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ABSTRACT 

Population balance model is a valuable modelling tool which facilitates the optimization and 

understanding of crystallization processes. However, in order to use this tool, it is necessary to 

have previous knowledge of the crystallization kinetics, specifically crystal growth and nucleation. 

The majority of approaches to achieve proper estimations of kinetic parameters required 

experimental data. Across time, a vast literature about the estimation of kinetic parameters and 

population balances have been published. Considering the availability of data, this work built a 

database with information on solute, solvent, kinetic expression, parameters, crystallization 

method and seeding. Correlations were assessed and clusters structures identified by hierarchical 

clustering analysis. The final database contains 336 data of kinetic parameters from 185 different 

sources. The data were analysed using kinetic parameters of the most common expressions. 
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Subsequently, clusters were identified for each kinetic model. With these clusters, classification 

random forest models were made using solute descriptors, seeding, solvent, and crystallization 

methods as classifiers. Random forest models had an overall classification accuracy higher than 

70% whereby they were useful to provide rough estimates of kinetic parameters, although these 

methods have some limitations. 

1. INTRODUCTION 

Year by year the challenges that the pharmaceutical sector has to face does not cease to increase. 

Regulatory requirements, patients’ needs, and market competition are becoming more challenging, 

which has led the industry to rethink the model of business and seek alternatives to improve its 

productivity. Historically, the business model has been based on the discovery of new molecules 

and patents protection to a certain extent. However, the costs of new drugs development increase 

across time and patent expiry time remains the same.1, 2 In addition, the pharmaceutical industry 

has been characterized by problems of innovation, flexibility, and efficacy in their processes, 

which increase costs and hinder to response to customer’s demands as required.2 As a result, the 

industry is seeking to optimize resources and improve its procedures to satisfy its needs and 

produce better medicines. 

In this way, various initiatives have been introduced in the industry in the last decades. Some 

include the use of process analytical technology (PAT), the concept of quality by design (QbD), 

and the development of continuous pharmaceutical manufacturing (CPM), which has come along 

with technological and scientific advances.3, 4 Consequently, many methodologies that optimize 

resources and create more efficient processes have been adopted. In particular, modelling 

techniques are of great interest given their ability to predict and provide information in an efficient 

manner.1, 5 
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Modelling techniques aim to depict a material property or a process through a mathematical 

expression which can be founded on either a physical or empirical relationship.1, 5, 6 These 

representations enable the  simulation of a process and assess different scenarios in which a 

condition or property changes.1, 3 Likewise, modelling techniques facilitate the evaluation and 

analysis of the effect of factors on processes performance or product quality.4 In light of these 

potential usages, the advantages that these models offer are numerous; an adequate model may 

enable to reduce the number of experiments necessary to obtain certain information,3  or it may 

help with quality improvement as modelling provides a valuable insight into the design of a 

process, which would allow to select conditions or establish specifications systematically with a 

scientific base.4 As a result, these tools are being used more frequently in recent years. 

For crystallization, a critical unit operation in control and delivery of API with desired 

specifications, the most common form of modelling is through a population balance model (PBM), 

typically combined with momentum, mass and energy balances.7 The main attraction of a PBM is 

the ability to predict the crystal size distribution (CSD). To fully resolve a PBM, expressions 

representing the various crystallization phenomenon, such as growth, primary nucleation, 

secondary nucleation, breakage, agglomeration, are required. For each phenomenon a range of 

expressions are available, ranging from fundamental fully mechanistic to semi-empirical.7 

Therefore, the selection of the most appropriate kinetic expression and the determination of the 

respective parameters are crucial in order to obtain accurate predictions. Currently, these activities 

require the collection of data through an experimental approach, with subsequent application of 

optimization algorithms that enables proper estimation. Nonetheless, there exists a vast amount of 

literature tackling PBM and the calculation of kinetic parameters, considering numerous factors 

such as solute, solvent, operational conditions, etc.  
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Theoretically, crystallization sub-processes are strongly affected by interactions between solute-

solvent and process conditions. In this regard, it could be observed that some kinetic parameters 

include terms that describe directly any property related to solute and solvent, e.g. surface tension 

and molar volume. In the same way, it might be expected that kinetic parameters employed in 

nucleation and growth models, which do not have an explicit relation with physical or chemical 

properties of the components involved, follow a distribution or correlates to some variables 

associated with solute, solvent or process. The finding of these relations could potentially be 

helpful to provide a reasonable range of values within kinetic parameters could be or an 

approximate estimation of these which may be used in PBM. 

This work aims to: 1) build a database containing information on kinetic parameters of primary 

nucleation and crystal growth of different crystallization processes that includes:  solute, solvent, 

crystallization technique, seeding, and kinetic expression. 2) establish the feasibility of a model 

that enables estimation of kinetic parameters of growth and primary nucleation by analysis for 

patterns and correlations with some molecular and process descriptors. 

 

2. METHODS 

2.1. Data collection 

 Initially, a sample frame of potential articles containing the information of interest was built by 

web-scraping search results from different scientific databases. This procedure was conducted 

similar to that described by Kwartler.8 To obtain these results several search strategies were 

implemented in the following databases: ScienceDirect, ACS Publications, AIChE, and Scientific 

Research. The combinations of keywords, inclusion and exclusion criteria are detailed in Table 1. 

To remark, Boolean operators were employed only in ScienceDirect and AIChE websites since 

those allowed their usage and therefore more complex strategies could be used. All the searches 
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were performed between June 4 and 6, 2019. The searches were limited to research articles in 

English – avoiding, for instance, reviews or book chapters - as the main objective was to obtain 

experimental data. 

 

Table 1. Search strategies and databases. 

