
MDBenchmark: a toolkit to optimize the performance of molecular
dynamics simulations

Michael Gecht,1, a) Marc Siggel,1 Max Linke,1 Gerhard Hummer,1, 2 and Jürgen Köfinger1, b)
1)Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main,
Germany
2)Institute for Biophysics, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main,
Germany

(Dated: 22 June 2020)

Despite the impending flattening of Moore’s law, the system size, complexity and length of molecular dynamics (MD)
simulations keeps on increasing, thanks to effective code parallelization and optimization combined with algorithmic
developments. Going forward, exascale computing poses new challenges to the efficient execution and management
of MD simulations. The diversity and rapid developments of hardware architectures, software environments, and MD
engines make it necessary that users can easily run benchmarks to optimally set up simulations, both with respect to
time-to-solution and overall efficiency. To this end, we have developed the software MDBenchmark to streamline the
setup, submission, and analysis of simulation benchmarks and scaling studies. The software design is open and as such
not restricted to any specific MD engine or job queuing system. To illustrate the necessity and benefits of running
benchmarks and the capabilities of MDBenchmark, we measure the performance of a diverse set of 22 MD simulation
systems using GROMACS 2018. We compare the scaling of simulations with the number of nodes for CPU-only and
mixed CPU-GPU nodes and optimize the numbers of MPI ranks and OpenMP threads. Our results demonstrate the
importance of benchmarking for finding optimal system and hardware specific simulation parameters. Running MD
simulations with optimized settings leads to a significant performance increase that reduces the monetary, energetic,
and environmental costs of MD simulations.

I. INTRODUCTION

Molecular dynamics (MD) simulations have become an in-
tegral part of the molecular life sciences and material sci-
ences. Their predictive power has been continuously in-
creasing thanks to methodological advances and the expo-
nential growth of compute power. The latter is captured by
Moore’s law for the number of transistors of an integrated
circuit and, across different technologies, by the law of ac-
celerated returns1,2. This continuing growth translates into a
similar growth of the temporal and spatial scales that can be
assessed in MD simulations3. Thus, MD simulations are be-
coming more powerful in extending and connecting the dif-
ferent scales that are accessible to experimental methods4. As
so-called computational microscopes5,6, MD simulations are
widely used to make predictions and to analyze, design, and
validate experiments.

The tools to perform MD simulations have reached a
level of sophistication which allows non-expert users to set
up, run, and analyze simulations. Various software pack-
ages for performing MD simulations, so called MD engines,
have been developed, e.g., ACEMD7, Amber8, CHARMM9,
Desmond10, GROMACS11, LAMMPS12, NAMD13, and
OpenMM14. These engines, each with a unique set of fea-
tures, were designed to efficiently compute the time evolution
of particles in a simulation box and take advantage of differ-
ent hardware architectures and parallel computation to vary-
ing degrees.

a)Electronic mail: michael.gecht@biophys.mpg.de
b)Electronic mail: juergen.koefinger@biophys.mpg.de

Optimal settings for MD simulations aim to decrease time-
to-solution (TTS) and to increase the throughput of simula-
tions and energy efficiency. To run an MD simulation on a
compute cluster, the user has to specify numerous parame-
ters to control the behavior of the underlying hardware and
software. Moreover, optimal parameters might vary between
different versions of the same MD engine and depend on the
details of the molecular system under consideration. Users
new to MD simulations might miss the details that are re-
quired to run efficient simulations on high-performance com-
pute clusters. A poor choice of parameters can notably de-
grade the simulation performance, usually measured in simu-
lated time per day, e.g., ns/day, or increase it only by a small
margin while wasting resources. Such inefficient simulations
decrease overall simulation throughput, lead to a higher elec-
tricity demand and operating cost, and ultimately increase the
carbon footprint. It is therefore in the interest of every user to
optimize their usage of hardware resources, and, at the same
time, keep their TTS to a minimum. This daunting task of
finding the optimal parameters for running MD simulations
can only be tackled by thorough benchmarking.

Therefore, we need to enable individual users to run bench-
marks conveniently and efficiently for their given settings.
This complements the goals of systematic benchmark studies
performed by experts15–18. For example, Kutzner et al. have
performed extensive benchmarks using GROMACS to deter-
mine the best performance-to-price ratio for a variety of MD
systems and numerous hardware architectures17,18. They pro-
vided valuable guidelines for configuring and purchasing new
clusters and for choosing optimal parameters. However, the
rapid development of hardware, algorithms, and software and
the variety of MD engines and simulation systems requires
that users themselves are able to run benchmark studies effi-

mailto:michael.gecht@biophys.mpg.de
mailto:juergen.koefinger@biophys.mpg.de

2

ciently.
We developed MDBenchmark, a standalone software pack-

age, implemented as a command-line interface (CLI), to con-
veniently set up, run and analyze benchmarks of MD simu-
lations. With this tool users can run benchmarks and scaling
studies for their specific molecular system, MD engine, and
compute cluster. MDBenchmark was developed to streamline
and simplify the process of finding the optimal run parame-
ters and settings for any simulation and hardware stack. It
takes care of submitting simulations to the queuing system,
performs scaling studies by varying the number of nodes, au-
tomatically toggles the usage of CPUs and/or GPUs, and scans
the numbers of processes used for parallelization (MPI ranks,
OpenMP threads) if applicable. The package was designed for
ease of use not only by expert users, but also by researchers
without prior detailed knowledge of the ins and outs of high-
performance computing (HPC).

To illustrate the application and the capabilities of
MDBenchmark and to highlight the value and neces-
sity of running benchmarks, we report on an extensive
scaling study of 22 MD simulations of varying sizes
(1×105 – 4×106 atoms) and system compositions. We iden-
tify numbers of MPI ranks and OpenMP threads that produce
the best performance for a range of system sizes, study the
benefits of hyperthreading, and analyze when it is beneficial
to use CPU-only or mixed CPU-GPU nodes. For this study,
we use the GROMACS software suite, as it is widely used,
freely available, and highly optimized for different kinds of
hardware. However, MDBenchmark has been designed such
that different MD engines and job queuing systems can easily
be added.

II. BACKGROUND

Current compute clusters are composed of compute nodes,
each containing at least one central processing unit (CPU), an
optional graphics processing unit (GPU), as well as gigabytes
of dedicated random-access memory (RAM). These nodes are
connected in a network, such that data can be exchanged be-
tween nodes and calculations can be performed in parallel on
multiple nodes.

Modern CPUs contain dozens of physical cores, where
each core can perform computations independent from the
others. In addition, a single physical core can often per-
form two computations at the same time, a feature called
“hyperthreading“19. When enabled, the number of physical
cores is virtually doubled, i.e., for each physical core two
“logical cores” are introduced.

