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Abstract 
 

In the past few years, we have witnessed a renaissance of the field of de novo drug design. The 

advancements in deep learning and artificial intelligence (AI) have triggered an avalanche of ideas 

about how to translate such techniques to a variety of domains including the field of drug design. 

A range of architectures have been devised to find the optimal way of generating chemical 

compounds by using either graph or SMILES based representations. With this application note we 

aim to offer the community a production-ready tool for de novo design, named REINVENT. It can 

be effectively applied on drug discovery projects that are striving to resolve either exploration or 

exploitation problems while navigating the chemical space. It can facilitate the idea generation 

process by bringing to the researcher’s attention the most promising compounds. REINVENT’s 

code is publicly available at https://github.com/MolecularAI/Reinvent  
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Introduction 
 

The main goal of de novo drug design is to identify novel active compounds that can 

simultaneously satisfy a constellation of essential optimization goals such as activity, selectivity, 

physical-chemical and ADMET properties. Because of the sheer number of possible solutions, it is 

a non-trivial task to optimally satisfy such a multitude of requirements which makes the search 

process slow and costly even when it is only conducted in silico. Therefore, having an efficient 

solution which enables the navigation of chemical space and generation of relevant ideas is 

essential. To address such needs the research community has recently turned its focus towards 

artificial intelligence (AI) based generative models that are capable of proposing promising small 

molecules. The potential of generative models for chemical space exploration has been 

demonstrated in numerous studies [1]–[3]. Various neural network architectures have been 

engineered and a plethora of AI training strategies have been employed in the race to device 

more efficient methods for the generation of compounds. A number of architectures, such as 

Variational Autoencoders (VAEs) [4], [5], Recurrent Neural Networks (RNNs) with Long Short-

Term Memory (LSTM) cells [6], Conditional RNNs or Generative Adversarial Networks have been 

proven successful in generating molecules by using data representation of molecules either as 

molecular graphs or SMILES [7]–[10].  

However, while all of these architectures and many others are provided as open-source, only a 

few [11] are in a state that allows to readily apply the code on drug design related problems 

without the need of spending a significant amount of time developing missing functionalities. 

Ideally, users should be able to navigate the chemical space efficiently in two general use cases: 

exploration and exploitation mode. For exploitation, users define an area of interest and focus on 

generating compounds that share similar structural features. In contrast, the exploration mode 

enables them to obtain compounds that share less structural similarity but still satisfy other 

desired features. This implies the necessity to utilize not only predictive models and structure 

similarity/dissimilarity but also various rule-based scoring components to push towards or pull 

away from specific areas of the chemical space. Moreover, to be able to adapt appropriately to 



any given drug discovery project at hand, the ability to fine-tune each of these potential scoring 

function components is paramount. 

To achieve such behavior, apart from having a deep learning architecture with a reliable 

generative potential, it is essential to provide an efficient navigation mechanism. In order to 

address such needs, we are describing in the current paper the latest version of REINVENT - our 

in-house developed tool for de novo design of small molecules. 

  

Application Overview 
 

In its core, REINVENT is using a generative model with an architecture derived from the work of 

Arus-Pous et al [12]. The model is trained on a dataset derived from ChEMBL [13] and capable of 

generating compounds in the SMILES format. It has been trained by “randomizing” the SMILES 

representation of the input data, which is essentially a data augmentation technique [12]. 

Randomizing the compounds’ representation uses multiple SMILES encodings for the same 

compound, thus ensuring that the model will likely learn the grammar rather than memorizing 

specific strings or parts of them. The resulting model shows a significantly improved 

generalization potential and produces SMILES strings with validity of above 99% [12]. Uniform 

sampling of the chemical space by the model is a prerequisite for efficient exploration. The model 

can generate random valid compounds and is able to dive into any region of that space for 

exhaustive exploitation [12]. However, we are mostly interested in compounds that only act on a 

specific target and such creative potential of generative models is of little practical use unless 

specific context is given. Therefore, it is often necessary to direct the generative model towards 

relevant areas in the chemical space that contain compounds of interest. We achieve this by 

subjecting it to a Reinforcement Learning (RL) [14] scenario while aiming to satisfy a set of 

requirements that could vaguely sketch the desired compounds. In other words, the generative 

model will try to maximize the outcome of a scoring function that contains multiple 

components/parameters, thus computing an MPO score [15]. To stir the generation of 

compounds towards the desired direction, REINVENT employs a composite scoring function 



consisting of different user-defined components. Each component is responsible for a simple 

target property. The feedback from the scoring function is used in a RL loop with a policy iteration 

as described by Olivecrona et al. [16]. Two RNNs are used in an actor-critic scenario where the 