Database Search keywords 

ScienceDirect: 

https://www.sciencedirect.com/ 

(((growth nucleation) OR (kinetic) OR 

MSMPR) AND ("population balance" crystal) 

AND (estimation OR determination))) NOT 

(granulation OR precipitation) 

(growth OR nucleation OR kinetic*) AND 

("population balance") AND (pharmaceutical 

OR drug OR API) AND crystal* 

("population balance" AND crystal*) AND 

(pharma* OR drug ) 

ACS Publications: 

https://pubs.acs.org/ 

"population balance" crystallization kinetics 

AIChE: 

https://aiche.onlinelibrary.wiley.com/ 

((growth nucleation) OR (kinetic) OR 

MSMPR) AND ("population balance" crystal) 

NOT (granulation)" anywhere published in 

"AIChE Journal 

(growth OR nucleation OR kinetic AND 

"population balance") AND (pharmaceutical 

OR drug OR API)" anywhere and "(crystal*) 

Scientific Research: 

https://www.scirp.org/ 

population balance crystal kinetic 

 

Subsequently, the following information on all the search results was extracted from the 

respective websites: title, journal, and authors. The data was next stored in a spreadsheet and pre-

processed. Pre-processing consisted of text cleaning, duplicates removal and filtering. Text 
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cleaning involved stripping extra white spaces and fixing corrupted characters to then remove 

duplicates, which resulted in a list of 1938 articles. All these tasks were carried out using the R 

statistical program version 3.5.1 and Microsoft Excel (2016). 

This list was later filtered by journal and title. Firstly, it was noticed all the results were published 

in a total of 125 journals where around 85 % of these papers corresponded to solely 15 journals. 

Therefore, journals with a number of results lower than 16 were discarded since the remaining 15 

% did not reach this number of papers. To verify that important data was not omitted, articles in 

the discarded journals went through a non-exhaustive review and the most search results turned 

out to contain non-relevant information. Thus, with the remaining articles, a word frequency 

analysis of the titles was carried out. Further information on text mining and the frequency analysis 

can be consulted in Kwartler.8 Words with a frequency higher than 3 and identified as non-relevant 

can be seen in the ESI. The article titles containing these words were excluded to finally obtain a 

list of 1187 articles. 

The remaining 1187 articles were then reviewed manually in their totality and data were collected. 

During the review, various documents were found to have incomplete information or have taken data 

from another source; therefore, more results were discarded. Likewise, articles that initially were not 

included in the list were added by considering the source stated on the reviewed papers. The criteria 

used to select the articles in this stage is illustrated in Figure 1. Information regarding the extracted 

variable description, name, data type and comments were recorded and can be seen in the ESI. 
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Figure 1. Exclusion/inclusion criteria for the final list of articles. 

 

2.2. Data analysis 

Before conducting the analysis, the collected data went through several cleaning steps. Firstly, 

the units of 𝑘𝑔 and 𝑘𝑏 were converted into international system units (SI). Most units of 𝑘𝑔 were 

in either ms−1 or ms−1(g/g solvent)−1, while 𝑘𝑏 was mostly in # m−3s−1. However, the units of 

𝑘𝑏 and 𝑘𝑔 depended on the factors considered in the kinetic models. Therefore, it was not possible 

to transform all the units into the same and ensure all the data were comparable in this aspect. 

Additionally, there were also a few articles in which an equation was given to calculate the 
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constants and other articles estimating bidimensional growth rate. These cases were recorded but 

not considered during the analysis. Another adjustment was the scale where logarithm 

transformation was applied to 𝑘𝑔 and 𝑘𝑏, given the order of magnitude that these constants 

presented. On the other hand, kinetic equations nomenclature was harmonized since several 

models could be considered equivalent but were expressed in different terms according to the 

author. Finally, analysis and visualizations were carried out using the R statistical environment 

software version 3.5.1. 

2.2.1. Journal bias by crystallization method 

Two analyses were carried out in order to establish the dependency of the reported crystallization 

method in the journal. A first approach was to employ a Chi-square test of independence having 

as inputs the entries per journal.9 In this analysis, it was only considered journals whose number 

of entries were greater than 10. The second approach was utilizing an analogous analysis but 

considering the number of articles with a particular method instead of the entries. The reason 

behind this alternative approach was that an article may have multiple data points but the common 

pattern was a specific article focuses just on one crystallization method. Therefore, by performing 

the analysis in this manner, it is possible to avoid bias by excluding journals which may have 

various data points but very few articles. In the latter approach, the journals with more than 8 

papers were used in the evaluation. 

The journals used for the analysis were selected based on the number of journals which represent 

more than 90% of either the entries or artciles, according to the case. Tables in the ESI summarize 

the number of entries and papers for each journal found in the database. 
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2.2.2. Molecular descriptors 

433 molecular descriptors were initially calculated for all the solutes identified in this revision 

using Molecular Operating Environment (MOE) software. Afterwards, various descriptors were 

discarded by considering the following criteria: the same values for all the solutes (Variance =

 0), more than one non-determined value (NA), and a high correlation between descriptors 

(Pearson correlation absolute values greater than 0.9); this resulted in a final list of 110 descriptors. 

The association of these descriptors with 𝑘𝑏, 𝑘𝑔, 𝑏, and 𝑔 was eventually evaluated.   

2.2.3. Hierarchical clustering analysis 

Hierarchical clustering (HC) is a methodology of unsupervised classification in which groups or 

clusters are made based on the similarity (agglomerative) or dissimilarity (divisive) of data.10 In 

agglomerative hierarchical clustering (AHC), similar observations form clusters which in turn 

merge forming larger groups, until a group is obtained containing all the data.10 In this work, AHC 

was applied to identify patterns or homogeneous groups in kinetic models that had more than 50 

observations. The similarity was measured as Euclidean distances between pairs of (𝑘𝑔, 𝑔) or 

(𝑘𝑏 , 𝑏), according to the case, as can be seen in the equation (1) below.  

𝑑𝑖𝑗 = √(𝑥1𝑖 − 𝑥1𝑗)
2

+ (𝑥2𝑖 − 𝑥2𝑗)
2

(1) 

Where 𝑑𝑖𝑗 represents the distance between the observation 𝑖 and 𝑗, (𝑥1, 𝑥2) denote the 

standardized values of either (𝑘𝑏 , 𝑏) or (𝑘𝑔, 𝑔). The standardization consisted of subtracting the 

mean and dividing by the standard deviation. More details regarding the implementation and 

theoretical aspects can be found elsewhere.10, 11 As to the selection of the appropriate number of 

groups, silhouette index was used as a criterion.11   
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2.2.4. Random forest  

Random forest (RF) is a technique employed in supervised classification and regression 

problems.12 This algorithm generates numerous decision trees using randomly chosen subsets of 

variables or classifiers.12 When it is used in classification, each of these trees assigns the problem 

sample to a determined cluster, by which the same sample may be classified in several groups.12 

As a result, the definite classification is decided by majority votes of decision trees.12 For the 

purpose of this study, the main objective of building a RF model was to identify relevant variables 

that have a certain association with the kinetic parameters.  