To use these heterogeneous resources efficiently and run
calculations in parallel, two interfaces are widely used:
message passing interface (MPI) and open multi-processing
(OpenMP). MPI spawns processes, which we will refer to as
ranks. A single MPI rank can comprise all cores of a single
node or only a subset of them. In contrast, OpenMP creates
computational threads, where each is composed only of a sub-
set of cores available inside a MPI rank. OpenMP threads
share the same memory.

Running a simulation on a computer cluster requires the
user to submit a compute job to a queuing system. The user
must configure a submission script that launches the MD en-
gine over its CLI. Users have to define the correct parameters
for the specific queuing system. Activating hyperthreading
on the “Sun Grid Engine” (SGE) differs, for example, from
activating it on the “Simple Linux Utility for Resource Man-
agement” (SLURM) queuing system.

The numbers of MPI ranks to OpenMP threads influence
the performance of GROMACS simulations17,18. To take ad-
vantage of the parallel compute infrastructure, a simulation
box is first divided into separate domains in a process called
domain decomposition20. Each domain is regarded in an iso-
lated manner and information at the borders is communicated
with the other domains. In a hybrid MPI-OpenMP approach,
the calculations of a single domain are managed by a sin-
gle MPI rank. This rank spawns multiple OpenMP threads,
which then perform the actual calculations in each domain.
Each MPI rank communicates with the ranks responsible for
its neighbouring domains. The number of ranks nranks per
node times the number of threads nthreads per node gives the
number of logical cores per node. If hyperthreading is deacti-
vated then the number of logical cores is equal to the number
of physical cores. If activated, it is equal to twice the number
of physical cores.

III. THE MDBENCHMARK SOFTWARE

The CLI of MDBenchmark provides access to four main
functions (Fig. 1). In the first step, all parameters for the
benchmark(s) are defined using the GENERATE command
[Fig. 1(a)]. Here, the user chooses the MD engine, the num-
bers of nodes to perform scaling on, whether to use GPUs and
the numbers of MPI ranks. In addition, a run input file of an
equilibrated MD simulation must be provided. A .TPR file is
sufficient for GROMACS. Different MD engines require dif-
ferent input files. For example, the .NAMD, .PSF and .PDB
files have to be provided for NAMD. MDBenchmark auto-
matically checks the availability of the requested MD engine
and its installed version using the “Environment Modules”
system21. This feature was put in place to safeguard against
typos in the module name. If a module environment is not
used on the compute cluster, the user can skip this availabil-
ity check. MDBenchmark will prompt the user to confirm the
action, before proceeding to create the folder structure.

The folder structure was intentionally designed with a
nested hierarchy to allow users to access files themselves, if
needed. Each requested MD engine is put into its own folder,
with a subfolder denoting the engine’s version and whether
MDBenchmark is going to request CPU-only or mixed CPU-
GPU nodes. The last subfolder layer separates the bench-
marks by the numbers of nodes, MPI ranks, and OpenMP
threads, and by whether hyperthreading is enabled or disabled.
Each of these subfolders then contains a copy of the run input
file, as provided by the user, the job submission script con-
taining all parameters and commands to run the benchmark,
as well as a hidden folder holding all metadata in JSON for-

3

FIG. 1. Schematic representation of the implementation and workflow of MDBenchmark. (a) Run input files and benchmark parameters are
supplied to the GENERATE command. For every benchmark, a folder with attached metadata is created. (b) The SUBMIT command sends
the benchmark job to the HPC queue, starting the MD engine on the requested resources. (c) The log file, written by the engine, contains
all necessary results and is parsed through the ANALYZE command. Results are shown in the console or saved to a CSV file. (d) The PLOT
command can visualize results in a plot using the CSV file as input. It produces a scaling plot with the performance (ns/day) as a function of
the number of nodes, with every benchmark setting as a separate line.

mat. This metadata is managed through the datreant Python
package22. We use it to define each benchmark as an en-
tity and add our parameters as metadata. The package can
be used to search and filter benchmarks through their Python
API. This way, benchmarks can easily be grouped by distinct
parameters for additional customized analysis by the user.

After benchmarks have been set up, they can be submit-
ted to the queuing system with the SUBMIT command in the
second step [Fig. 1(b)]. When called, it will traverse all sub-
folders and gather information on each benchmark. The user
will be shown all benchmarks that are to be submitted and they
will be prompted to submit or cancel. If a benchmark was al-
ready submitted, it will be excluded from further submissions.
The user can ask MDBenchmark to submit all benchmarks,
ignoring their submission status. Currently, MDBenchmark
can submit jobs to the queuing systems SGE, SLURM, and
IBM’s LoadLeveler. The available queuing system will be au-
tomatically determined before submission. The submission
files are conveniently implemented using the template syntax
provided by the Jinja2 Python package, which facilitates the
easy adaption to other HPC resources and different require-
ments (further details are available in the documentation).

After submission to the queuing system, the status of
benchmarks can be checked with the ANALYZE command in
the third step [Fig. 1(c)]. MDBenchmark will print all avail-
able information on each benchmark in a tabular format to the
console. Every call to the ANALYZE command will parse the
log files produced by GROMACS and extract all important
information on the corresponding run. If a benchmark has al-
ready finished, its performance will be printed in the last col-
umn of the table. All available benchmark data can be saved
in a CSV format to a file for future analysis.

In a fourth step, the name of the file containing the bench-
mark results can be provided as an argument to the PLOT com-
mand, which will produce a scaling plot [Fig. 1(d)]. The plot
shows the performance (ns/day) as a function of the number
of nodes, with each line representing a different combination
of parameters (CPU-only/mixed CPU-GPU nodes, numbers
of MPI ranks and OpenMP threads, and hyperthreading). A
linear fit through the first two data points is added to indi-
cate ideal scaling. The PLOT command also accepts multiple
CSV files from separate benchmarks, to allow for straightfor-
ward comparison of different benchmark parameters. In addi-
tion, the CSV file can be easily read with the pandas Python
package23 for customized analysis.

Further detailed explanations of all available options can be
found online in the MDBenchmark documentation (https:
//mdbenchmark.readthedocs.io/en/version-3/).

IV. METHODS

We used MDBenchmark to run benchmarks of atomistic
MD simulations for 22 biomolecular systems. The system
sizes range from 105 to 4× 106 atoms [Fig. 2(a)]. 15 out of
the 22 tested systems (68 %) have less than 300,000 atoms.
Due to the nature of biomolecular simulations, the 22 sim-
ulation systems studied here are mostly composed of sol-
vent: 55 – 99 % of the systems total atoms belong to wa-
ter molecules [Fig. 2(b)]. If present, lipid bilayers account
for 8 – 45 % of all remaining atoms. Other solutes, i.e., pro-
teins, nucleic acids, small molecules and ions, make up only
0.1 – 27 %. These systems cover a broad range of force fields,
water models, compositions, box geometries and sizes (Ta-

https://mdbenchmark.readthedocs.io/en/version-3/
https://mdbenchmark.readthedocs.io/en/version-3/

4

FIG. 2. Size and composition of simulation systems. (a) Cumula-
tive number of systems as a function of the atom number. Most MD
systems (68 %) contain less than 300,000 atoms. (b) Relative abun-
dance of system constituents as a function of the number of atoms.
Systems are composed of 55 – 99 % solvent (blue). Lipid bilayers,
if present, make up 8 – 45 % (orange) of the systems total number of
atoms. All other solutes account for, at most 27 %, but usually less
than 10 % (green). Note that the numbers of atoms comprise all in-
teraction sites, i.e., also the additional interaction sites for TIP4P-D
water.

ble I). Their exact setup can be found in the corresponding
references, if already published.

