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ABSTRACT 

The porphyrin marcocycle can stabilize a set of magnetic metal ions, thus introducing localized net spins near the 

center. However, it remains illusive but most desirable to introduce delocalized spins in porphyrins with wide 

implications, for example, for building correlated quantum spins. Here, we demonstrate that metal-free porphyrins 

host delocalized -electron magnetism as revealed by scanning probe microscopy and different level of theory 

calculations. Our results demonstrate that engineering of -electron topologies introduces spin polarized singlet 

state and delocalized net spins in metal-free porphyrins. In addition, the -electron magnetism can be switched 

on/off via STM manipulation by tunning the interfacial charge transfer. Our results provide an effective way to 

precisely control the -electron magnetism in metal-free porphyrins, which can be further extended to design new 

magnetic functionalities of porphyrin-based architectures. 
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INTRODUCTION 

Porphyrin molecules have a wide spectrum of physicochemical and biological properties with diversed 

applications in sensors, molecular electronics/spintronics and medical applications1–3. The rich functionalities of 

porphyrin complexes orginate from the center macrocycle, which can stablize a variety of elements inside and thus 

gives rise to distinct structural, electronic, magnetic, optoelectronic, and transport properties4–13. Magnetic 

metalloporphyrins have been extensively studied by various techniques, exhiting kondo and spin excitation effects, 

Yu-Shiba bound states, and spin-state switching13–27. Recently, hybridized graphene and metalloporphyrin 

nanostructures have been achieved, hosting combined intriguing electronic and magnetic properties28–33. The 

magnetism of metalloporphyrin architectures originates from the stabilized metal ions, and thus localizes at the 

center of the molecules. It remains elusive but most desirable to develop strategies to introduce delocalized spins 

in porphyrins for designer new magnetic functionalities in porphyrin architectures.  

Recent advances of on-surface synthesis allow for tailoring -electron topologies at the single chemical bond level, 

and thus provide the ability to precisely engineer -electron magnetism in low-dimensional graphene 

nanostructures by introducing sublattice imbalance, topological frustration and topological defects34–50. Examples 

like triangulenes41,43,48,51, bowtie-shape nanographenes47, chiral graphene nanoribbons45, polymers52 and 

nanographenes with topological defects46,49 have been recently synthesized and characterized on surfaces. Similar 

as nanographenes, the porphyrin macrocycle is aromatic and can be interpreted as a multiple-bridged aromatic 

diaza[18]annulene system53,54. Thorough tailoring peripheral -electron topology, it is in pricinple able to 

introduce tunable -electron magnetism in metal-free porphyrin architectures, thus greatly enriching magnetic 

functionalities of porphyrin-based systems. Although substituted open-shell porphyrins have been realized using 

conventional solution synthesis methods, on-surface synthesis of unsubstituted porphyrins with -electron 

magnetism remains to be explored55,56.  

Here, we demonstrate such ability to precisely control delocalized magnetism in metal-free porphyrins through 

tailoring their peripheral -electron topologies. Using combined solution and on-surface synthesis, three metal-

free porphyrins with different -electron topologies have been synthesized. Their chemical structures have been 

resolved by using high resolution non-contact atomic force microscopy, permitting us to clearly distinguish their 

-electron topologies at the single chemical bond level. Using low-temperature scanning tunneling spectroscopy, 

their -electron magnetism has been confirmed by Kondo effects. The experimental observations can be nicely 

elucidated by clar empirical rule, mean-field Hubbard model and spin-polarized density functional theory 

calculations. In addition, the -electron magnetism can be reversibly switched on/off via STM manipulation by 



 

tunning the charge transfer from the underneath metal substrate. The realization of -electron magnetism in metal-

free porphyrin may be further extended to build correlated spins in porphyrin-based nanostructures, with 

implications for quantum information and spintronics applications.  

RESULTS AND DISCUSSION 

Using combined in-solution and on-surface synthesis, metal-free porphyrins with different -electron topologies 

have been synthesized. As shown in Fig. 1a, the precursor 5,10,15,20-tetrakis(2,6-dimethylphenyl)porphyrin is 

synthesized in solution by using freshly distilled pyrrole and 2,6-dimethylbenzaldehyde (cf. detailed synthesis 

method in supplementary fig. 1). After in-solution synthesis, the precursor is thermally deposited on a Au(111) 

substrate held at room temperature following a subsequent annealling to 295 oC for 10 minutes. At elevated 

temperature, thermal-induced cyclodehydrogenation of methyl units occurs, giving rise to fully aromatic 

porphyrins39,57. Except for the main cyclodehydrogenation, two common side reactions take place occationally on 