Thus, a model of classification was first built and the model parameters were tuned. The groups 

were created by clustering analysis and the classifiers, or potential predictors, corresponded to the 

molecular descriptors, solvent, method, and seeding. Subsequently, the importance of the 

predictors was estimated as the mean decrease in accuracy (MDA). RF implementation was 

performed as detailed elsewhere.13 The top 15 of most important variables were analysed in detail. 

To conclude, the selected classifiers were analysed in detail with respect to kinetic constants to 

assess how they are related. 

 

3. RESULTS AND DISCUSSION 

3.1. Data description 

The database contains 336 data of kinetic parameters obtained from 185 articles, of which, 21 

were not included in the initial sample frame, which means around 1 in 10 revised articles had 

relevant information. Most of the excluded papers contained incomplete data - for example, the 

solute identity was stated generically or not provided - or consisted of reviews wherein the primary 

focus was on mathematical or theoretical aspects of crystallization kinetics. In this manner, if this 
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approach was to be used in future works, the search strategies ought to be refined to reduce the 

content which was unrelated and increase search efficacy by including additional keywords, 

limiting the search to certain journals or considering other filters. 

In the recorded data, 297 corresponded to growth rate and 145 related to primary nucleation rate. 

The data are distributed over 87 solutes and 27 solvents. In particular, solutes are mostly of low 

molecular weight (< 500 Da) and diverse chemical structure, being 25 inorganics and 62 organic 

molecules. Another important aspect to highlight is the large predominance of data related to 

crystallization in aqueous systems. As stated previously, there was a total of 27 solvents where 12 

corresponded to aqueous – organic mixtures that, along with water, represented 72.6% of the 

collected data. Moreover, when antisolvent technique was applied, water was frequently used as 

an antisolvent (74.5%), which reinforced aqueous systems preponderance. As a consequence, the 

analysis of this study concerning the effect of solvent on kinetic parameters may be limited due to 

scarce information on other solvents apart from water. A breakdown of the information related to 

solute, solvent, method, seeding, and kinetic expressions can be seen in Table 2. 

Table 2. Breakdown of information in database. N = 336. 

Solute  

Paracetamol 8.93% 

Glutamic acid 6.85% 

Felodipine 3.87% 

Solvent  

Water 65.2% 

Ethanol 9.8% 

Methanol 8.3% 

Method  
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Cooling 62.2% 

Precipitation 18.2% 

Antisolvent 15.2% 

Evaporative 1.2% 

Combinations 3.2% 

Seeding  

Seeded 50.0% 

Unseeded 47.6% 

Combination of seeded and unseeded 2.4% 

Growth rate expression  

𝑮 = 𝒌𝒈𝜟𝑪𝒈 31.6% 

𝑮 = 𝒌𝒈(𝑺 − 𝟏)𝒈 25.3% 

𝑮 = 𝒌𝒈(𝑺 − 𝟏)𝒈𝒆(−𝑬𝒈/𝑹𝑻) 12.1% 

Nucleation rate expression  

𝑩 = 𝒌𝒃𝜟𝑪𝒃 42.8% 

𝑩 = 𝒌𝒃𝒆(−𝑩/𝒍𝒏𝟐𝑺) 19.3% 

𝑩 = 𝒌𝒃(𝑺 − 𝟏)𝒃𝒆(−𝑬𝒃/𝑹𝑻) 5.5% 

 

Regarding kinetic equations, the expressions used to model growth rate were more diverse than 

primary nucleation rate. In total, 38 different expressions for growth and 22 different expressions 

for nucleation rate were found. However, the majority of the crystal growth expressions were 

derived from the first two shown in Table 2. In these cases, the models included multiplicative 

terms related to stirring rate, crystal size, or temperature adjustment by Arrhenius; the latter being 

the most frequent. More complex equations like birth & spread model were also found, but they 

were isolated cases. For nucleation rate, while there were various ways of modelling, a clear 
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tendency to use empirical nucleation rate and, to a lesser extent, equations derived from CNT was 

observed. As can be seen, the power-law models are predominant in both crystal growth and 

primary nucleation modelling. During the revision, a specific reason to use one or another 

expression was not found. However, the power-law expressions have long been used in 

crystallization kinetics modelling since experimental data generally fit well to these equations.14  

Figure 2 illustrates the sampling distribution of different kinetic parameters. It can be observed 

the most frequent values were in the order of 108 and 10-6, in international units, for nucleation and 

growth rate constants, respectively. Likewise, the most common estimations of 𝑏 and 𝑔 

corresponded approximately to 2.0 and 1.0. All the distributions were right-skewed to a certain 

extent. However, this behaviour was more notable for the exponents. In this particular case, it was 

more frequent to find low values of 𝑏 and 𝑔. This fact was emphasized by seeing that 50% of the 

data were contained within the intervals between 1.0 and 2.0 for 𝑔, and between 1.5 and 5.9 for 𝑏, 

which may be considered relatively narrow compared to all the possible values. Returning to 

kinetic constants, log 𝑘𝑏 values lower than 0 or higher than 30 were not common since they only 

represented around 13% of the data, while the majority of log 𝑘𝑔 values were lower than 0 with 

about 75%. Nonetheless, although similar distributions for kinetic parameters values can be seen 

when separating by kinetic models, some differences between models were observed. 
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Figure 2. Histograms of kinetic parameters: A) Primary nucleation rate constants; B) Growth 

rate constants; C) Exponential term associated with supersaturation in primary nucleation rate; 

D) Exponential term associated with supersaturation in growth rate. 
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Figure 3. Histograms and empirical cumulative distribution of kinetic parameter by kinetic 

expression. A-D depict the distributions for the growth rate models with supersaturation ratio 

(log 𝑘𝑔 median = -6.77, 𝑔 median  = 1.46, n =68) and absolute supersaturation  (log 𝑘𝑔 median = 

-4.11, 𝑔 median  = 1.60, n =92). E-F are the distribution of log 𝑘𝑏 for the empirical nucleation 

rate model (median = 9.43, n = 61) and CNT (median = 11.00, n = 28). 
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The comparison of the most common kinetic models and medians are displayed in Figure 3. All 

the distributions were right-skewed and had a similar shape compared to the discussed previously. 