For these 22 systems, we performed scaling studies in
which we determine the performance P(N) as a function of
the number of nodes N. We vary the number of MPI ranks,
nranks, which also determine the number of OpenMP threads
per rank, nthreads, for activated and deactivated hyperthreading.

We use Amdahl’s law as a simple model to summarize the
results of our scaling studies24. This law describes the speed-
up S(N) of parallelized computations as a function of the num-
ber of nodes N, i.e.,

S(N) =
1

1− p+ p
N
, (1)

where p is the fraction of the code that benefits from paral-
lelization.

We use Amdahl’s law to express the performance P(N) =
S(N)P(1) as

P(N) =
Pmax

1+ p
N(1−p)

, (2)

where the maximum performance Pmax = limN→∞ P(N) is
given by

Pmax =
P(1)
1− p

. (3)

The ideal scaling, determined by the speed-up going from N =
1 to N = 2, is then given by

Pid(N) = P(1)+(N−1)(P(2)−P(1)) , (4)

which becomes

Pid(N) = Pmax
(

1+(N−1)
p

2− p

)
. (5)

We use Amdahl’s law to estimate the performance that can
be achieved by increasing the number of nodes, while being
reasonably efficient, i.e., close to ideal scaling as given by
Eq. (4). For parallelization to be efficient, we demand that the
performance is a fraction f of the ideal performance, i.e.,

P(N) = f Pid(N) (6)

and solve for N. Introducing q = 1− p for brevity, we obtain

N(f) =
1

2pq f

[
q+1− f (p2 +2q2)+√
(q+1− f (p2 +2q2))2−8p2q2 f 2

]
(7)

The performance corresponding to a fraction f of the ideal
scaling is then given by P(N(f)).

We performed benchmarks with GROMACS 201811 with-
out the built-in hybrid thread-MPI library, but with external
MPI libraries and enabled OpenMP support. AVX_512 SIMD
instructions were enabled at compile time with GCC 8.3 and
CUDA 10.1. We used nodes with two Intel R© Xeon R© Gold
6148 CPUs (2.40 GHz) for all benchmarks, with additionally
two NVIDIA Quadro RTX 5000 graphic cards in mixed CPU-
GPU nodes. Benchmarks were run on specific numbers of
MPI ranks and OpenMP threads for a total wall time of 15
minutes, if not mentioned otherwise. We used SLURM as the
queuing system for all benchmarks on the available supercom-
puter. Example submission files for both CPU-only and mixed
CPU-GPU nodes can be found in the supporting information.

All data generated in this study was managed and ana-
lyzed using datreant22, MDAnalysis25,26, NumPy27, Pandas23,
SciPy28 and IPython29. Plots were generated with
Matplotlib30.

V. RESULTS

Using MDBenchmark, we first examine the dependence of
the performance estimates on the run time of the benchmarks.
We then use two exemplary systems to discuss in detail the
performance scaling and its dependence on the number of MPI
ranks and on hyperthreading. We then present results for the
complete data set of 22 systems and show how optimal pa-
rameters vary with system size.

A. Run time of benchmarks

Ideally, a benchmark run provides the most accurate per-
formance estimate (ns/day) in the least amount of time. Short

5

TABLE I. Details of the fully atomistic simulation systems, for which we perform scaling benchmarks. The systems vary in size, com-
position, and box geometry, as well as in force fields and water models: CHARMM3631, CHARMM36m32, AMBER99SB*-ILDN33–35,
AMBER99SB*-ILDN-Q33–37, TIP3P38, and TIP4P-D39.

Type # atoms Box geometry System size (nm) Force field Water model Reference
1 Protein in solution 91,120 cuboid 9.9x9.9x9.9 CHARMM36 TIP3P Unpublished
2 Protein in solution 95,286 cuboid 10.0x10.0x10.0 CHARMM36 TIP3P Unpublished
3 Protein in solution 112,390 cuboid 10.0x10.0x10.0 AMBER99SB*-ILDN-Q TIP3P Unpublished
4 Protein in membrane 117,390 cuboid 11.0x11.0x10.0 CHARMM36 TIP3P Hofbauer et al. 40

5a Protein in solution 122,730 cuboid 10.0x10.0x10.0 AMBER99SB*-ILDN-Q TIP4P-D Unpublished
6a Dense protein solution 130,402 cuboid 9.9x9.9x9.9 AMBER99SB*-ILDN-Q TIP4P-D Bülow et al. 41

7 Empty membrane 163,215 cuboid 13.1x13.1x9.1 CHARMM36m TIP3P Unpublished
8a Protein in solution 202,512 rhomb. dodec. 13.0 AMBER99SB*-ILDN-Q TIP4P-D Unpublished
9 dsDNA in solution 213,722 rhomb. dodec. 14.5x14.5x10.3 AMBER99SB*-ILDN TIP3P Unpublished
10 Protein and membrane 233,433 cuboid 14.6x14.6x10.5 CHARMM36m TIP3P Wu et al. 42

11 Protein and membrane 239,306 cuboid 14.6x14.6x10.9 CHARMM36 TIP3P Unpublished
12a Dense protein solution 265,986 cuboid 12.6x12.6x12.6 AMBER99SB*-ILDN-Q TIP4P-D Bülow et al. 41

13 Protein and membrane 279,760 cuboid 15.9x15.9x10.8 CHARMM36 TIP3P Unpublished
14 Protein in membrane 297,697 cuboid 13.8x13.8x15.4 CHARMM36m TIP3P Hofmann et al. 43

15a Protein in solution 472,859 cuboid 15.0x15.0x15.0 AMBER99SB*-ILDN-Q TIP4P-D Unpublished
16a Dense protein solution 689,746 cuboid 17.3x17.3x17.3 AMBER99SB*-ILDN-Q TIP4P-D Bülow et al. 41

17 Protein in membrane 699,861 cuboid 19.5x19.5x18.1 CHARMM36m TIP3P Unpublished
18 Protein and membrane 1,219,446 cuboid 23.0x23.0x23.0 CHARMM36m TIP3P Unpublished
19 Protein and membrane 2,263,618 cuboid 38.2x21.6x31.5 CHARMM36 TIP3P Unpublished
20a Dense protein solution 3,520,854 cuboid 30.0x30.0x30.0 AMBER99SB*-ILDN-Q TIP4P-D Bülow et al. 41

21a Dense protein solution 3,657,069 cuboid 30.4x30.4x30.4 AMBER99SB*-ILDN-Q TIP4P-D Bülow et al. 41

22b Protein and membrane 4,059,840 hexameric 34.9x34.9x37.9 CHARMM36m TIP3P Unpublished

a Systems use TIP4P-D water model.
b The timestep of this system was to 4 fs.

