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Abstract This study describes screening of DrugBank library for approved drugs by 

pharmacophore modeling and receptor-ligand docking. A 3D-QSAR model was generated on the 

inhibition constants (KiAutoDock) determined by AutoDock. This 3D-QSAR model was 

statistically validated by Fischer’s randomization test and further evaluated by a test set 

comprising 75 molecules. KiAutoDock values of 49 molecules were predicted correctly by the 3D-

QSAR model. The validated 3D-QSAR model was used for screening of DrugBank library for 

approved molecules to identify potential molecules against novel SARS corona virus-2 (SARS 

CoV-2). Ten out of 40 the shortlisted molecules were kinase inhibitors.    
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Introduction 

 The Global pandemic of novel corona virus disease 2019 (COVID-19) caused by severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. COVID-19 pandemic has become 

most severe global public health crisis since the pandemic influenza outbreak of 1918. As of July 

3, 2020, there have been more than 10.5 million reported cases and more than 512,800 deaths in 

more than 200 countries. In India more than 604,000 cases infection and 17,834 deaths are 

recorded in same period of time. In a recent review, sanders et al, summarizes regarding major 

proposed treatments, repurposed or experimental for COVID-19 [2]. In emergency Favipiravir 

has been introduced in India for management of COVID-19 pandemic.  

COVID-19 virus genome is comprised of ~30,000 nucleotides encodes two overlapping 

poly proteins required for viral replication and transcription [3]. The functional proteins are 

released by extensive proteolysis of the polyproteins by a 33.8 kDa main protease (Mpro) [4]. The 

function of viral Mpro in the life cycle of the virus and absence of similar protease in humans 

makes it an automatic choice for antiviral drug target [4]. Structure-based drug designing 

(SBDD) is an effective tool for discovery of potential bioactive molecules. Based on the receptor 

structure, effective inhibitors can be designed. Recently Jin et al have reported the structure of 

Mpro co-crystallized with an inhibitor N3 by x-ray crystallography [5]. SBDD can be used to 

facilitate rapid discovery of antiviral drug compounds with clinical potential by repurposing 

existing drugs to target COVID-19 virus Mpro [6]. 

In a previous work [7], a common feature pharmacophore model generated on six Mpro 

inhibitors identified by Jin et.al with IC50 values of enzyme inhibition in the range of 0.67 to 21.4 

μM [5]. NCI 2000 database was screened by the pharmacophore model and Amodiaquine was 

identified as a potential Mpro inhibitor [7]. The Mpro inhibition constant (KiDocking) of 
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Amodiaquine was determined by receptor-ligand molecular docking. Two stage screening may 

be effective to identify potential molecules but a quick predictive tool like 3D-QSAR would be 

more effective to rank and priorities the molecules for next level of testing.   

 

Fig 1. Three step approach for screening 

 

In this work, a three step approach (Fig 1) has been adopted to screen several drug molecules as 

potential repurposing drugs for COVID-19 from DrugBank data base [8]. DrugBank database for 

approved drugs contains 2,635 molecules. In first step the pharmacophore model [7] screened 

~1400 molecules which contain the minimum pharmacophoric features required to inhibit Mpro. 

In the second step, top 77 molecules were docked with Mpro and KiDocking were calculated by 

receptor-ligand docking simulation. These 77 molecules were divided in to training set and test 

set molecules. A 3D-QSAR model was generated based on KiDocking of a training set comprising 

16 molecules.  The generated 3D-QSAR model was validated by Fischer’s randomization test for 
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statistical significance. The most statistically significant model was used to predict the KiDocking 

values of a test set comprising 75 molecules including some of the training set molecules. This 

3D-QSAR model was used to screen DrugBank database for approved drugs. In return 106 

molecules were obtained out of which 40 molecules showed Ki value under 1 μM. Ten out of 40 

molecules were found different types of kinase inhibitors primarily used as anticancer drugs. 