By contrasting cumulative distributions, it was possible to notice that 𝑘𝑔 values were lower when 

growth was a function of supersaturation ratio instead of absolute supersaturation (Mann-Whitney 

U = 1945.5, p-value < 0.05). This difference was around two orders of magnitude. On the other 

hand, there seems to have been no significant difference in 𝑔 between growth models (Mann-

Whitney U = 2828.5, p-value = 0.301). In the same way, when 𝑘𝑏 values from the empirical model 

were contrasted with CNT model, a high level of coincidence was observed, by which it could be 

said that the available evidence does not allow to detect significant differences (Mann-Whitney U 

= 821, p-value = 0.774). Thus, the only constant significantly affected by the model was 𝑘𝑔. 

The distributions of temperature-dependent growth equations are shown in Figure 4. With the 

presented data, it was not possible to establish that there was a significant difference in the 

activation energy (Mann-Whitney U = 396, p-value = 1.000), the growth rate constant (Mann-

Whitney U = 446, p-value = 0.428) and the rate order g (Mann-Whitney U = 499.5, p-value = 0.09) 

due to the kinetic expression. The rate order g preserved the same behaviour as the overall where 

the majority of data tended to be between 1.0 and 2.0. Conversely, the median of log 𝑘𝑔 was -0.98 

and most data were concentrated within ±4.00. Finally, the activation energies were mostly around 

29.79 kJ/mol, with 25% and 75% of the data being lower than 15.95 kJ/mol and 45.78 kJ/mol, 

respectively. Considering what has been mentioned, the values of kinetic parameters were 

consistent in their majority with the reported in the literature. 
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Figure 4. Histograms and cumulative frequency of temperature-dependent growth rate models. 

Kinetic parameters for supersaturation ratio-based model (𝐸𝑔 median =30.23 kJ/mol, log 𝑘𝑔 = 

0.228, 𝑔 = 1.08, n = 36) and absolute supersaturation-based model  (𝐸𝑔 median =29.70 kJ/mol, 

log 𝑘𝑔 = -1.21, 𝑔 = 1.00, n = 22). A-B do not include the following database entries due to being 

possible outliers and hinder a proper view of the majority: 102 and 262. 
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As for crystal growth, 𝑔 depends - among other factors - on the growth mechanism which in turn 

depends on the supersaturation degree.15 In this manner, it has been reported that 𝑔 generally is 

between 1.0 and 2.0, which coincides with the results found in this work, although many data were 

outside this range.14, 15 Additionally, 𝑔 seems not to be affected by the way as supersaturation is 

expressed. However, 𝑘𝑔 showed different values caused by the kinetic model. In line with this, 

these differences in the magnitude of 𝑘𝑔 are expected. Having as a reference the models 𝐺 =

𝑘𝑔(𝑆 − 1)𝑔 and 𝐺 = 𝑘𝑔𝛥𝐶𝑔, it could be said that 𝑘𝑔
{𝛥𝐶}

= 𝑘𝑔
{𝑆}

𝐶∗𝑔⁄ , which explain the difference. 

Although this was not seen clearly in temperature-dependent models possibly due to the sample 

size in these models. Finally, the tendency shows that different may be between 2 and 3 orders of 

magnitude, where the values of 𝑘𝑔
{Δ𝐶}

 and 𝑘𝑔
{𝑆}

 are around 10-4.11 𝑚𝑠−1(𝑔 𝑔⁄ 𝑠𝑜𝑙𝑣𝑒𝑛𝑡)−1 and 10-

6.77 𝑚𝑠−1, in that respective order. On the other hand, reference values of 𝑘𝑔 were not found for 

either model. However, according to the literature, growth rates may be in the order of 10-7 𝑚𝑠−1 

and 10-9 – 10-8 𝑚𝑠−1 at supersaturation (𝑆 − 1) of 0.01 and 10 to 100, respectively.15-17 Assuming 

𝑔 = 1 due to being the most common, 𝑘𝑔 might take values in the order of 10-11 to 10-5 𝑚𝑠−1 for 

the model using supersaturation ratio.  Consequently, it can be noted that most of the recorded data 

are within the interval previously described, indicating certain agreement with what would be 

expected. Activation energies in temperature dependent models did not show major divergences 

considering what was anticipated. Typical 𝐸𝑎 are in the order of 40 – 60 𝑘𝐽 𝑚𝑜𝑙−1 and 10 to 20 

𝑘𝐽 𝑚𝑜𝑙−1 for crystal growth mediated by surface integration and volume diffusion.15 Based on the 

findings, activation energies tended to be around 30.00 𝑘𝐽 𝑚𝑜𝑙−1, which is the middle of both 

growth mechanisms. Nonetheless, a large proportion of the data falls within these intervals, 

suggesting that the values are reliable. 
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Concerning primary nucleation, neither reference ranges of 𝑘𝑏 nor 𝑏 were found for the power-

law empirical model. Thus, the pre-exponential terms in CNT was compared to rate constant 𝑘𝑏. 

In terms of magnitude, no large differences were observed in the models. Therefore, this suggests 

that the expected values and interpretation of both constants might be similar. In CNT model, the 

pre-exponential term is expected to be around 1030 # 𝑚3𝑠−1 or 1010 – 1020 # 𝑚3𝑠−1, depending 

on whether nucleation is homogeneous or heterogeneous.15 As a result, it can be seen that a big 

portion of the constants fitted in either CNT or the power-law model is within these intervals, 

indicating a certain level of concordance compared to previous revisions.  

To conclude this part, a database of kinetic parameters was built and, considering all the points 

exposed for growth and primary nucleation, it can be said, there are no major deviations between 

the collected data and the information available in other works. This fact provides a certain level 

of reliability on the data. Additionally, since the source of data is varied in terms of methods and 

solutes, it is possible to establish approximate intervals in which some kinetic parameters would 

be expected to belong. However, in this scenario, some constraints are: the limited variety of 

solvents and most data are concentrated in a few models, by which the studied kinetic parameters 

in the next sections were limited to the most common models and there might be bias towards 

aqueous systems. 