FIG. 3. Dependence of the performance estimates on the run times of
the benchmarks. MD simulations with (a) 233k and (b) 3.6M atoms
scaled from 1 to 10 nodes and run for 5 (blue), 10 (orange) and 15
(green) minutes. Each data point shows the average of 5 independent
runs with error bars and filled-in area showing the standard deviation.
Transparent dashed lines show ideal scaling as estimated by linearly
extrapolating the performance of one and two nodes [Eq. (4)].

benchmarks facilitate a higher throughput, a more efficient use
of the limited computing resources, and thus allow us to sam-
ple a broader range of parameters.

To set the length of a benchmark run, we can either use
a fixed number of steps, as previously done by Kutzner et
al.17,18, or set the run time explicitly. In a GROMACS simu-
lation, the first hundreds to thousands of steps can be used to
balance computational load between different ranks using dy-
namic load balancing. This auto-tuning is enabled by default
and beneficial for overall simulation performance. However,
a benchmark will be aborted if this process has not finished
after half of the available compute time. For larger systems,
the auto-tuning process takes longer. Thus, we decided to set
the run time explicitly as jobs with fixed, short run times can
be given higher priority by the queuing systems.

To determine the minimum run time of benchmarks, we
have performed scaling studies of two systems using N =
1 – 10 nodes and used run times of 5, 10, and 15 minutes
(Fig. 3) using CPU-only nodes. Results for the shortest run
times of 5 minutes can deviate significantly from the results
for 10 and 15 minutes. The shortest run time can be used
for a first screening while longer run times seem to be nec-
essary to obtain accurate results. The benchmark results can
be influenced, for example, by the amount of traffic handled
by the network infrastructure at run time. In the following, all
reported benchmarks were run for 15 minutes independent of
the system size. Interestingly, the performance estimates from
multiple runs with fixed benchmark time vary more for CPU-

6

FIG. 4. Scaling of the performance PCPU(N) with the number N of CPU-only nodes for different numbers of MPI ranks nranks (colors) with
(a,d) and without (b,e) hyperthreading. Ideal scaling was estimated by a linear fit to the performances of one and two nodes [Eq. (4), dashed
lines]. (a,b) Prototypical membrane protein system with 233k atoms and (d,e) dense protein solution with 3.6M atoms. Both systems scale
the best with nranks = 40. (c,f) Differences ∆PCPU(N) between the performances with and without hyperthreading [Eq. (8)]. For the best
performing rank settings (filled squares) of nranks = 40, both systems generally benefit from running simulations with hyperthreading.

only nodes than for mixed CPU-GPU nodes, as can be seen,
for example, below in Fig. 6.

B. Optimizing performance for two exemplary systems

We evaluated how the performance scales with different
numbers of nodes using either CPU-only or mixed CPU-GPU
nodes. Using MDBenchmark, we ran benchmarks using 1 to
10 nodes and scanned the values of the MPI ranks with and
without hyperthreading. In the following, we present detailed
results for two exemplary systems of different size and com-
position (systems 10 and 21 in Table I): system #10, a proto-
typical membrane protein system with 233k atoms42 and sys-
tem #21, a large 3.6M atom system of a dense protein solution
using TIP4P-D as the water model41.

Our results show that the dependence of the performance on
the number of MPI ranks is different for CPU-only nodes and
for mixed CPU-GPU nodes. For CPU-only nodes with hyper-
threading activated, both systems show the best performance
for nranks = 40, consistently for all node numbers [Figs. 4(a)

and 4(d)]. Thus, for CPU-only nodes the optimal number
of ranks is independent of the system size. In contrast, for
mixed CPU-GPU nodes with hyperthreading activated, the
optimal choice of nranks depends on the system size [Figs. 5(a)
and 5(d)]. For the default parameters set by GROMACS
2018, nranks = 40 and hyperthreading activated, the medium
sized system with 233k atoms shows the worst performance
[Fig. 5(a)]. We find that the optimal numbers of ranks yielding
the highest performances are given by nranks = 8 as well as by
nranks = 10. These two settings can scale up to 5 nodes with
80% efficiency (dashed lines). This example illustrates that
blindly trusting the default settings can decrease performance
by more than half. For the larger systems of 3.6M atoms, we
observe that a higher number of ranks nranks results in better
performance and that the optimal value is actually the default
setting of nranks = 40 and nthreads = 2 [Fig. 5(d)].

With hyperthreading activated, the previously determined
optimal values of nranks remain unchanged, both for CPU-only
and mixed CPU-GPU nodes [Figs. 4(b), 4(e), 5(b) and 5(e)].
To quantify the effect of hyperthreading, we calculate the dif-

7

FIG. 5. Scaling of the performance PGPU(N) with the number N of mixed CPU-GPU nodes for different numbers of MPI ranks nranks (colors)
with (a,d) and without (b,e) hyperthreading. Ideal scaling was estimated by a linear fit to the performances of one and two nodes [Eq. (4),
dashed lines]. For the membrane protein system with 233k atoms, we obtain the best performances for nranks = 8, (a) with and (b) without
hyperthreading. For the dense protein solution with 3.6M atoms, we obtain the best performance for nranks = 40, (c) with and (d) without
hyperthreading. (c,f) Differences ∆PGPU(N) between the performances with and without hyperthreading [Eq. (8)]. (c) We find that for the
233k atom system, the performance for the optimal rank settings (filled symbols) does not benefit from hyperthreading. (f) For the 3.6M atom
system, a significant increase in performance can be achieved by activating hyperthreading for the optimal rank settings (filled squares).

ference of the absolute performances as

∆Px(N) = Px(N)−PHT
x (N) (8)

where Px(N) is the performance without hyperthreading and
PHT

x (N) is the performance with hyperthreading. Here and
in the following, subscript x = CPU denotes CPU-only and
x = GPU denotes mixed CPU-GPU nodes. The superscript
HT indicates that hyperthreading is activated, its absence that
it is deactivated.

We find that simulations on CPU-only nodes benefit from
hyperthreading [Figs. 4(c) and 4(f)] whereas simulations on
mixed CPU-GPU nodes do not in general [Figs. 5(c) and 5(f)].
The differences in performance for activated and deactivated
hyperthreading Px(N) for a given value of nranks can change
signs between different node numbers. However, the overall
tendencies become clear if we consider the optimal rank set-
ting for each node number individually. For CPU-only nodes,
performances generally benefit from hyperthreading. Only for
the 233k atom system, we see deviations from this behav-

ior for three node numbers (N=1,7,8). For mixed CPU-GPU
nodes, we find that there is no significant benefit of activating
hyperthreading for the 233k atom system and all node num-
bers and for the 3.6M atom systems and smaller node numbers
(N . 6). Only for the larger system and larger node numbers,
the activation of hyperthreading leads to a ∼ 5% performance
increase for the optimal rank settings.