Au(111): i) few methyl units detach from the precursors forming five-membered carbon rings after subsequent 

cyclodehydrogenation, and ii) partial dehydrogenation sometimes occurs and introduces SP3 hybridized carbon 

sites at edges. As shown in Fig. 1b, three products have been frequently observed and characterized. The Product 

#1 contails two pentagon carbon-rings at opposite sides, and the Product #3 has a SP3 hybridized carbon site 

passivated by two hydrogen atoms. Their chemical structures have been clearly resolved by high resolution nc-

AFM imaging using a CO-functionalized tip (cf. Fig. 1c-e). The number of unpaired -electrons (radicals) in the 

resulted porphyrins has been determined by using Clar’s empirical rule (cf. all the possible -electron networks in 

supplementary Fig. 3 and 4)58,59. As shown in Fig. 1, the Product #1 is a close-shell molecule, while the Product 

#2 and #3 have two and one unpaired -electron(s), repectively (as marked by red dots in Fig. 1). The presence of 

radicals suggests an open-shell configuration in the product #2 and #3, thus giving rise to delocalized -electron 

magnetism. 

The energy spectra and frontier molecular orbitals of the resulted porphyrins have been calculated by using mean-

field Hubbard model (MFHM) and spin-polarzied density functional theory (SP-DFT), which have been widely 

used to determine the magnetic structure of nanographenes and show nice agreements with experiments37. As 

shown in Fig. 2a-c, the Product #1 has a close-shell ground state as confirmed by combined Clar empirical rule, 

MFHM and SP-DFT calculations. We notice that MFHM calculations qualitatively agree with SP-DFT, despite 

the exact energy position of each state varies a little bit from each other. Experimentally, dfferential conductance 

(dI/dV) spectroscopy has been used to detect the electronc structure of achieved porphyrins. Together with spatial 

mappings, dI/dV spectroscopy is able to resolve both the energy positions and spatial distribution of molecular 



 

orbitals with ultra-high energy and spatial resolution. As shown in Fig. 2d, dI/dV spectra taken above the center 

of the Product #1 reveal two resonances at -1.4 V and 0.9 V, which can be assigned to the highest occupied 

molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), respectively. dI/dV mappings at 

these two energyies resolve the spatial distribution of these two molecular states, which agree well with HOMO 

and LUMO orbital shapes as calculated by MFHM and SP-DFT. These results confirm that the Product #1 is a 

close-shell molecule without any unpaired -electrons. 

Despite its slightly different -electron topology from that of the Product #1, the Product #2 has drastically 

different magnetic ground state. The Product #2 has in total 58 -elelctrons, with 2 -electrons more than those of 

the product #1. Although both of them host even number of -electrons, the Product #2 has an open-shell electronic 

structure as opposed to the close-shell configuration of the Product #1 (cf. Fig. 3a). The reason is due to topological 

frustration, that is, it is impossible to concomitantly pair all pz orbitals to form  bonds in the Product #2. This 

picture can be verified by both MFHM and SP-DFT calculations as shown in figure 3b-e. The calculated energy 

levels in Fig. 3b-c show that there are two degenerated states below fermi level, which are spatially separated with 

enhanced orbital density at opposite sides (cf. Fig. 3d and e), and singly occupied by two electrons with oppositely 

oriented spins. In other words, the ground electronic configuration breaks spin-spatial symmetry and exhibits 

antiferromagnetic ordering, which can be nicely seen in the calculated spin density maps in Fig. 3f and g. The 

mechanism behind is very similar to Clar Goblet, where topological frustration induces spin polarized singlet state 

in the bowtie-shape nanographene36,47. 

However, experimental dI/dV measurements reveal that the Product #2 hosts a net spin of S=1/2 by showing a 

sharp Kondo resonances instead of the expected singlet ground state with a net spin of S=0 (cf. Fig. 4g). As 

illustrated in Fig. 4a, we attribute this discrepancy to the interfacial charge transfer, where one electron is 

transferred from molecule to gold substrate making it positively charged. Similar charging effects have been 

previously observed in several graphene nanostructures, such as the zigzag termina of N=7 armchair graphene 

nanoribbons60,61, and N=6 zigzag graphene nanoribbon39. As shown in Fig. 4b-c, the electronic structure of the 

positively charged Product #2 is calculated by MFHM and SP-DFT, revealing a singly occupied molecular state 

below fermi level. This means the charged molecule is with a net magnetic moment of S=1/2. On metal substrate, 

this magnetic moment will be screened by Au(111) electron reservoir, which can be understood by single impurity 