3.2. Journal bias caused by crystallization method 

Detailed results and discussion for the presence of any journal bias to specific crystallization 

methods is provided in the ESI. In summary, based on the entries, Organic Process Research & 

Development tends to have more data points related to methods such as precipitation, antisolvent, 

and evaporative compared to the other journals, which may suggest this journal has a bias towards 

non-cooling techniques. On the other hand, even though the other journals display differences in 
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the proportion of crystallization techniques, the available data did not allow to conclude whether 

these differences are caused by bias or they are of random nature. Based on the papers, journal and 

crystallization method seem to be independent by which the observed differences may be present 

by chance. 

3.3. Association between kinetic parameters and descriptors 

3.3.1. Molecular descriptors 

First of all, the evaluation of associations and other analysis were carried out using the following 

models since they have the most data: 𝐺 = 𝑘𝑔Δ𝐶𝑔, 𝐺 = 𝑘𝑔(𝑆 − 1)𝑔, and 𝐵 = 𝑘𝑏Δ𝐶𝑏. Then, 

molecular descriptors were used to seek associations between kinetic parameters of the models 

above mentioned and solute properties. An initial approach to finding out correlations was through 

Pearson’s coefficients (𝑟). A list of moderate and strong correlation is shown in the ESI. The 

majority of variables presented weak linear correlations (|𝑟| < 0.3) for all the kinetic models. In 

the particular instance of growth rate models, some moderate correlations (|𝑟| between 0.3 and 

0.7) could be identified. Specifically, the number of moderate correlations was greater for 𝐺 =

𝑘𝑔(𝑆 − 1)𝑔 for either log 𝑘𝑔 and 𝑔. In the same way, the variables correlated to 𝑔 did not match 

between models, and for log 𝑘𝑔, some overlap such as b_max1len, PEOE_VSA+4, and 

vsurf_DW13 which were lower in 𝐺 = 𝑘𝑔𝛥𝐶𝑔 . Generally speaking, a similar behaviour was seen 

in nucleation rate constants compared to growth models. log 𝑘𝑏 and 𝑏 also showed mainly weak 

to moderate correlations. Nonetheless, log 𝑘𝑏, in contrast to the other model kinetic parameters, 

had a strong correlation (|𝑟| > 0.7) with two descriptors a_nCl (number of chlorine atoms) and 

vsurf_DW12 (contact distance between lowest hydrophilic energy) with around 0.78 for both 

descriptors. However, by analysing these correlations thoroughly, some extreme values were 

observed which might have caused an overestimation of these relationships. To conclude, overall, 
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strong correlations between solute descriptors and kinetic parameters could not be identified, 

except for log 𝑘𝑏, which suggested that linear relationships between the assessed solute properties 

and the kinetic parameters are poor. These results indicate that these molecular descriptors may 

not be appropriate predictors or classifiers using linear models, by which, to discard definitely 

these variables, non-linear associations should be assessed. 

3.3.2. Solvent 

The effect of solvent on kinetic parameters was diverse. The values of growth kinetic parameters 

grouped by solvent are displayed in Figure 5. Starting with the model 𝐺 = 𝑘𝑔𝛥𝐶𝑔, the values of 

log 𝑘𝑔 associated with MEK and ACN were significantly higher than the rest of solvents and these 

values exceed 0.0. On the other hand, the rate order 𝑔 was similar among the distinct solvents, 

being lower than 2.0. In line with this, ACN values were the lowest with respect to the other 

solvents. In relation to the model 𝐺 = 𝑘𝑔(𝑆 − 1)𝑔, the values of log 𝑘𝑔 and 𝑔 were comparable to 

the majority of solvents, solely seeing a large difference of log 𝑘𝑔 in aqueous mixtures and 𝑔 in 

EtOH. The results of 𝑘𝑏 and 𝑏 for each solvent are shown in Figure 5. To point out, while MEK 

and the aqueous mixtures had the highest values of 𝑏, they presented the lowest values of log 𝑘𝑏. 

In contrast, even though EA also possessed a high 𝑏, log 𝑘𝑏 was comparable to water and MeOH. 

As for MeOH, the data were very scattered for both log 𝑘𝑏 and 𝑏, thereby hindering the 

determination of a difference with respect to the other solvents. Thus, for primary nucleation as 

well as growth models, it was difficult to find significant variations of kinetic parameters with 

relation to solvent given the majority of solvents showed the tendency to be around the same range 

and the number of data and solutes per each solvent was rather unbalanced. Nonetheless, there are 

two cases to highlight: MEK in growth and MeOH in nucleation. It has been documented that 

numerous solvent properties such as viscosity, polarity, and chemical nature can affect crystal 
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growth as well as primary nucleation processes.15, 18 Thus, significative differences among solvents 

were expected to be observed.  However, despite the fact that there were some solvents of different 

nature, kinetic parameters were rather similar. By observing the particular cases of MEK in growth 

and MeOH in nucleation, it can be seen that these two have a wide scattering of their parameters 

compared to water, which is the most frequently employed solvent. MeOH data comprised two 

solutes – paracetamol and felodipine - crystallized by precipitation and antisolvent; every system 

exhibited substantial differences in its nucleation parameters. On the other hand, MEK had a wide 

dispersion of g which is explained by changes in cooling rate in co-crystallization of agomelatine-

citric acid. Considering water, there were many more possible combination of methods, solutes 

and process conditions but such scattering was not exhibited. These facts indicate there might be 

interactions between solvent and several other factors, such as process conditions, and solvent 

effect may not be evaluated in isolation. In future studies, a better approach might be to analyse 

interactions with other factors or use solvent descriptors like viscosity, in order to identify potential 

associations in a clearer way.  
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Figure 5. A-D Association growth kinetic parameters and solvent. E-F Association between 

primary nucleation kinetic parameters and solvent.  AcOH, acetic acid; EtOH, ethanol; EA, ethyl 

acetate; MeOH, methanol; MEK, methyl ethyl ketone; Aqueous mixture, mixture of water + an 

organic solvent; organic mixture, mixture of several organic solvents. From left to right, solvents 

are placed in ascending order of medians. 
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3.3.3. Crystallization technique 

Figure 6 shows boxplots of kinetic parameters separated by crystallization technique for the 

modes 𝐺 = 𝑘𝑔Δ𝐶𝑔 and 𝐺 = 𝑘𝑔(𝑆 − 1)𝑔. Cooling and reactive crystallization presented the 

highest values of log 𝑘𝑔 and 𝑔 in the model 𝐺 = 𝑘𝑔𝛥𝐶𝑔 followed by evaporative and antisolvent. 