critic is a prior RNN (Prior) that remains constant and serves as a baseline thus guaranteeing that 

the knowledge of SMILES syntax will be retained. The actor (which we will refer to as the Agent) 

can be an identical copy of the Prior or a focused version that has already undergone some 

training. The Agent takes actions by sampling a batch of SMILES S which are evaluated by the Prior 

and scored by the scoring function. The resulting score is combined with Prior’s likelihood and 

used to form the augmented likelihood (eq 1). The augmented likelihood essentially sets the bar 

for the Agent since the loss is calculated as the squared difference between the Agent’s likelihood 

and the augmented likelihood (eq 2). Also, σ is a scalar value, automatically adjusted to guarantee 

a proper margin between augmented and Agent’s likelihood values. 

𝑙𝑜𝑔𝑃(𝑺)𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝑙𝑜𝑔𝑃(𝑺)𝑃𝑟𝑖𝑜𝑟 + 𝛔 ∗ 𝑀𝑃𝑂(𝑺)𝑠𝑐𝑜𝑟𝑒 

(1) 

𝑙𝑜𝑠𝑠 = [𝑙𝑜𝑔𝑃(𝑺)𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 − 𝑙𝑜𝑔𝑃(𝑺)𝐴𝑔𝑒𝑛𝑡]
2
 

(2) 

The RL scenario is complemented with an inception feature which can speed up the focusing of 

the Agent. Inception is essentially an extended experience replay [17] that allows users to pre-

incept SMILES of interest so that the RL run generates compounds within an area of interest in a 

fewer number of steps. This can be particularly useful for specific exploitation scenarios. 

Another key feature that has influence over the RL driven training of the Agent is the diversity 

filter as it can penalize the frequent generation of similar compounds. Each of these features are 

discussed in further detail below. 

 

 

 



Scoring Functions 
 

REINVENT offers two general scoring function formulations (equations 3 and 4). The individual 

components of the scoring function can be either combined as a weighted sum or as a weighted 

product [18]. The individual score components can have different weight coefficients reflecting 

their importance in the overall score. Score contribution from each component can vary in the 

range between 0 and 1. As a result, the overall score is also within a range of 0 to 1.  

𝑃(𝑋) = [∏ 𝑝(𝑥𝑖)
𝑤𝑖

 

𝑖

]

1
∑ 𝑤𝑖𝑖

⁄

 

(3) 

 

𝑆(𝑋) =  
∑ 𝑤𝑖 ∗ 𝑝(𝑥𝑖)𝑖

∑ 𝑤𝑖𝑖
 

(4) 

The scoring function can be comprised of components such as physical-chemical properties, 

predictive models (both regression and classification), shape similarity, Tanimoto similarity, and 

Jaccard distance scores [19]. The predictive model component in REINVENT works with both 

regression and classification types of scikit-learn [20] predictive models. XGB Regressor model 

types from the xgboost python library can be also employed [21]. A notable limitation of the 

current implementation is that only fingerprint descriptors can be used. REINVENT supports 

various representations of ECFP descriptors, MACCS keys and Avalon descriptors all of which are 

implemented in the RDKit library [22]–[25]. Classification models are expected to be binary class 

predictors and the corresponding probability of belonging to the positive class is used as an 

output. However, the regression models can output any continuous value and a suitable 

transformation should be applied to scale the predictions into the required [0, 1] interval. We 

offer a variety of transformation functions, including sigmoid and double sigmoid as well as step 

functions for transforming non-continuous components such as the number of hydrogen bond 

donors and acceptors. We also provide a custom interpolation transformation where the score is 

transformed by a function that interpolates between user-defined pairs of minima and maxima. 

The choice of transformation depends on the predicted property or the calculated descriptor. For 



properties that are only desirable to lie within a certain range we would seek to apply a double 

sigmoid transformation to cap the score between the preferred lower and upper bound values 

resulting in a score of 0 outside and increasing up to 1.  

Combining multiple components in a single scoring function presents a typical multiparameter 

optimization problem. By increasing the number of components, the probability of discovering 

solutions that achieve maximum score can drop significantly as the different components are 

likely to pull the MPO score in different directions. Another key aspect is the cumulative 

uncertainty resulting from the use of multiple predictive models at a time. Even if nearly perfect 

models are used, combining them will result in geometric amplification of the uncertainty in the 

outcome of a weighted product formulation. While such an effect would be milder in the 

weighted sum scenario, the exploration of the chemical space by using multiple predictive models 

could still be likened to navigating at sea with a slightly broken compass. 

