = L−−m,inter−chain + L−−m,intra−chain. In contrast, the distinct anion

transport coefficient from analyzing polymer center-of-mass motion gives only inter-chain

correlations: L−−p,distinct = L−−p,inter−chain. Thus, if we seek to compare the relative magni-

tude of inter- and intra-chain correlations, we may compute L−−m,inter−chain = N2L−−p,distinct and

L−−m,intra−chain = L−−m,distinct − L
−−
m,inter−chain. These data are shown in Figure S5.

Using Eqs. (S3) and (S4), it is easy to demonstrate that the ionic conductivity, cation and

anion mobilities, and transference number are equivalent regardless of whether the motion

of the monomer (Lijm) or polymer center of mass (Lijp ) is analyzed. Doing so requires us to

note that the charge valencies of the polymer and monomer are related by the degree of

polymerization N , i.e., zp = Nzm. For example, by Eq. (9) the conductivity is

κ = F 2
∑
i

∑
j

Lijzizj = F 2(L++z2+ + L−−p z2p − 2L+−
p z+zp)

= F 2(L++z2+ + (L−−m /N2)(Nzm)2 − 2(L+−
m /N)z+(Nzm))

= F 2(L++z2+ + L−−m z2m − 2L+−
m z+zm) .

(S6)

The only experimentally-relevant quantity which will change depending on whether we treat

the monomer or polymer as the anionic species is tNE
+ = z+D+

z+D+−z−D−
. The diffusion coefficients

of the cation and anion will be equivalent regardless of whether the monomer or polymer

center of mass is considered, but the anionic charge valence z− will change. Using Lijp

corresponds to including z− = −N in the equation, which will yield the tNE
+ values shown

in Figure 2b, whereas with Lijm, z− = −1 should be used, as in Figure 2c. As analyzing
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polymer center-of-mass motion implicitly captures intra-chain correlations, tNE
+ (z− = −N)

will provide a much more reasonable estimate for the true cation transference number than

tNE
+ (z− = −1), as is clear from Figure 2.

Figure S1: Transport coefficients as a function of chain length for concentrations of (a) 0.001,
(b) 0.005, (c) 0.01, and (d) 0.05 σ−3.
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Figure S2: Transport coefficients, with diagonal terms decomposed into self and distinct
contributions, as a function of chain length for concentrations of (a) 0.001, (b) 0.005, (c)
0.01, and (d) 0.05 σ−3.
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Figure S3: Each of the transport coefficients divided by concentration as a function of chain
length. (a) L++/c, (b) L++

self/c, (c) L++
distinct/c, (d) L−−/c, (e) L−−self/c, (f) L−−distinct/c, and (g)

L+−/c.
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Figure S4: Representative examples of data used to compute Lij and Liiself using Eqs. (4)
and (6), respectively. The quantity plotted is

〈∑
α[rαi (t) − rαi (0)] ·

∑
β[rβj (t) − rβj (0)]

〉
for

computing Lij or
∑

α

〈
[rαi (t) − rαi (0)]2

〉
for Liiself . We refer to these quantities the “MSD”,

although technically only the latter is actually a mean squared displacement. We show data
for (a) L++, (b) L++

self , (c) L−−, (d) L−−self , and (e) L+−. All remaining transport quantities,
including the distinct transport coefficients and experimentally-relevant quantities, are com-
puted from these five fits. Data for these plots is for a chain length of N = 10. Dashed black
lines show a slope of one.

S-7



Figure S5: L−−distinct/c split into contributions from anion-anion correlations within chains
(solid lines, filled markers) and between chains (dashed lines, open markers). The two
curves sum to yield the total L−−distinct/c.

Stefan-Maxwell Coefficients

The Stefan-Maxwell equations for multicomponent diffusion may be written as

ci∇µi =
∑
j 6=i

Kij(vj − vi) , (S7)

where Kij are the Stefan-Maxwell coefficients and the other quantities are defined in the

main text. For a binary electrolyte, the Onsager transport coefficients Lij may be mapped

to Kij via the following relations, derived in Fong et al.:S1

K+− = ω+ω−
L̂00 + L̂+− − L̂+0 − L̂−0

L̂+0L̂−0 − L̂+−L̂00
,

K+0 = ω+ω0
L̂−− + L̂+0 − L̂+− − L̂−0

L̂+−L̂−0 − L̂+0L̂−−
,

K−0 = ω−ω0
L̂++ + L̂−0 − L̂+− − L̂+0

L̂+−L̂+0 − L̂−0L̂++
,

(S8)
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where L̂ik = Lik

cick
, ωi is the mass fraction of species i, and the solvent transport coefficients

may be obtained from L++, L+−, and L−− using the constraint
∑

iMiL
ij = 0. The Stefan-

Maxwell coefficients obtained from the polyelectrolyte solutions in this work are given in

Figure S6.

Figure S6: Stefan-Maxwell coefficients Kij for concentrations of (a) 0.001, (b) 0.005, (c)
0.01, and (d) 0.05 σ−3. Note that in some cases K−0 transitions from positive to negative,
corresponding to divergence of the Stefan-Maxwell diffusion coefficients Dij, where Kij =
RTcicj
cTDij .
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Experimentally-measurable transport properties

Figure S7: Additional experimentally-relevant quantities computed from the transport co-
efficients Lij. (a) Ionic conductivity, κ. (b) Electrophoretic mobility for the cation (solid
lines) and polymer (dashed lines). As the polymer mobility is negative, −upolymer is shown.

Figure S8: Diffusion coefficients. (a) Diffusion coefficients for both the cation (solid lines) and
polymer (dashed lines) as a function of chain length. Note that we have sampled sufficiently
long times such that the diffusion coefficient of the polymer center of mass is equal to that of
individual monomers. (b) Polymer diffusion coefficient on a log-log scale. Dashed lines show
fits of the form Dpolymer ∼ N−m, where m is a fitting parameter given for each concentration
in Table S1.
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Table S1: Scaling exponents m for polymer diffusion as a function of chain length, Dpolymer ∼
N−m.

Concentration (σ−3) 0.001 0.005 0.01 0.05

Scaling Exponent m 0.68 0.72 0.73 0.73

Solvent-Free System

Figure S9: (a) Transport coefficients for the solvent-free system as a function of chain length,
split into self and distinct terms. (b) Conductivity as a function of chain length for the
solvent-free system.
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Polymer structure and dynamics

Figure S10: End-to-end vector analysis. (a) End-to-end vector autocorrelation functions for
N = 25 at each concentration. (b) Decay times of the end-to-end vector autocorrelation
functions (defined as the time to reach a value of 0.1).

Figure S11: Polymer end-to-end distance (Re, closed symbols) and radius of gyration (Rg,
open markers) as a function of chain length for each concentration. Dashed lines show fits
to the equation Rx ∼ (N − 1)ν , where ν is a fitting parameter given for each concentration
in Table S2.
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Table S2: Scaling exponents ν for polymer end-to-end distance and radius of gyration as a
function of chain length, Rx ∼ (N − 1)ν .

Concentration (σ−3) 0.001 0.005 0.01 0.05

Re Scaling Exponent ν 0.76 0.73 0.72 0.68
Rg Scaling Exponent ν 0.67 0.65 0.64 0.62

Figure S12: Representative cation-anion radial distribution functions (g(r)) at a concentra-
tion of 0.01 σ−3 for four different chain lengths.
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