 

Materials and Methods 

Pharmacophore modeling 

Pharmacophore hypotheses were generated as described before [7] using Catalyst 

HipHop algorithm as present in DiscoveryStudioTM 2.0 [9]. In brief, training set molecules 

shown in Fig 2a were drawn and geometry optimized. Input parameters include features 

hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), positive ionizable (PI), 

hydrophobe (HY) and ring aromatic (RA), maximum 10 and minimum 1 features, minimum  

inter feature distance 2.97 Å, maximum conformations 255, energy threshold 20 kcal/mol. Poling 

algorithm was used to generate conformations for each molecule in ‘fast mode’. HipHop 

conducts an exhaustive search starting with the simplest to more complicated pharmacophores. 

The process continues until common pharmacophore combinations can no longer be generated. 

The final HipHop output was top ten unique pharmacophores sorted from highest to lowest 

scoring. Then the top ranked hypothesis was used to screen DrugBank databases to shortlist 

potential molecules [8].  
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Docking Studies 

Structures of Mpro of COVID-19 virus (pdb id: 6lu7) [5] was downloaded from protein 

data bank and used for receptor-ligand interaction studies as described before [7]. In brief, 

structure was cleaned from water and ligand molecules coded as N3. The protein contains many 

binding pockets in its structure as identified by inbuilt method of DiscoveryStudioTM 2.0. The 

pocket closer to catalytic aminoacid CYS 145 was identified having the central coordinates at -

12.12, 13.884, 64.03. The cleaned structure of MPRO was imported to MGLTools-1.5.4 [10] for 

preparation of docking studies. HIS 164 of MPRO was selected as flexible residue. Docking 

studies were carried out by AutoDock 4.1 [10]. For docking of inhibitors with Mpro, grid center 

was set at -12.12, 13.884, and 64.03. Number of grid points in each direction was 40 and grids 

were generated for each ligands before docking. Ligands shortlisted from pharmacophore 

screening were prepared with Gastegier’s charges at prescribed torsions. Lamarckian Genetic 

Algorithm (LGA) was used for conformation generation and determination of best interactions 

between receptor and ligand. Seed population was 150, number of evaluations was 2,500,000, 

and number of generation was set at 27000. Rate of mutation and crossover were 0.02 and 0.8 

respectively.  Top ten conformations were returned after each run. Binding energy (kcal/mol) 

and predicted inhibition constant (Ki) were recorded.   

Generation of 3D-QSAR model 
 
3D-QSAR model was generated by HypoGen module of Discovery StudioTM. In this work, 3D-

QSAR model is generated on the basis of KiDocking values (nM) of different DrugBank molecules 

shortlisted by common feature pharmacophore model. Molecules with lower KiDocking values 

were treated as more active for inhibition of Mpro. HypoGen requires both active and inactive 

molecules in a training set to generate meaningful pharmacophore hypotheses. Selection of 
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training set follows some basic requirements, such as selecting a minimum of 16 structurally 

diverse compounds to avoid any chance of correlation [11]. The training set was chosen in such a 

way that it contained both active and inactive molecules covering an activity range of 5 orders. 

Input parameters include features hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), 

positive ionizable (PI), hydrophobe (Hy) and ring aromatic (RA), maximum 10 and minimum 1 

features, minimum  inter feature distance 2.97 Å, maximum conformations 255, energy threshold 

20 kcal/mol and maximum excluded volume 100. Poling algorithm was used to generate 

conformations for each molecule in ‘fast mode’. The value of uncertainties in biological data is 

also a crucial parameter to differentiate the active molecules from the inactive molecules based 

on a very simple calculation. First the activity of the most active compound is multiplied with its 

corresponding uncertainty to establish a benchmark number. The activity of other compounds in 

the training set were divided by their respective uncertainties and compared. If the value is less 

than the benchmark number, then the compound is considered as active else inactive. HypoGen 

follows three steps to generate pharmacophore hypotheses; they are constructive, subtractive and 

optimization. In the constructive phase all the pharmacophores of the active molecules are 

pulled. In the subtractive phase those pharmacophores are deleted which are present in the 

inactive molecules. In the optimisation phase predictability of the hypothesis is optimized with 

complexity. When optimization no longer improves the cost function score, generation of new 

hypothesis stops [11].   