Anderson Model17,62. As shown in Fig. 4g, dI/dV spectra reveal such screening effect by showing a sharp Kondo 

resonance at Fermi level. In addition, the observed spin density distribution nicely agrees with calculated results, 

further supporting that the observed zero-bias peak originates from Kondo resonance (cf. Fig. 4e-f). As per 



 

Anderson model, the Kondo peak width varies with temperature with full width at half maximum (FWHM) of 

𝛤 = √(𝛼𝑘𝐵𝑇)
2 + (2𝑘𝐵𝑇𝐾)

2, where T is the temperature, 𝑇𝐾  is the Kondo temperature, and 𝛼 is the slope of linear 

growth of the width at 𝑇 ≫ 𝑇𝐾 . The experimental obtained temperature dependent FWHM can be well fitted by 

the previous equation, giving a Kondo temperature of 22 K (cf. Fig 4h-i).  

Using similar techniques, the magnetic properties of the Product #3 has been determined. Since one carbon site is 

passivated by two hydrogen atoms, the Product #3 has one -electron less than the Product #2 with an odd number 

of 57 -electrons in total. It is impossible to concomitantly pair odd number of pz orbitals to form  bonds, thus 

generating one  radical as marked by a red dot in Fig. 5a. MFHM and SP-DFT calculations confirm the presence 

of a singly occupied state below fermi level in the Prodcut #2, that is, a net spin of S=1/2. As shown in Fig. 5d, the 

passivation of -radical locally modifies its spin density distribution, which gets significantly quenched near the 

CH2 site (cf. Clar non-kekulé structures in Supplementary Fig. 3). The emergence of net spins in porphyrins with 

odd number of  electrons is very similar to nanographenes with sublattice imbalance as proposed by E. Lieb in 

198934. As shown in Fig. 5g, dI/dV spectroscopy measurements confirm the emergence of a net spin of S=1/2 in 

the product #3. The net spin couples with underneath electron resorviour, genenrating Kondo resonances by 

showing a sharp Fano-shape peak at fermi level in dI/dV spectra with peak intensity proportional to spin density 

magnitude. In addition, the resovled spin density distribution fits very well with the calculated result (cf. Fig. 5e 

and f). The nice agreements between experiments and calculations in gas phase indicate that the Product #3 is 

neutral on Au(111). 

Although the Product #3 shares very similar adsorption geometries with that of the Product #2, the former is neutral 

on Au(111) while the later is positively charged. By carefully checking the AFM images in Fig. 1c-e, one can see 

that the presence of SP3 carbon (CH2) site slightly lifts the coner near the CH2 site away from the surface, which 

is imaged as a local bright protrusion in nc-AFM imaging due to a stronger Pauli repulsion. This slight adsorption 

difference leads to a completely different charging behavior. Previous DFT calculations by using a set of van der 

Waals correction schemes reveal that despite very close adsorption heights of most graphene nanostructures on 

Au(111), the magnetism (charge transfer) is very sensitive to small perturbations (adsorption height variations), 

supporting our observations63. To gain more evidences of the charging effect, we performed STM manipulation to 

locally modify the adsorption configurations. After each manipulation, we performed nc-AFM imaging, constant-

height current imaging and dI/dV spectroscopy to trace the charging transfer. As shown in fig. 6a, the porphyrin 

molecule is initially neutral by showing a Kondo resonance at Fermi level. After manipulation, the molecule rotates 

an angle of 185o around the out-of-plane axis (cf. Fig. 6b). Although nc-AFM and constant-height current image 



 

indicate a similar adsorption geometry after rotation, dI/dV spectrascopy reveals that the molecule is positively 

charged by showing a broad peak above fermi level instead of exhibiting a sharp Kondo resonance at fermi level 

(cf. the No. 2 spectrum in Fig. 6d). In other words, the electron previously occupied the singly occupied state 

transfers to gold substrate, thus making the molecule positively charged and leading all oribitals doubly occupied. 

Further manipulation experiment was used to rotate the molecule again. As shown in Fig. 6c, the Kondo resonance 

appears after a successive rotation of 125o, suggesting the molecule becomes neutral again. In total, we performed 

successive 9 times STM manipulations, and found that the charging effect is extremely sensitively to adsorption 

variations (cf. supplementary Fig.8). Similar manipulation experiments have been performed on the Product #1 

and #2 without obtaining this switching effect. These results indicate that slightly decoupling the molecule from 

surface can effectively quench the charging effect, such as by lifting the molecule slight away from the substrate 

by functional groups. 