We now show that the scaling behavior, i.e., the dependence
of the performance on the number of nodes, is well captured
by Amdahl’s law in the form of Eq. (2) for both hardware
architectures (Figs. 4 and 5). This simple law captures the
linear increase of the performance with small node numbers
and the convergence to a plateau for larger node numbers. If
node numbers become too large, the scaling breaks down and
Amdahl’s law cannot be applied. Using the optimal rank and
hyperthreading settings for the two systems and hardware ar-
chitectures considered here, we performed scaling studies up
to 64 nodes. We fit Amdahl’s law to the scaling curves using
the single fit parameter p. We find that Amdahl’s law fits the

8

FIG. 6. Amdahl’s law captures the scaling behaviour. Performance
Px(N) of two MD simulations with varying sizes as a function of
nodes N. Each panel shows the best performing nranks values on
mixed CPU-GPU nodes without hyperthreading (orange) and CPU-
only nodes with 40 nranks and hyperthreading (blue) from Figs. 4 and
5. Each combination of nodes N was run in multiple independent
simulations of 15 minutes each. All replicates are shown. Solid col-
ored line shows the fits to the data using Eq. (2). Transparent dashed
lines show ideal scaling as estimated from the performances of one
and two nodes.

scaling curves reasonably well and that it can thus be used to
summarize the results, as is done in the next section.

A comparison of the performance scaling for the two hard-
ware architectures shows that the mixed CPU-GPU nodes per-
form better than CPU-only nodes for small node numbers only
(Fig. 6). For the membrane protein system, mixed CPU-GPU
nodes perform better up to N = 14 [Fig. 6(a)], for the dense
protein solution up to 32 nodes. For larger N the performance
increases only slowly for mixed CPU-GPU nodes such that
CPU-only nodes achieve higher absolute performances. This
behavior is consistent for all of the 22 systems considered here
and the point of equal performance shifts to higher N with in-
creasing system size (Figs. S1 and S2). The location of this
point of equal performance is also determined by the relative
computational power of CPU and GPU. Note that both node
architectures contain the same CPU. A less powerful CPU
would thus shift the point of equal performance to higher node
numbers.

C. Size dependence of optimal parameters

As we have shown above for two exemplary systems, the
optimal values for nranks depend on the number of atoms in a
system for mixed CPU-GPU nodes. We further validate these
observations with additional scaling results of the remaining

20 systems on mixed CPU-GPU nodes without hyperthread-
ing, varying the nranks values for different numbers of nodes
N (Fig. S1). We also present scaling benchmarks for each
system with the best performing settings on CPU-only nodes
(nranks = 40 with hyperthreading).

Our benchmark results for the 22 systems consistently show
that for mixed CPU-GPU nodes the optimal numbers of nranks
decreases with increasing node number and increases with
system size (Fig. 7). Note that the number of OpenMP threads
is given by the number of logical cores divided by the number
of MPI ranks. The observed trends are clear and consistent
and provide guidelines for the optimal rank settings. How-
ever, the deviations from these monotonic trends also show
that for a specific system it is beneficial to run benchmarks for
numbers of ranks close to the optimal values.

The absolute performances for the 22 systems follow the
trends as exemplified above for the 233k and 3.6M atom sys-
tems (Fig. 8). Mixed CPU-GPU nodes [Fig. 8(a)] perform
better than CPU-only nodes [Fig. 8(b)] only for fairly small
numbers of nodes, as indicated by their performance ratio
[Fig. 8(c)]. With the exception of systems 6 and 12, the speed-
up factor is larger than two for all simulations on a single
node. For two nodes, a speed-up larger than two is achieved
for nearly all system sizes larger than 236k atoms, with system
12 and 16 being the exception. As we discuss in the following,
these exceptions are due to aggressive simulation settings.

The overall scaling of the performance with the number of
nodes and system size is fairly smooth and quite monotonic.
However, the dense protein solutions (systems 6, 12, 16, 20,
21) systematically deviate from the overall trends for CPU-
only nodes [Fig. 8(b)], which also becomes noticeable in the
performance ratios [Fig. 8(c)]. The reason is that in these
simulations the cutoff-distance in the real space interactions
has been reduced and the Fourier space cut-off in the PME
calculation increased compared to the other systems. With
these settings, performance could be increased significantly
on CPU-only nodes. However, the performance on mixed
CPU-GPU nodes remains largely unaffected. Note that in ad-
dition to the dense protein solutions listed here also systems
5, 8, and 15 use the TIP4P-D39 water model. However, these
systems do not show deviations from the overall performance
trends.

For all system sizes, simulations on CPU-only nodes scale
much better with the number of nodes than mixed CPU-GPU
nodes (Fig. 9). We quantify the computational efficiency of
choosing N nodes by calculating the ratio of the actual perfor-
mance to the performance we would get for ideal scaling. We
determine ideal scaling using Eq. (5), using values of p from
fits of Amdahl’s law to the performance data. Instead of fitting
to the scaling curve for the nranks value which gives the over-
all best performance, we generate an optimal scaling curve by
first identifying for each node number N the maximum perfor-
mance over all nranks values. We then identify the rank giving
the optimal performance given N, as shown in Fig. 7. Finally,
we fit Amdahl’s law to these optimal scaling curves.

Note that with this definition of ideal scaling, we ignore that
for mixed CPU-GPU nodes, the performance increase from
one to two nodes is usually small compared to the perfor-

9

FIG. 7. On mixed CPU-GPU nodes, the optimal number of MPI ranks (colors) increases with system size and decreases with increasing node
numbers N. The same systems (columns) were scaled over different numbers of nodes (rows), using different nranks values. The top axis
indicates the system numbers according to Table I.

mance on one node. Only for systems larger than 2M atoms,
the performance increase from one to two nodes is above 90%
the performance of a single node. For the smallest systems,
this increase is only about 35% (see Fig. 8a). In contrast, for
CPU-only nodes this increase is closer to 100% for all system
sizes (see Fig. 8b).

We next use the fits of Amdahl’s law to the performance
data to summarize the overall trends and the differences be-
tween the two hardware architectures (Fig. 10). We extract
the values of the single fit parameter p and the maximum
performance (Fig. 10a and b). We find that for both archi-
tectures the values of p increase with increasing system size.
For CPU-only nodes, p & 0.9 for all sizes. For mixed CPU-
GPU nodes, p increases from ∼0.5 for 105 atoms to > 0.9 for
∼ 4× 106 atoms. Note that in all cases the values of p for
CPU-only nodes are larger than for mixed CPU-GPU nodes.
Although we cannot expect the estimates for the maximum
performance to be highly accurate, they are useful to sum-
marize the observed trends (Fig. 10b). For CPU-only nodes
the maximum performance decreases from ∼545 ns/day to
∼157 ns/day with increasing system size. The maximum per-
formance of mixed CPU-GPU nodes is always smaller than
the maximum performance for CPU-only nodes and decreases
from ∼226 ns/day for the smallest system considered here to
∼50-80 ns/day for the largest system sizes.