 

Cost analysis 

The HypoGen module of DiscoveryStudio performs three important cost calculations in the units 

of bits that determine the success of any pharmacophore hypotheses: ‘fixed cost’, which 

represents the simplest model that fits all data perfectly; ‘null cost’, which represents the highest 
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cost of a pharmacophore with no features and estimates activity to be the mean of the activity 

data of the training set molecules. Its absolute value is equal to the maximum occurring error 

cost. A meaningful pharmacophore hypothesis may result when the difference between these two 

values (null cost minus total cost) is greater than 20, ‘total cost’ is the sum of three cost factors: a 

weight, an error, and a configuration cost. The weight cost increases if the weight factor for the 

chemical features deviate from the default value of 2. The error cost is solely dependent on the 

root-mean-square (rms) differences between the estimated and actual activities of the training set 

molecules. The rms value represents the quality of the correlation between the actual and the 

estimated activity data. The configuration cost is represented as Log2P, where P is the number of 

initial hypotheses created in the constructive phase and that survived in the subtractive phase 

[11].  

 

Fischer’s randomization test and validation 

To evaluate the statistical relevance of the models, Fisher’s randomization test was applied. The 

purpose of this test is to randomize the activity data associated with the training set. The 

randomized training sets are used to generate hypotheses using the same features and parameters. 

If the randomized data sets result in the generation of pharmacophores with similar or better cost 

values, rms, and correlation the original hypothesis is considered to have been generated by 

chance. The statistical significance is given by the equation of significance = [1-(1+x)/y], where 

x is the total number of hypotheses having total cost lower than the most-significant hypothesis 

and y is the number of initial HypoGen runs plus random runs. With the aid of the CatScramble 

program available in the HypoGen module, the activities of the molecules in the training set were 

randomized and the resulting training sets were used for the HypoGen runs. In this way all 

parameters were kept as per the initial HypoGen calculation. Finally, the biological activities of 
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the test set molecules were predicted to check the predictive ability of the generated hypotheses 

[11].  

Results and Discussion 

Generation of pharmacophore model  

Jin et.al [5] screened ~10,000 compounds consisting of approved drugs, drug candidates 

in clinical trials and natural products by fluorescence resonance energy transfer (FRET) assay. 

Six compounds namely Ebselen, Tideglusib, Shikonin, Disulfiram, Carmofur, and PX-12 were 

found as hits in the FRET assay and their IC50 values were found in between 0.67 to 21.4 μM 

concentration. Common feature pharmacophore modeling [11] requires structure of active 

molecules to identify and enumerate all possible pharmacophore configurations which in 

common within the training set molecules. 

 

Fig.2 Training set molecules (a); pharmacophore model (b) 

These six molecules (Fig 2a) were taken in the training set to generate common feature 

pharmacophore models as described in the materials and methods. In this process, a three feature 

pharmacophore model containing one HBA (hydrogen bond acceptor) and two HY (hydrophobe) 
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was obtained (Fig 2b). The distances between HBA-HY1, HBA-HY2 and HY1-HY2 are 7.611, 

5.780 and 8.3 Å respectively.  

Virtual screening of DrugBank database 

DrugBank database (version 5.1.6) is a unique resource of drug entities including 2,635 approved 

small molecule drugs [8]. The approved drug molecules were downloaded and integrated to 

DiscoveryStidio 2.0 as a virtual library. DiscoveryStudio 2.0 built multiple conformations of 

each drug molecule and stored them in the virtual library. This DrugBank library was screened 

by the pharmacophore model and in return 1,403 molecules were obtained. These 1,403 

molecules contain minimum pharmacophores to bind with Mpro catalytic site, but the actual 

binding may be affected due to presence of other features and configurations present in the 

molecules. Hence all the molecules should be docked in the catalytic site of Mpro to determine the 

inhibition constant (KiDocking). But docking all these molecules will take a long time with 

AutoDock. Hence a three dimensional quantitative structure activity relationship (3D-QSAR) 

model was developed to quickly estimate the inhibition constant (Ki3D-QSAR) of different drug 

molecules against Mpro which must have reasonable correlation with KiDocking. DrugBank was 

screened by the 3D-QSAR model to shortlist and rank molecules with respect to their theoretical 

activities. 