In cooling crystallization, it was observed that the data exhibited the highest scattering in both 

parameters by which, despite having the highest values of both kinetic parameters, these were not 

notably different to the other techniques. These results contrasted with the model 𝐺 = 𝑘𝑔(𝑆 − 1)𝑔 

since the same patterns were not seen. In this model, for example, precipitation and cooling had 

the lowest values of log 𝑘𝑔 and 𝑔. The values of 𝑔 in both models tended to be high or moderately 

higher than 1.0 for precipitation and antisolvent. These techniques are characterised for reaching 

a very high level of supersaturation.15-17 In these conditions, 𝑔 is generally higher than 2.0 given 

the low solubility in the system.15 In this manner, the results are consistent. Conversely, 𝑘𝑔 does 

not exhibit the same behaviour, suggesting that 𝑘𝑔 may not necessarily show a pattern related to 

the technique. As for cooling crystallization, the dispersion is generally wider than the other 

techniques. A reason might be that cooling crystallization was the most frequent and more 

variations of process conditions can be found. In this manner, all of these changes may lead to 

have a larger variance in growth constants. 
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Figure 6. A-D Association growth kinetic parameters and crystallization technique. E-F 

Association primary nucleation parameters and crystallization technique. From left to right, 

techniques are placed in ascending order of medians 

Nucleation rate data showed that log 𝑘𝑏 and b have the same pattern i.e., a technique with high 

𝑏, it has high log 𝑘𝑏 .  Although the scattering was the highest, precipitation exhibited the largest 
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𝑘𝑏 and b preceded by cooling crystallization. It could also be observed that the majority of methods 

displayed values of b higher than 5.9. In opposition, antisolvent technique shows the lowest values 

for both nucleation parameters. Precipitation and antisolvent are characterised by large nucleation 

rates.15 In this way, their parameters are expected to show the same tendency. This trend was seen 

for precipitation but not antisolvent. A possible reason is that the solutes crystalized by antisolvent 

show a moderate solubility in the system solvent – antisolvent.15  The results are portrayed in 

Figure 6. Finally, the data indicate that there may be patterns such as the case of precipitation 

where, especially for primary nucleation, higher values of all the parameters compared to the others 

were observed. 

3.3.4. Seeding 

Growth kinetic constants are compared in Figure 7. Although seeded and unseeded 

crystallization did not seem to differ markedly, it was still possible to see small differences between 

groups. In general, unseeded processes showed values slightly higher than seeded crystallization. 

This tendency was especially more notable in 𝑔 for both models. However, log 𝑘𝑔 in 𝐺 =

𝑘𝑔(𝑆 − 1)𝑔 model exhibited the opposite, where seeded processes have greater values of 𝑘𝑔. In 

this manner, kinetic parameters were different depending on seeding but this difference did not 

appear substantial overall by which this parameter may not be useful to characterise growth rate 

parameters. 
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Figure 7. Association growth kinetic parameters and seeding. From left to right, seed and 

unseeded processes are placed in ascending order of medians. 

3.4. Cluster analysis 

In response to previous results in which no clear associations could be established between 

certain properties and kinetic parameter, ACH was performed in the observation of several models. 

The objective was to first identify whether the data have a cluster structure and form homogeneous 

groups founded on the kinetic parameters. Secondly, through a complementary methodology, it 

was aimed to find characteristics that enable to classify the crystallization of a solute under certain 

conditions in a group and provide a rough estimation of possible values for kinetic parameters. 
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Thus,  AHC was carried out over the next models since they have more than 50 observations: 𝐺 =

𝑘𝑔𝛥𝐶𝑔 (G1), 𝐺 = 𝑘𝑔(𝑆 − 1)𝑔 (G2), and 𝐵 = 𝑘𝑏𝛥𝐶𝑏 (B1).  

Initially, the optimal number of clusters was 3 in the model G1, while the optimal was 2 for the 

others based on the maximum Silhouette index (see ESI). Nonetheless, in the models G2 and B1, 

2 clusters did not provide a good differentiation between groups in relation to the rate constant and 

the supersaturation rate order together. Therefore, the chosen number of clusters for these cases 

was the second optimal number according to the index. In this manner, the final number of clusters 

of 3, 3, and 5 were reached for the models G1, G2, and B1, respectively. The results for the model 

G1 are shown in Figure 8 and summary statistics of the cluster are listed in the ESI. Cluster 2 and 

3 could be clearly discriminated by log 𝑘𝑔 values since 𝑘𝑔 is higher for the former. However, both 

groups had similar values of 𝑔 as seen by comparing the means. Consequently, the growth rate of 

these observations is limited by the rate constant rather than supersaturation, at the same 

supersaturation levels. Instead, Cluster 1 showed larger values of 𝑔 with respect to the other 

groups, but the range of log 𝑘𝑔 was approximately the same as Cluster 2. Therefore, the growth 

rate of the observations that belong to Cluster 1 is more strongly dependent on supersaturation.  
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Figure 8.  Scatter plot of standardised  𝑙𝑜𝑔 𝑘𝑔 and 𝑔 for the model 𝐺 = 𝑘𝑔𝛥𝐶𝑔 (G1). The labels 

represent the identification number of the observations. Cluster observations are distributed as 

follows: cluster 1 (n = 13), cluster 2 (n = 27), and cluster 3 (n = 52). 

 

Figure 9.  Scatter plot of standardised 𝑙𝑜𝑔𝑘𝑔 and 𝑔 for the model  𝐺 = 𝑘𝑔(𝑆 − 1)𝑔 (G2). The 

labels represent the identification number of the observations. Cluster observations are 

distributed as follows: cluster 1 (n = 51), cluster 2 (n = 11), and cluster 3 (n = 6). 
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In a similar way, 3 clusters were identified based on kinetic parameters of the model G2. In 

particular, Cluster 1 and 2 were comparable in terms of 𝑘𝑔 but differ in 𝑔, where Cluster 2 

presented larger rate orders. In opposition, Cluster 3 is characterized mainly by having high values 

of log 𝑘𝑔 and low values of 𝑔. These results can be observed in Figure 9 and the ESI. 