The number of nodes, at which the performance is 70% of
the ideal performance, increases with system size much more
quickly for CPU-only nodes than for mixed CPU-GPU nodes
(Fig. 10c). The estimates for these number are quite sensi-

tive to the quality of the fit. However, the performance values
at these node numbers are rather robust estimates, as the per-
formance changes only slowly with the number of nodes in
this regime (Fig. 10d). These estimates show that the highest
performance, i.e., shortest TTS, for a reasonable efficiency of
f = 0.7 is achieved with CPU-only nodes in all cases.

Note that the relative performance increase going from one
to two nodes, which determines ideal scaling, is only ∼35%
for mixed CPU-GPU nodes for the smallest system sizes
(Fig. 10e). In contrast, for CPU-only nodes it is always larger
than ∼70%. This relative performance increase calculated di-
rectly from the performance values agrees well with results
from the fits of Amdahl’s law.

VI. CONCLUSION

High-performance computing in general and MD simula-
tions in particular are fast growing and highly dynamic fields.
In a rapidly changing environment of hardware, software and
systems, running MD simulations efficiently thus requires
continuous benchmarking and monitoring of the simulation
performance. The MDBenchmark toolkit presented here has
been designed to simplify the benchmarking process. Its de-
sign is open to different MD engines and queuing systems,
acknowledging the fact that it is becoming common practice
that a single user uses different MD engines on various high-
performance compute clusters.

The performance of an MD simulation depends on many

10

FIG. 8. Comparison of performance on (a) mixed CPU-GPU nodes and (b) CPU-only nodes. The numbers in the fields show the performance
values in ns/day. (c) The performance ratio PGPU(N)/PCPU(N) is shown on a logarithmic (base 2) color scale. The color scale is centered at
equal performance (PGPU(N)/PCPU(N) = 1, white). The numbers in the cells are the actual values of the ratios. Performance data was taken
for the best performing nranks values on mixed CPU-GPU nodes without hyperthreading (Fig. 7) for each node individually. For CPU-only
nodes, nranks = 40 and hyperthreading was activated. The top axis indicates the system numbers according to Table I. Note that for system 22
we used a time step of 4 fs and doubled the hydrogen mass.

11

FIG. 9. Simulation performance scales differently on different architectures. Relative scaling of (a) mixed CPU-GPU nodes and (b) CPU-only
nodes to their best performing settings. (a) Systems scale up to 70% of the ideal scaling as the number of atoms and nodes increase. (b)
Systems scale to more than 70% of the ideal scaling as the number of atoms and nodes increase on CPU-only nodes. The numbers in each cell
shows the scaling efficiency to the ideal scaling of the best performing setting, as shown in Fig. 7. The top axis indicates the system numbers
according to Table I. Note that for system 22 we used a time step of 4 fs and doubled the hydrogen mass.

factors, of which only some are controlled by the user. Even
for a given MD engine and hardware configuration, the perfor-
mance is sensitive to the choice of the underlying algorithms
and the simulation parameters. An example for the latter pre-
sented here is the increase in performance of the dense pro-
tein solutions compared to similarly sized systems, which was
achieved by aggressively tuning simulation parameters. Acti-
vating an enhanced sampling method can affect the perfor-
mance and the scaling with the number of nodes dramatically.
While efficiency usually changes with the version of the MD
engine itself, variations in the hardware drivers, compilers,
and interfaces for parallelization can also have huge effects
on the performance. For example, we observed that an update
of the NVIDIA driver for the GPU increased performance on
mixed CPU-GPU nodes by up to ∼ 20%.

Thus, our extensive performance scaling study surveyed
only a small region in a high-dimensional parameter space.

For example, we have not explored the effects of offload-
ing specific calculations, i.e., PME, to separate GPU ranks
or systematically investigated how the tuning the cut-off pa-
rameters affects the performance. Nevertheless, our extensive
quantification of the performance scaling provides guidelines
for GROMACS users, reveals general trends, and serves as a
point of reference for performance comparison, also for users
of other MD engines.

Our results illustrate that benchmarking is necessary to find
optimal parameters and to identify inefficiencies due to sin-
gular deviations from observed scaling trends. In the case
of GROMACS 2018, for example, the proper choice of the
number of MPI ranks is crucial. For mixed CPU-GPU nodes,
this choice depends on system size and the number of nodes.
Hyperthreading is generally beneficial for CPU-only runs. In
contrast, for mixed CPU-GPU nodes, it depends on system
size and node number whether hyperthreading leads to per-

12

FIG. 10. Summary of the dependence on the performance on the
atom number for CPU-only nodes (blue) and for mixed CPU-GPU
nodes (orange). We fit Amdahl’s law to the scaling data for 1 to
10 nodes using the single fit parameter p. (a) The fitted values of
p increase with increasing atom numbers. (b) The estimates for the
maximum performance decrease with increasing systems size. CPU-
only nodes always have larger values than mixed CPU-GPU nodes.
(c) The number of nodes at which we reach 70% of the ideal perfor-
mance and (d) the performance at 70% of the ideal scaling provide
guidance for setting up benchmarks and simulations. (e) The relative
performance increase when going from a single nodes to two nodes,
directly calculated from the respective performance values. Dashed
lines indicate the relative performance obtained from the fits of Am-
dahl’s law. Note that for the largest system (#22) we used a time step
of 4 fs and doubled the hydrogen mass.

formance gains. Even though the results presented here serve
as guidelines, confirming these settings for the specific simu-
lation system and the resources available is inevitable.

In its current version, MDBenchmark can scan parameters
like number of nodes, the numbers of MPI ranks and OpenMP
threads, and the activation of hyperthreading, which are set
when submitting the job. However, to achieve the best per-
formance it is also necessary to tune parameters that are set
in the configuration files of the respective MD engines. Cur-
rently, these configuration files have to be provided by the
user. Ideally, future versions of MDBenchmark perform scans
over simulation parameters specified in the configuration files

automatically and validate the results.
The monetary and environmental costs of molecular sim-

ulations are significant and even small relative performance
improvements have large absolute effect on overall cost and
efficiency. For many, MDBenchmark might be a first step to
start continuously monitoring and evaluating the efficient use
of their hardware resources. It is fair to assume that within
a typical research group, with a mix of members with essen-
tially no experience and members who are experts in running
simulations, resources can be easily wasted if insufficient at-
tention is paid to monitoring simulation efficiency. Running
benchmarks as a rule for any new system and the compari-
son with existing benchmarks could greatly reduce the risk of
wasteful use of resources.