Development of 3D-QSAR model 

The 1,403 molecules screened by pharmacophore model were sorted by their fit values. Seventy 

seven molecules were considered for ligand-receptor interaction studies by AutoDock (Fit values 

and KiDocking values are given in supplementary material, Table S1). Sixteen molecules (Fig 3) 

from them were selected as training set to generate the 3D-QSAR model as described in 

materials and methods top 10 hypotheses were exported (Table 1). Netrolone phenopropionate 
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(DB00984) was excluded from training set because it significantly lowered the correlation (r) 

value of the hypotheses although it had shown the best KiDocking value (0.83 nM).   

 

Fig 3. Training set molecule for 3D-QSAR model 

 

Table 1. Results of top 10 pharmacophore hypotheses generated using training set (Fig.3) 

Hypotheses Total Cost Cost Differencea RMSb Correlation 
(r) 

Featuresc Significanced 

1 81.014 21.82 0.978 0.919 Hy,Hy,PI,RA 80% 
2 81.953 20.88 1.020 0.912 Hy,Hy,PI,RA 90% 
3 82.436 20.40 1.084 0.898 Hy,Hy,PI,RA 90% 
4 82.647 20.19 1.098 0.896 Hy,Hy,PI,RA 95% 
5 86.045 16.79 1.250 0.864 Hy,Hy,PI,RA 95% 
6 86.063 16.77 1.202 0.879 Hy,Hy,RA,HBA 95% 
7 86.434 16.40 1.275 0.858 Hy,Hy,RA,HBA,PI 95% 
8 86.849 15.99 1.315 0.847 HBA,Hy,PI,RA 95% 
9 87.264 15.57 1.294 0.853 Hy,PI,RA,RA 95% 
10 87.343 15.49 1.264 0.865 Hy,Hy,RA,HBA 95% 
aCost Difference = null cost-total cost. Null cost=102.834. Fixed cost=72.99. Configuration cost=18.075.  
bRMS, root mean squire deviation of the AutoDock estimated Ki and 3D-QSAR estimated Ki. 
cHy: Hydrophobe, PI: Positive ionisable, RA:Ring aromatic, HBA: Hydrogen bond acceptor 
dSignificance at confidence level 95% (from randomization test) 
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All of the hypotheses showed correlation in the range of 0.865 to 0.919 which is considerable in 

case of a quantitative structure activity relationship (Table 1). The RMS values were also not 

very high which indicates a good agreement in between Ki3D-QSAR and KiDocking values. Most of 

the hypotheses showed Hy, Hy, PI and RA as primary features. Hypothesis 6, 7 and 10 have 

HBA feature. Hypothesis 7 has five features, the maximum among 10 hypotheses.  

To further evaluate the statistical relevance of the model, Fischer’s randomization test was 

applied. In this process the input training set was scrambled randomly and the resulting training 

sets were subjected to pharmacophore generation. This process was repeated 19 times to achieve 

a confidence limit of 95%. Interestingly, top three hypotheses showed lower significance values 

compared to hypotheses 4 to 10 (Table 1). This may be due to the nature of KiDocking values 

which were estimated theoretically by AutoDock rather generated experimentally. Currently very 

little experimental information is available regarding Ki of different small molecules against 

Mpro.  

Hypotheses 4 to 10 returned by HypoGen passed randomization test which indicates that the 

hypotheses are meaningful and they are not generated by chance (Table 1). Based on 

randomization test and cost values, ‘hypothesis 4’ was selected as best hypothesis for 3D-QSAR 

model. Hypothesis 4 has four features (Fig. 3a): one positive ionisable (PI), one ring-aromatic 

(RA) and two hydrophobes (Hy). The fixed cost, total cost and null cost for hypothesis 4 are 

72.99, 82.64 and 102.83 respectively. The difference between Total cost and fixed cost is 9.65. 