Regarding primary nucleation, 5 clusters were identified. The scatter plot and summary statistics 

can be found in Figure 10 and ESI, respectively. Although all the groups presented different means 

for all the kinetic parameter, they still had some values that could overlay. In relation to this, 

Cluster 1 to 3 showed similar values of log 𝑘𝑏 , whereas the order b was distinct between groups. 

Similarly, Cluster 4 showed observations similar to those of group 1 and 2. Conversely, Cluster 5 

was distinct in log 𝑘𝑏 as well as 𝑏 values. To note, Cluster 3 was composed by 2 observations only 

which belonged to the same solute. These observations corresponded to an experiment related to 

co-crystallization of agomelatine/citric acid. Given the characteristics of the solutes, this group 

was not included in the later analysis since molecular descriptors were not appropriate. 

Finally, the data were segmented into different groups for each considered model. Clusters 

exhibited particular values of either the rate constant or the supersaturation order. The relationships 

between clusters and molecular descriptors, solvent, methods and seeding are analysed in the next 

section through random forest model (RF). 
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Figure 10. Scatter plot of standardised log 𝑘𝑏 and 𝑏 for the model 𝐵 = 𝑘𝑏𝛥𝐶𝑏 (B1). The 

labels represent the identification number of the observations. Cluster observations are 

distributed as follows: cluster 1 (n =34), cluster 2 (n = 8), and cluster 3 (n = 2), cluster 4 (n = 9), 

and cluster 5 (n = 8). 

3.5. Descriptors importance 

RF possesses, among many other advantages, the ability to deal with non-linear relationships 

and redundant information, and assign importance to the classifiers, which is useful in the selection 

of variables and search of patterns. With this in mind, RF models were built for the kinetic 

expressions G1, G2, and B1 with the next parameters: ntree = 15000, mtry = 10, and set.seed = 50. 

The out-of-bag (OOB) and class prediction error are listed below in Table 3. The high errors within 

groups were generally associated with the smallest size class. Additionally, the predictability was 

evaluated via leave-one-out cross-validation.  The overall classification accuracy was 74.11%, 

85.45%, and 83.05% for the models G1, G2, and B1, respectively. Previous works dealing with 

application of RF in crystallization phenomenon showed a level of accuracy around 70%.19 

Therefore, the proposed models can be considered acceptable in this aspect. 
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Table 3. OOB and class error of the RF models 

 𝑮 = 𝒌𝒈𝜟𝑪𝒈 (G1) 𝑮 = 𝒌𝒈(𝑺 − 𝟏)𝒈 (G) 𝑩 = 𝒌𝒃𝜟𝑪𝒃 (G3) 

OOB (%) 25.88 14.55 16.95 

Class error (%)    

Cluster 1 36.36 10.26 2.94 

Cluster 2 30.43 30.00 0.00 

Cluster 3 21.56 16.67 - 

Cluster 4 - - 77.78 

Cluster 5 - - 25.00 

 

Figure 11 shows the top 15 of the most important variables for RF classification. All the models 

included solvent, method, seeding and 110 molecular descriptors as classifiers. For all the three 

models, among the most common and important classifiers were found mostly descriptors related 

to partial charges (PEOE), topological indices such as BCUT and GCUT, and volume-surface-

shape indices (vsurf). Variables such as seeding and solvent were not as relevant as the other 

descriptors. Instead, crystallization technique (method) was among the top 15 of the most 

important variables only in primary nucleation rate model. The Figure 11 also shows that after the 

first one or two ranked variables, MDA is reduced slowly which suggests that there are no large 

differences in the importance after the first one. Thus, this might indicate that the contribution of 

the majority of variables to the model predictability is similar. As a result, there are no outstanding 

variables but most of them contribute equally. 

By observing Table 4, it is possible to notice that the 3 most important variable were different 

with respect to mean throughout all clusters. As a result, these classifiers can be potentially useful 

to distinguish one group from another. However, some clusters had a high standard deviation and 
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so a high scattering. Therefore, the observations of two clusters may overlap. In this manner, the 

most important descriptors may not be enough to provide accurate discrimination between groups. 

This can be seen for instance in the descriptor GCUT_PEOE_3 of model G1. Cluster 1 had a lower 

value than the others but the descriptor in Cluster 2 and 3 was rather similar, around 2.1. Thus, the 

best descriptor only can identify Cluster 1 from the rest in this case. Furthermore, Cluster 1 has a 

wide scattering with respect to its average, which means some observations of this group might 

overlap with the others, thereby being confused. In light of the mentioned limitations of the 

descriptors, the high scattering within clusters may provide an explanation for why the MDA is 

rather similar and low in the models given the descriptors may separate a cluster from another but 

not all the clusters. Consequently, this suggests that a variable in isolation cannot explain the 

variability between clusters and the best model requires many variables. 

Table 4. Expected values (standard deviation) of the 3 most important classifiers for each 

cluster. 

Cluster Descriptors 

Model G1 GCUT_PEOE_3 vsurf_IW7 BCUT_PEOE_3 

1 1.56 (0.66) 1.95 (2.23) 1.80 (0.65) 

2 2,12 (0.50) 1.26 (2.12) 2.24 (0.37) 

3 2.17 (0.46) 3.53 (2.13) 2.44 (0.34) 

Model G2 PEOE_VSA+2 vsurf_R PEOE_RPC+ 

1 6.65 (11.13) 1.61 (0.16) 0.51 (0.36) 

2 20.23 (16.04) 1.38 (0.15) 0.22 (0.19) 

3 24.72 (12.11) 1.23 (0.02) 0.11 (0.04) 

Model B1 BCUT_SLOGP_1 GCUT_SLOGP_1 GCUT_PEOE_2 

1 -0.68 (0.43) -0.53 (0.48) 0.14 (0.14) 

2 -0.57 (0.06) -0.43 (0.10) 0.09 (0.00) 
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4 -0.63 (0.52) -0.59 (0.54) 0.28 (0.31) 

5 -0.21 (0.06) -0.28 (0.08) -0.05 (0.04) 

 

 

Figure 11. Top 15 of the most important classifiers based on mean decrease in accuracy (MDA). 