In addition to the standard version (eq 3), we offer custom weighted scoring function 

formulations (eqs 5 and 6) where PMS is a Matching Substructure (MS) component and PCA is a 

Custom Alerts (CA) component. These two are binary penalty components. MS can be used to 

focus the generation of compounds towards a specific scaffold of interest. It uses a list of SMARTS 

[26] as an input and it penalizes the overall score if none of the desired substructures is 

represented in the generated compound. MS produces a score of either 1 or 0.5 depending on 

whether the scaffold is present or not, thereby being quite helpful for exploitation scenarios. CA 

can be either 0 or 1 and it also uses a list of SMARTS patterns that normally capture undesired 

moieties in the generated compounds. If there is a match with any of the listed alerts the overall 

score will be 0 thus penalizing the future generation of similar compounds. CA can be used also 

for scaffold hopping if the user is aiming for novelty and wants to avoid certain molecular 

substructures. 

𝑃(X) = 𝑃(𝑋)𝑀𝑆 × 𝑃(𝑋)𝐶𝐴 × [∏ 𝑝(𝑥𝑖)𝑤𝑖

𝑖

]

1
∑ 𝑤𝑖𝑖

 

(5) 



𝑆(𝑋) =  𝑃(𝑋)𝑀𝑆 × 𝑃(𝑋)𝐶𝐴 × [
∑ 𝑤𝑖 ∗ 𝑝(𝑥𝑖)𝑖

∑ 𝑤𝑖𝑖
] 

 (6) 

 

Another common use case is to try to optimize against a target of interest while simultaneously 

minimizing the probability of binding to one or more off-targets. For this scenario, we offer a 

Selectivity Component (SC). SC works with two predictive models: one is used to predict the target 

activity and another for predicting an off-target activity. If both predictive models are regression 

type, the difference between the predicted activities ∆ (eq 7) is calculated and consequently 

subjected to a sigmoid transformation thus forming the SC score. In cases where one of the 

models is a classifier the regression model prediction is first subjected to transformation and the 

resulting ∆ is output as an SC score. 

∆ =  𝑃𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 −  𝑃𝑜𝑓𝑓−𝑡𝑎𝑟𝑔𝑒𝑡 

(7) 

In cases where ∆ < 0, we assign a lower cap of 0.01 since producing 0 for the component would 

result in a 0 overall score if used with equations 3 or 5 and will not be sufficiently informative for 

the Agent. Multiple SC can be used when multiple off-targets are possible. 

If properly formulated the scoring function will most likely guide the Agent towards a narrow 

niche of the chemical space, such that yields high MPO scores. As a result, the Agent will become 

extremely focused over time and ultimately sample only a handful of compounds with high 

probability. At this stage the scoring function will reach a plateau, the diversity of the generated 

structures will be minimal and conducting any further RL steps will not yield any new results. In 

order to generate another batch of novel compounds, we would need to start over and climb the 

same learning curve over multiple RL steps in order to optimize the scoring function. However, 

there is no guarantee that the RL process will not converge in a similar chemical space as the 

previous run. To enforce generative diversity and stimulate the exploration of a broader chemical 

space, we employ an additional feature in the RL loop - the Diversity Filters (DF).  

 



 

Diversity Filters 
 

DF can be regarded as a collection of buckets that are used for keeping track of all generated 

scaffolds and the compounds that share those scaffolds. Obviously, not all generated compounds 

are of interest and only those that are scored by the MPO function above a certain threshold will 

enter the scaffold buckets. Once a compound with a score above the threshold has been 

generated, its scaffold is extracted and stored in a scaffold registry and the compound enters the 

corresponding bucket. The buckets have limited capacity and once the limit of compounds in a 

given bucket has reached the allowed threshold, any subsequent bucket affiliation will be 

penalized. Every new compound that enters a full bucket will be assigned a score of zero thus 

informing the Agent that this area of chemical space has become unfavorable. It is important to 

note that compounds will be added to the bucket even if the bucket limit has been exceeded. The 

only impact will be on the Agent, since it will be constantly discouraged from producing similar 

compounds that share a given scaffold. This will enforce the Agent to seek alternative solutions 

thus achieving in effect chemical space exploration and will prevent the Agent from becoming 

stuck in local minima and thus generating the same compounds repeatedly. All collected 

compounds are kept and stored until the end of the RL run and become available as a csv 

formatted file. 

Users can select their diversity strategy by using Topological DF, Identical Murcko DF or a Scaffold 

Similarity DF [27]. The Topological DF is the most restrictive since it is agnostic of the atom types. 

It is created by removing all side chains and subsequently converting all atoms in the structure to 

sp3 carbons. The other two DF also remove all side chains but retain the atom types. Identical 

Murcko DF only checks if there is a bucket with exactly the same scaffold while Scaffold Similarity 

is more permissive and can include compounds into the bucket if they satisfy a certain threshold 

of scaffold similarity. 