This is significantly lower than the difference between null cost and total cost (20.19). The high 

correlation coefficient and low rms values of 0.89 and 1.09 respectively indicate that the 

generated model is statistically significant. The KiDocking and Ki3D-QSAR values of all 16 training 

set molecules are given in Table 2. Molecules mapped with Hypothesis 4 are shown in Fig 4. 
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Fig 4. 3D-QSAR model ‘hypothesis 4’ (a); Molecules mapped on hypothesis 4 DB06249 (b), 

DB01118(c), DB09053 (d). 

Table 2. KiDocking and Ki3D-QSAR values of training set molecules calculated by hypothesis 4. 
 

Sl no DrugBank 
ID 

Fit IC50 (nM)a 

KiDocking      Ki3D-QSAR 
Activity scale a 

KiDocking  Ki3D-QSAR 
Erro
r 

Features mappedb 
 

1 DB06249 7.31 3 2.3 +++   +++ - 1.3 Hy, Hy, PI, RA 
2 DB01118 5.99 3.5 48 +++   ++ + 14 Hy, Hy, PI, -- 
3 DB09053 5.93 15 55 ++   ++ + 3.8 Hy, Hy, --, RA 
4 DB00705 5.69 45 96 ++   ++ + 2.1 Hy, Hy, --, RA 
5 DB01157 6.00 75 47 ++   ++ - 1.6 Hy, Hy, --, RA 
6 DB01166 5.98 100 49 ++   ++ - 2.1 Hy, Hy, --, RA 
7 DB00607 5.44 250 170 ++   ++ - 1.5 Hy, Hy, --, RA 
8 DB00527 5.86 450 64 ++   ++ - 7 Hy, Hy, --, RA 
9 DB09477 4.01 680 4600 ++   + + 6.7 Hy, Hy, --, RA 
10 DB01283 5.15 990 340 ++   ++ - 2.9  --   Hy, PI, RA 
11 DB09299 4.41 1700 1800 +   + + 1.1  Hy, Hy, --  RA 
12 DB01274 4.01 2700 4600 +   + + 1.7  Hy, Hy, --, -- 
13 DB01046 3.52 6600 1,40,000 +   + + 2.1   --   Hy, PI, RA 
14 DB00528 4.01 9300 4600 +   + - 2.4   Hy,Hy, -- , RA 
15 DB00654 4.01 11000 4600 +   + - 2.4    --   Hy, PI,RA 
16 DB12789 4.01 21000 4600 +   + - 4.6 --, Hy, PI, RA 

a Activity scale: +++ (0.1-10 nM, highly active), ++ (11-999 nM, moderately active), + (>1000 nM, poorly active) 
bHy: Hydrophobe, PI: Positive ionisable, RA:Ring aromatic, HBA: Hydrogen bond acceptor 
 
In the randomization test, none of the resulting hypotheses were found statistically better than 

‘hypothesis 4’ (Table 3).  It proves that ‘hypothesis 4’ was not generated by chance. Seventy five 

molecules were kept in ‘test set’ for validation of 3D-QSAR model which also included some 
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training set molecules.  Hypothesis 4 was further validated by the ‘test set’ to evaluate its 

predictive ability of Ki. A prediction within ten fold range of KiDocking was kept as a good 

prediction ability of the 3D-QSAR model i.e the ratio Ki3D-QSAR/KiDocking should fall within 0.1 to 

10. Forty-nine out of 75 molecules in the test set were predicted well in the prescribed limit (see 

supplementary material Table S2, marked in yellow).  

Table 3 Results from cross-validation run using CatScramble for hypothesis 4. 
Hypothesis 
number 

Total cost Correlation 
(r) 

Trial 1 99.96 0.627 
Trial 2 82.88 0.877 
Trial 3 100.01 0.679 
Trial 4 91.63 0.815 
Trial 5 93.29 0.796 
Trial 6 93.54 0.816 
Trial 7 93.35 0.780 
Trial 8 91.59 0.818 
Trial 9 95.08 0.736 
Trial 10 96.02 0.707 
Trial 11 82.74 0.886 
Trial 12 94.55 0.817 
Trial 13 94.14 0.737 
Trial 14 91.31 0.817 
Trial 15 92.10 0.828 
Trial 16 101.26 0.667 
Trial 17 90.81 0.835 
Trial 18 93.22 0.771 
Trial 19 88.68 0.852 
Hypothesis 4 82.64 0.896 

                  a Null cost = 155.23. All costs are in bits. 
 