CONCLUSION 

In conclusion, we demonstrate an effective approach to engineer -electron magnetism in metal-free porphyrins 

by using combined non-contact atomic force microscopy, scanning tunneling microscopy/spectroscopy as well as 

theory calculations at different levels. Three types of porphyrins with different -electron topologies have been 

successively synthesized and characterized down to the single chemical bond level. The -electron network in 

porphyrins with even number of  electrons can either host a close-shell configuration or spin polarized singlet 

ground state depending whether the network gets frustrated or not. Porphyrins with odd number of  electrons host 

nets spin similar as sublattice imbalance induced spins in nanographenes. In addition, the magnetism can be 

switched on/off by tuning charge transfer from underneath Au(111). Our method reported herein provides ample 

opportunities for further designer correlated spins in porphyrin-based nanostructures to study their many-body 

effects. 
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Figure 1. Synthesis of porphyrins with different -electron topologies. (a), In-solution synthesis of molecular 

precursor 5,10,15,20-tetrakis(2,6-dimethylphenyl)porphyrin. (b), Chemical structures of three On-surface 

synthesized porphyrins with red dots indicating the unpaired -electrons. (c-e),, Nc-AFM frequency shift images 

(Resonant frequency: 26 KHz, Oscillation amplitude: 80 pm, Scale bars: 0.4 nm) of the porphyrins in (b). 

 

  



 

 
 

Figure 2. Electronic structure of a close-shell porphyrin with two embedded pentagon rings. (a), Chemical structure 

of the product #1. (b-c), Mean-field Hubbard model and spin-polarized density functional theory calculated energy 

spectrum of the porphyrin in (a). (d), dI/dV spectra taken at the two locations marked on the inset current image 

(scale bar: 0.25 nm). Two resonances have been observed and assigned to the highest occupied molecular orbitals 

(HOMO) and lowest unoccupied molecular orbitals (LUMO). (e), Up: spatial resolved local density of states maps 

taken at the biases marked by dashed lines in (d); Down: Simulated density of states maps. Scale bars: 0.5 nm. 

 

  



 

 

Figure 3. Spin polarized singlet ground state in the Product #2. (a), Chemical structure of the Product #2 with two 

unpaired  electrons as marked by red dots. (b-c), Mean-field Hubbard model and spin-polarized density functional 

theory calculated energy spectrum of the porphyrin in (a). (d-e), Calculated frontier orbitals of the two singly 

occupied states as marked in (b) and (c). (f-g), Mean-field Hubbard model and spin-polarized density functional 

theory calculated spin density distributions. Red/green: spin up, bule/yellow: spin down.  

 

 

  



 

 

Figure 4. Electronic structure of the positively charged Product #2. (a), Illustrative showing charge transfer from 

the Product #2 to underneath Au(111), thus making it positively charged. (b-c), Mean-field Hubbard model and 

spin-polarized density functional theory calculated energy spectrum of the charged Product #2. (d), Spin-polarized 

density functional theory calculated spin density distributions. Green: spin up, Yellow: spin down. (e-f), Constant-

height current image (Bias voltage: 1 mV, Scale bars: 0.5 nm), and simulated DOS map of the charged Product 

#2. (g), dI/dV spectra spectra taken on the locations marked in (e). (h), Temperature dependent dI/dV spectra 

showing the broadening of Kondo resonace peak as increase the temperature. (i), The full-width at half maximum 

of Kondo resonce peak as a function of temperature. The solid red line is fitted curver giving a Kondo temperature 

of 22K.  

  



 

 

Figure 5. Electronic structure of the Product #3. (a), Chemical structure of the Product #3 with one unpaired  

electron as marked by a red dot. (b-c), Mean-field Hubbard model and spin-polarized density functional theory 

calculated energy spectrum of the Product #3. (d), Spin-polarized density functional theory calculated spin density 

distributions. Green: spin up, Yellow: spin down. (e-f), Constant-height current image (Bias voltage: 1 mV, Scale 

bars: 0.5 nm), and simulated DOS map of the charged product #2. (g), dI/dV spectra spectra taken at the locations 

marked in (e).  

  



 

 

Figure 6. Switching magnetic state by STM manipulation. (a-c), From left to right: Chemical structure, nc-AFM 

image (Resonant frequency: 26 KHz, Oscillation amplitude: 80 pm, Scale bars: 0.2 nm), Constant-height current 

image (Bias voltage: 1 mV, Scale bars: 0.25 nm) of the Product #3 after two manipulation steps. (d), dI/dV spectra 

taken at the marked positions in (a-c).  
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