Thus, ideally, a tool like MDBenchmark additionally col-
lects the benchmark information generated by the users in a
single database accessible to all. This information should be
supplemented by the actual performance data of production
runs. In principle, the MDBenchmark toolkit could be already
used to perform production runs and thus automatically col-
lect performance information. With this kind of information,
inefficiencies can be identified quickly and the database can
provide accurate guidelines for setting up simulations. Such
guidelines also serve to keep the number of necessary bench-
marks to a minimum.

The design of MDBenchmark embraces the philosophy that
we should always choose the best tool for the task at hand.
Ideally, we can easily switch between different MD engines to
take advantage of their unique features7–14. MDBenchmark is
open to all MD engines (and queuing systems). We hope that
the community will appreciate the design and capabilities of
the provided framework to run and analyze benchmarks such
that they contribute their expert knowledge by adding their
favorite MD engines and queuing systems. Ultimately, run-
ning simulations more efficiently translates into doing better
science.

The source code of MDBenchmark is freely available un-
der the GPLv3 license at https://github.com/bio-phys/
mdbenchmark. It can be installed either via the pip or
conda package managers using the PyPI or conda-forge repos-
itory, respectively. The code is accompanied by an extensive
documentation that is hosted at https://mdbenchmark.
readthedocs.io/en/version-3/. Detailed instructions
for adding currently unsupported MD engines can also be
found in the documentation.

ACKNOWLEDGMENTS

We thank Drs. Markus Rampp, Klaus Reuter, and Sebastian
Kehl for technical support and useful discussions. We thank
Dr. Florian Blanc, Sören von Bülow, Daniel Chavez Rojas,
Dr. Roberto Covino, Sergio Cruz, Dr. Sonya Hanson, Dr. Ah-
madreza Mehdipour, Laura Schulz, and Jan Stuke for provid-
ing molecular dynamics systems. This study used the high-
performance computing resources of the Max Planck Com-
puting and Data Facility (MPCDF). We acknowledge financial
support by the Max Planck Society and the Landes-Offensive

https://github.com/bio-phys/mdbenchmark
https://github.com/bio-phys/mdbenchmark
https://mdbenchmark.readthedocs.io/en/version-3/
https://mdbenchmark.readthedocs.io/en/version-3/

13

zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz
(LOEWE) DynaMem program of the state of Hesse (MG, MS
and GH).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

1G. E. Moore, Electronics 38 (1965).
2R. Kurzweil, The Age of Spiritual Machines: When Computers Exceed Hu-
man Intelligence, A Penguin Book. Science/Technology (Penguin Books,
2000).

3M. Vendruscolo and C. M. Dobson, Curr. Biol. 21, R68 (2011).
4R. O. Dror, M. Ø. Jensen, D. W. Borhani, and D. E. Shaw, J. Gen. Physiol.
135, 555 (2010).

5E. H. Lee, J. Hsin, M. Sotomayor, G. Comellas, and K. Schulten, Structure
17, 1295 (2009).

6R. O. Dror, R. M. Dirks, J. Grossman, H. Xu, and D. E. Shaw, Annu. Rev.
Biophys. 41, 429 (2012).

7M. J. Harvey, G. Giupponi, and G. D. Fabritiis, J. Chem. Theory Comput.
5, 1632 (2009).

8R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand, and R. C. Walker,
J. Chem. Theory Comput. 9, 3878 (2013).

9B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella,
B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch,
L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek,
W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W.
Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L.
Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus, J. Comput.
Chem. 30, 1545 (2009).

10K. J. Bowers, D. E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A.
Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti,
J. K. Salmon, Y. Shan, and D. E. Shaw, in SC ’06: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing (Tampa, FL, 2006) pp. 43–43.

11M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and
E. Lindahl, SoftwareX 1-2, 19 (2015).

12W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington, Com-
put. Phys. Commun. 183, 449 (2012).

13J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 26,
1781 (2005).

14P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns,
J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, T. Tye,
M. Houston, T. Stich, C. Klein, M. R. Shirts, and V. S. Pande, J. Chem.
Theory Comput. 9, 461 (2013).

15A. M. Bonvin, A. E. Mark, and W. F. van Gunsteren, Comput. Phys. Com-
mun. 128, 550 (2000).

16C. C. Gruber and J. Pleiss, J. Comput. Chem. 32, 600 (2011).
17C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. de Groot, and

H. Grubmüller, J. Comput. Chem. 36, 1990 (2015).
18C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. de Groot, and

H. Grubmüller, J. Comput. Chem. 40, 2418 (2019).
19D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and

M. Upton, Intel Technol. J. 6 (2002).
20B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory

Comput. 4, 435 (2008).
21J. L. Furlani, in Proceedings of the fifth large installation systems adminis-

tration conference (LISA V) (San Diego, CA, 1991) pp. 141–152.
22D. L. Dotson, S. L. Seyler, M. Linke, R. J. Gowers, and O. Beckstein, in

Proceedings of the 15th Python in Science Conference, edited by Sebastian
Benthall and Scott Rostrup (Austin, TX, 2016) pp. 51 – 56.

23W. McKinney, in Proceedings of the 9th Python in Science Conference,
edited by S. van der Walt and J. Millman (Austin, TX, 2010) pp. 51 – 56.

24G. M. Amdahl, SSCS 12, 19 (2007).
25N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein, J.

Comput. Chem. 32, 2319 (2011).

26R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L.
Seyler, J. Domański, D. L. Dotson, S. Buchoux, I. M. Kenney, and O. Beck-
stein, in Proceedings of the 15th Python in Science Conference, edited by
Sebastian Benthall and Scott Rostrup (Austin, TX, 2016) pp. 98 – 105.

27S. van der Walt, S. C. Colbert, and G. Varoquaux, Comput Sci Eng 13, 22
(2011).

28P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der
Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson,
E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore,
J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A.
Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van
Mulbregt, and SciPy 1.0 Contributors, Nat. Methods (2020).

29F. Perez and B. E. Granger, Comput Sci Eng 9, 21 (2007).
30J. D. Hunter, Comput Sci Eng 9, 90 (2007).
31R. B. Best, X. Zhu, J. Shim, P. E. Lopes, J. Mittal, M. Feig, and A. D.

MacKerell Jr, J. Chem. Theory Comput. 8, 3257 (2012).
32J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot,

H. Grubmüller, and A. D. MacKerell, Nat. Methods 14, 71 (2017).
33J. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).
34V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmer-

ling, Proteins 65, 712 (2006).
35K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O.

Dror, and D. E. Shaw, Proteins 78, 1950 (2010).
36R. B. Best and G. Hummer, J. Phys. Chem. B 113, 9004 (2009).
37R. B. Best, D. de Sancho, and J. Mittal, Biophys. J. 102, 1462 (2012).
38W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.