The 3D-QSAR model was used to screen DrugBank database for approved drugs which contains 

2635 molecules. In return 106 molecules were obtained out of which 40 molecules were detected 

having Ki3D-QSAR value less than 1 μM (Table 4). The short listed molecules are approved drugs 

in many categories comprising anti-cholinergics, antibacterials, antimalarial, kinase inhibitors, 

anti arrhythmic, anti-hypertensive, antifungal and PDE5 inhibitors. The top two molecules 

Mivacurium and Doxacurium belong to antichlonergic drugs used as muscle relaxant. As the 

drugs are active on nervous system their repurposing may be problematic against COVID-19. 
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Isovacuonazonium is a molecule for external use and Arzoxifene an estrogen receptor modulator 

may not be appropriate for repurposing. 

Table 4 Molecules screened by 3D-QSAR model with Ki value less than 1 μM 
 
Sl 
no 

DrugBank 
ID 

Name FitValuea Ki3D-QSAR 
(nM)b 

Remarks 

1 DB01226 Mivacurium 7.763 0.808 Neuromuscular blocker 
2 DB01135 Doxacurium 7.702 0.928 Skeletal muscle relaxant 
3 DB06636 Isovacuonazonium 7.605 1.162 Antifungal 
4 DB06249 Arzoxifene 7.313 2.274 Estrogen receptor modulator 
5 DB12001 Abemaciclib 7.29 2.398 Cyclin dependent kinase (CDK) inhibitor 
6 DB12141 Gilteritinib 7.081 3.878 Tyrosine kinase inhibitor 
7 DB00662 Trimethobenzamide 7.024 4.427 Antiemitic 
8 DB00732 Atracurium  6.785 7.67 Anticholinergic 
9 DB09048 Netupitent 6.756 8.206 Antiemitic 
10 DB11761 Tenapanor 6.583 12.209 IBS-C 
11 DB13265 Hexobendine 6.474 15.699 Vasodilation 
12 DB12267 Brigatinib 6.306 23.11 Tyrosine kinase inhibitor 
13 DB06608 Tefanoquine 6.25 26.284 Antimlalarial drug 
14 DB00688 Epinephrine 6.106 36.625 Hormone 
15 DB09079 Nintedanib 6.088 38.223 Tyrosine kinase inhibitor 
16 DB06695 Debigatran 6.06 40.773 Anticoagulant 
17 DB01419 Antrafenine 6.025 44.112 Anti-inflamatory 
18 DB00203 Sildenafil 6.001 46.64 PDE5 inhibitor 
19 DB04855 Dronedarone 5.963 50.912 Anti-arrhythmic 
20 DB09374 Indocyanine 5.887 60.683 Coloring agent 
21 DB00251 Terconazole 5.861 64.395 Anti-fungal 
22 DB13931 Netarsudil 5.784 76.957 Rho kinase inhibitor 
23 DB00416 Metocurine iodide 5.769 79.571 Muscle relaxant 
24 DB01336 Metocurine 5.769 79.571 Muscle relaxant 
25 DB11691 Naldemedine 5.706 91.969 Opioid receptor antagonist 
26 DB12500 Fedratinib 5.272 249.87 Tyrosine kinase inhibitor 
27 DB00862 Vardenafil 5.27 251.114 PDE5 inhibitor 
28 DB09073 Palbociclib 5.261 256.433 Cyclin dependent kinase (CDK) inhibitor 
29 DB11855 Revefenacin 5.173 314.163 Long acting muscarinic inhibitor 
30 DB00619 Imatinib 5.139 340.013 Tyrosine kinase inhibitor 
31 DB01180 Rescinnamine 5.124 351.333 ACE inhibitor from Rauwolfia serpentina 
32 DB00565 Cisatacurium 5.037 429.404 Anticolinergic 
33 DB11363 Alectinib 5.018 448.25 Tyrosine kinase inhibitor 
34 DB04209 Dequalinium 5.001 466.542 Antiseptic and disinfectant 
35 DB01089 Deserpidine 4.992 476.268 Antihypertensive and antipsychotic 
36 DB01118 Amiodarone 4.952 522.892 Anti-arrhythmic 
37 DB06402 Telavancin 4.849 662.519 Antibacterial 
38 DB11963 Dacomitinib 4.81 723.784 Tyrosine kinase inhibitor 
39 DB04911 Oritavancin 4.808 727.554 Antibiotic 
40 DB06267 Udenafil 4.716 898.802 PDE5 inhibitor 