 



Directing the generative process. 
 

Once the Agent starts generating compounds of sufficiently high MPO score we can define that it 

has reached a state of productivity. However, starting from a random point in the chemical space 

and slowly focusing the Agent to a state where it can generate compounds of interest can be a 

complex and time-consuming task. It could even prove to be an impossible task within a single RL 

run, especially if the MPO formulation is too complex and has multiple components. To overcome 

this and to speed up the overall RL process we have identified two approaches that can 

complement each other. 

 

Transfer Learning (TL) 
 

At the beginning of the RL process, the Agent is an identical copy of the Prior. It possesses the 

same generative capacity and the potential to sample compounds from rather vast area of the 

chemical space. While this holds a great promise, it can also be an efficiency overhead since for 

the Agent to become “productive” will first need to find a “rewarding” chemical space. This will 

have an impact on the RL search for both types of problems: exploitation and exploration, 

particularly when the MPO score includes multiple conflicting components. To overcome it and 

to speed up the overall RL process, we resort to pre-focusing the Prior by conducting a TL with a 

small dataset of compounds sharing features of relevance to our problem. Once focused, the 

Agent will have an increased probability of sampling a chemical subspace of interest. Such 

generated compounds will be rewarded higher by the scoring function providing more specific 

directionality to the generative process. We can use the focused Agent as a starting point for the 

RL instead of using a copy of the Prior and reach sooner to a state of productivity.  

 

 

 

 



Inception 
 

Another way to speed up the transition and reach the state of productivity is by “incepting” 

compounds that are ranked highly by the scoring function and represent the chemical space of 

interest. Inception is used in analogy to experience replay in the RL loop. Compounds that we 

know would be scored highly are introduced to the inception memory before beginning the RL 

process. At each RL step, a fraction of the inception memory is randomly sampled and is added 

to the set of compounds generated by the Agent. In this way, early in the RL process, the Agent 

is presented with highly scoring compounds and will be driven to focus towards the chemical 

subspace defined by the inception compounds. Also, it will reach a state of productivity sooner. 

While helpful in the early stages of the training, replaying the compounds that scored well can 

lead to a very focused Agent. This is particularly likely if the RL run is sufficiently long. For 

exploration goals it would be best to use it in conjunction with DF since it will prevent excessive 

focusing by down scoring the repetitive ideas. Inception memory has a limited size and the 

compounds that are scored lower will be forgotten. The incepted compounds should be ideally 

from the chemical space of interest with a score below the DF threshold so that they are not 

discarded instantly. 

Inception could be considered as a substitute to TL. However, it is far less efficient in terms of RL 

steps as it takes longer on average to reach productivity when comparing to starting from a 

focused Prior state. 

Both, Inception and pre-focusing with TL complement each other. We recommend using 

inception for problems where reaching the state of productivity seems impossible or might take 

too long due to a very complex scoring function. Another frequent use case is when the number 

of compounds available for focusing is insufficient to train efficiently a focused prior with TL. In 

these situations, having a handful of compounds that score well and are frequently presented to 

the Agent can significantly help to reach the relevant chemical space within a reasonable time.  

 



Logging 
 

Essential for monitoring of the learning process is the availability of a comprehensive logging 

system. In REINVENT we utilize Tensorboard [28] to provide information about the evolution of 

the Agent during TL by sampling after each step and displaying the likelihood distribution for the 

sampled data. Stats on validity of the smiles and the most frequently encountered molecules are 

also shown. For RL we are plotting the evolution of the scoring function and the individual scoring 

component contributions to the overall score. We are also displaying the highest scoring 

compounds after each RL step. As an alternative, we also provide the implementation used by us 

for remote logging which can be set up to post the logging results to a custom REST endpoint. 

 

Implementation 
 

REINVENT is an open-source Python application. It uses PyTorch 1.3.0 [29] as a deep learning 

engine and RDKit version 2019.03.3.0 [30] as a chemistry engine. It works exclusively with scikit-

learn based machine learning models and for the detailed logging of the chemical space 

navigation process, it makes use of Tensorboard’s implementation in PyTorch. 

Conclusion 
 

We have described a production-ready, open-source application for de novo generation of small 

molecules. It can be used to address both exploration and exploitation type of problems while 

allowing a flexible formulation of complex MPO scores. Examples of various use cases are 

provided with the code repository. 

Apart from providing a ready-to-use solution, with releasing the code, we are hoping to facilitate 

the research on using generative methods for drug discovery. We also hope that it can be used 

as an interaction point for future scientific collaborations. 
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