Klein, J. Chem. Phys. 79, 926 (1983).
39S. Piana, A. G. Donchev, P. Robustelli, and D. E. Shaw, J. Phys. Chem. B

119, 5113 (2015).
40H. F. Hofbauer, M. Gecht, S. C. Fischer, A. Seybert, A. S. Frangakis,

E. H. K. Stelzer, R. Covino, G. Hummer, and R. Ernst, J. Cell Biol. 217,
3109 (2018).

41S. v. Bülow, M. Siggel, M. Linke, and G. Hummer, PNAS 116, 9843
(2019).

42X. Wu, M. Siggel, S. Ovchinnikov, W. Mi, V. Svetlov, E. Nudler, M. Liao,
G. Hummer, and T. A. Rapoport, Science 368 (2020).

43S. Hofmann, D. Januliene, A. R. Mehdipour, C. Thomas, E. Stefan,
S. Brüchert, B. T. Kuhn, E. R. Geertsma, G. Hummer, R. Tampé, and
A. Moeller, Nature 571, 580 (2019).

https://books.google.de/books?id=ldAGcyh0bkUC
https://books.google.de/books?id=ldAGcyh0bkUC
http://dx.doi.org/10.1016/j.cub.2010.11.062
http://dx.doi.org/10.1085/jgp.200910373
http://dx.doi.org/10.1085/jgp.200910373
http://dx.doi.org/ 10.1016/j.str.2009.09.001
http://dx.doi.org/ 10.1016/j.str.2009.09.001
http://dx.doi.org/ 10.1146/annurev-biophys-042910-155245
http://dx.doi.org/ 10.1146/annurev-biophys-042910-155245
http://dx.doi.org/10.1021/ct9000685
http://dx.doi.org/10.1021/ct9000685
http://dx.doi.org/10.1021/ct400314y
http://dx.doi.org/ 10.1002/jcc.21287
http://dx.doi.org/ 10.1002/jcc.21287
http://dx.doi.org/ 10.1109/SC.2006.54
http://dx.doi.org/ 10.1109/SC.2006.54
http://dx.doi.org/ 10.1016/j.softx.2015.06.001
http://dx.doi.org/10.1016/j.cpc.2011.10.012
http://dx.doi.org/10.1016/j.cpc.2011.10.012
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/ 10.1021/ct300857j
http://dx.doi.org/ 10.1021/ct300857j
http://dx.doi.org/ 10.1002/jcc.24030
http://dx.doi.org/ 10.1002/jcc.26011
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/ 10.25080/Majora-629e541a-007
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/ 10.25080/Majora-629e541a-00e
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1083/jcb.201802027
http://dx.doi.org/10.1083/jcb.201802027
http://dx.doi.org/ 10.1073/pnas.1817564116
http://dx.doi.org/ 10.1073/pnas.1817564116
http://dx.doi.org/ 10.1038/s41586-019-1391-0

14

Appendix A: Appendix

FIG. S1. For mixed CPU-GPU nodes, the optimal choice of nranks depends on system size. Performance PGPU(N) of 22 MD simulations with
varying sizes as a function of nodes N for different numbers of MPI ranks, nranks on mixed CPU-GPU nodes without hyperthreading (colored
squares). The best performing setting with CPU-only nodes is shown as reference with circles. Each data point in the performance plot shows
one independent run of 15 minutes each. Transparent dashed lines show ideal scaling as estimated by the performance of one and two nodes.
Note that for system 22 we used a time step of 4 fs and doubled the hydrogen mass.

15

FIG. S2. GPUs scale to higher N with bigger systems. Performance P(N) of 22 MD simulations with varying sizes as a function of nodes N.
Each panel shows the best performing number of MPI ranks, nranks on mixed CPU-GPU nodes without hyperthreading (colored squares) and
on CPU-only nodes with 40 nranks and hyperthreading (filled circles) from Fig. S1. The solid colored line shows the interpolated fit to the data
using Eq. (2). The intersection of both curves increases to higher N with increasing number of atoms. Note that for system 22 we used a time
step of 4 fs and doubled the hydrogen mass.

16

1 #!/bin/bash -l
2 #SBATCH -o ./ benchjob.out.%j
3 #SBATCH -e ./ benchjob.err.%j
4 #SBATCH -D ./
5 #SBATCH -J n001_r40_t02_wht
6 #
7 #SBATCH --nodes =1
8 # Set the number of tasks per node (=MPI ranks)
9 #SBATCH --ntasks -per -node =40

10 # Set the number of threads per rank (= OpenMP threads)
11 #SBATCH --cpus -per -task=2
12 # Enable hyperthreading
13 #SBATCH --ntasks -per -core=2
14 #SBATCH --time =00:17:00
15

16 module purge
17 module load gcc
18 module load impi
19 module load cuda
20 module load gromacs /2018.8
21

22 # Set number of OpenMP threads and proper core pinning with hyperthreading
23 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
24 export OMP_PLACES=threads
25 export SLURM_HINT=multithread
26

27 # Run gromacs /2018.8 for 15 minutes
28 srun gmx_mpi mdrun -v -ntomp $OMP_NUM_THREADS -maxh 0.25 -resethway -deffnm md -noconfout

Listing 1. SLURM submission script for a 15 minutes run on a CPU-only single node with 40 MPI ranks, 2 OpenMP threads and hyperthreading
enabled.

1 #!/bin/bash -l
2 #SBATCH -o ./ benchjob.out.%j
3 #SBATCH -e ./ benchjob.err.%j
4 #SBATCH -D ./
5 #SBATCH -J n001_r20_t02_woht
6 #
7 #SBATCH --constraint ="gpu"
8 #SBATCH --gres=gpu:rtx5000 :2
9 #

10 #SBATCH --nodes =1
11 # Set the number of tasks per node (=MPI ranks)
12 #SBATCH --ntasks -per -node =20
13 # Set the number of threads per rank (= OpenMP threads)
14 #SBATCH --cpus -per -task=2
15 #SBATCH --time =00:17:00
16

17 module purge
18 module load gcc
19 module load impi
20 module load cuda
21 module load gromacs /2018.8
22

23 # Set number of OpenMP threads and proper core pinning without hyperthreading
24 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
25 export OMP_PLACES=cores
26

27 # Run gromacs /2018.8 for 15 minutes
28 srun gmx_mpi mdrun -v -ntomp $OMP_NUM_THREADS -maxh 0.25 -resethway -deffnm md -noconfout

Listing 2. SLURM submission script for a 15 minutes run on a single mixed CPU-GPU node with 20 MPI ranks, 2 OpenMP threads and
hyperthreading disabled.

	MDBenchmark: a toolkit to optimize the performance of molecular dynamics simulations
	Abstract
	Introduction
	Background
	The MDBenchmark software
	Methods
	Results
	Run time of benchmarks
	Optimizing performance for two exemplary systems
	Size dependence of optimal parameters

	Conclusion
	Acknowledgments
	Data Availability Statement
	Appendix