a Fit with 3D-QSAR model 
b Estimated by 3D-QSAR model 



15 
 

 

Fig 5. Kinase inhibitors screened by 3D-QSAR model (a); Mapping of the kinase inhibitors with 

the 3D-QSAR model (b). 

 

 

 

Fig 6. Kinase inhibitors docked in the active site of Mpro ; Abemaciclib (DB12001) (a); 
Gilteritinib (DB12141) (b); Brigatinib (DB12141 (c); Fedratinib (DB12141) (d); Nintedanib 
(DB09079) (e); Netrosudil (DB13931) (f). 
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Interestingly, ten molecules (Fig 5a) namely Abemaciclib, Gilteritinib, Brigatinib, Nintedanib, 

Netarsudil, Fedratinib, Palbociclib, Imatinib, Alectinib and Dacomitinib were short listed which 

are kinase inhibitors. Netarsudil is a Rho kinase inhibitor; Abemaciclib and Palbociclib are 

cyclin dependent kinase (CDK) inhibitors; rests are tyrosine kinase inhibitors. Molecules mapped 

with 3D-QSAR model are also shown in Fig 5b. The docking pose of some kinase inhibitors in 

the active site of the Mpro enzyme generated by UCSF Chimera [13] are shown in Fig 6. 

Inhibition constant (Ki) values estimated by 3D-QSAR and AutoDock are given in Table 5. 

Table 5. Estimated Ki values of kinase inhibitors with Mpro 

Sl 
no 

DrugBank 
ID 

Name Ki3D-QSAR 
(nM)a 

KiAutoDock 
(nM)b 

1 DB12001 Abemaciclib 2.398 155 
2 DB12141 Gilteritinib 3.878 34 
3 DB12267 Brigatinib 23.11 2.81 
4 DB09079 Nintedanib 38.223 6.66 
5 DB13931 Netarsudil 76.957 25.45 
6 DB12500 Fedratinib 249.87 20.31 
7 DB09073 Palbociclib 256.433 n.c 
8 DB00619 Imatinib 340.013 n.c 
9 DB11363 Alectinib 448.25 n.c 
10 DB11963 Dacomitinib 723.784 41.79 

a Estimated by 3D-QSAR model; b Estimated by AutoDock; n.c not calculated 
 

Schor and Einav [12] have elaborately discussed about various kinase inhibitors which can be 

repurposed as broad spectrum antivirals. Kinase inhibitors target host cell mechanisms and 

impart antiviral activity indirectly. These molecules can act against many viruses because viruses 

use cell machinery for their replication. In the current work it has been observed that many of the 

kinase inhibitors can inhibit Mpro enzyme of SARS CoV-2, hence can act as direct acting 

antiviral agents (DAAs).  
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Conclusion 

3D-QSAR is an effective tool to identify potential inhibitor for COVID-19 Mpro. Due to lack of 

enough experimental data above model was generated from theoretical inhibition constants 

(KiDocking) generated by AutoDock. With statistical significance, this model was used to screen 

DrugBank database for approved drugs. Different categories of drug molecules were screened 

but kinase inhibitors were appeared more in the screening. Kinase inhibitors are known to show 

broad spectrum antiviral activity by targeting host cell machinery. But in this study, through 

molecular modeling it is hypothesized that they can show activity against COVID-19 by 

inhibiting Mpro enzyme of the target virus. Hence more work should be carried out to establish 

the direct antiviral activity of kinase inhibitors and the effective molecules may be repurposed 

against COVID-19. 
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