A) model G1, 𝐺 = 𝑘𝑔𝛥𝐶𝑔, B) model G2, 𝐺 = 𝑘𝑔(𝑆 − 1)𝑔, C) model B1, 𝐵 = 𝑘𝑏𝛥𝐶𝑔. 

 

By comparing the most important descriptor in the proposed models to previous works in 

crystallization and solubility, several coincidences can be found. Specifically, MOE descriptors 

such as BCUT, GCUT and partial charge (PEOE) have been found useful to predict solubility and 

crystallisability,19, 20 which match with the findings in this work to a certain extent. From a 
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conceptual point of view, BCUT and GCUT descriptors are topological indices which are 

calculated based on molecular graphs.21 This group of indices have been related to chemical 

features like branching, size and cyclicity which in turn are related to molecular flexibility and 

rigidity.22 These properties have been described to influence on crystallization tendency and 

kinetics.23, 24 In this way, descriptors that measure properties like molecular flexibility are expected 

to be relevant in crystallization models. Similarly, partial charge is important since affect the 

interactions solute-solvent and solute-solute.14, 25 These descriptors were primarily relevant in the 

model G2 and model B1. The difference between model G1 and G2 may be given by the definition 

of the rate constant in which, as mentioned in previous sections, 𝑘𝑔
{Δ𝐶}

= 𝑘𝑔
{S}

𝐶∗𝑔⁄ . As can be seen, 

𝑘𝑔 in the model G1 is more solubility-dependent whereby differences in important descriptors can 

arise, even though both models describe the same process. Lastly, vsurf descriptors comprise 

indices that characterise surface properties which include hydrophobic and hydrophilic 

interactions, shape, etc.26 This group of indices is calculated considering molecular conformation 

which makes them different from partial charge descriptors, for example.26 These types of 

interactions are also important in nucleation and crystal growth.15 In this manner, descriptors that 

represent interactions between solute-solvent or solute-solute may be of help to describe 

crystallization kinetics. 

To highlight, seeding, solvent, and methods were not important for growth models, and only the 

crystallization technique had some relevance in primary nucleation model. These results were 

expected since no associations between kinetic parameters and these variables were observed, 

except between the crystallization technique and nucleation parameters, as discussed in previous 

sections. By revising the results of model B1, a clearer association between crystallization 

technique and nucleation parameters can be observed given there is a dominant method in every 
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cluster as follows: Cluster 1: 64.7% antisolvent, Cluster 2: 100% cooling, Cluster 4: 77.8% cooling 

and Cluster 5: 87.5% precipitation. This might suggest that every cluster may also be associated 

with a determined crystallization method. Nonetheless, this result did not include evaporative 

crystallization as there were not data of primary nucleation under this condition. In the end, this 

indicates that RF models were able to discriminate irrelevant variables and select the most 

important in the correspondent model. 

To summarise, RF classification models with acceptable accuracy were built. These models may 

yield very rough estimates of kinetic parameters for the models 𝐺 = 𝑘𝑔Δ𝐶𝑔, 𝐺 = 𝑘𝑔(𝑆 − 1)𝑔, and 

𝐵 = 𝑘𝑏Δ𝐶𝑏, by providing mostly information on certain molecular descriptors and crystallization 

technique. Among the main limitations of these models, it can be found that most training data 

were limited to water. Although solvent was not important, a possible reason is that there was no 

sufficient variety of solvents to capture the variability and have an appropriate measurement of its 

effect, whereby it would be recommended to incorporate more solvents and study solvent 

molecular descriptors. Another constraint was the sample size per cluster. It would have been 

desirable to have a larger sample with a greater number of solutes to produce better groups and 

obtain more accurate models. A final limitation was concerning molecular descriptors. 

Specifically, 3D descriptors such as vsurft are dependent on the molecule conformation. For this 

work, the optimal conformation was not selected so that in future works, this might be considered 

to obtain more accurate values. 

 

4. CONCLUSIONS 

A database was built containing relevant information on kinetic parameters of different solutes 

and solvents at several conditions of seeding and crystallization technique. The data were 
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contrasted to theoretical data and showed to be consistent, thereby being useful to develop other 

analysis. The most common kinetic models were 𝐺 = 𝑘𝑔Δ𝐶𝑔, 𝐺 = 𝑘𝑔(𝑆 − 1)𝑔, and 𝐵 = 𝑘𝑏Δ𝐶𝑏. 

The parameters of these models were used to assess association with other variables. In specific, 

kinetic parameters relationships with 110 solute molecular descriptors, solvent, seeding and 

crystallization technique were studied. No strong linear correlations were found between 

molecular descriptors and kinetic parameters. Similarly, a clear association of kinetic parameters 

with seeding or solvent was not observed. On the other hand, while crystallization technique did 

not display a tendency in regards growth parameters, a notable association was seen with primary 

nucleation parameters. 

In order to look for patterns, hierarchical clustering analysis was performed in the kinetic 

parameters of each model. A cluster structure was identified and the observations were assigned 

to a group. Later, random forests models were built to classify observations in the groups 

established by clustering analysis, using as classifiers the variables employed during the 

assessment of the associations. Three random forest models were obtained for each kinetic model. 

The overall classification accuracy calculated by leave one out-cross-validation was higher than 

70% for all the models. The most important variables for classification were topological (BCUT 

and GCUT), partial charge (PEOE), and vsurf descriptors showing certain association with kinetic 

parameters. In addition, crystallization technique was relevant to classify observation in primary 

nucleation, which confirms its relationship with nucleation parameters. 

These models may be employed to yield a rough estimate of kinetic parameters of crystal growth 

and primary nucleation. However, the models are mostly constraint to aqueous systems. In this 

manner, it was possible to establish that developing a model to predict kinetic constants is feasible. 
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Future works in this field should focus on providing more accurate estimations. In this scenario, 

considering the following factors might be useful:  

1. Increase the number of solutes for each model. 

2. Increase the number and nature of solvents. 

3. Model solvent molecular descriptor. 

4. Select optimal conformation to calculate solute molecular descriptors. 

To aid in points 1 and 2, the authors welcome contributions from researchers to expand the 

database. Original and updated versions of the database will remain freely available from the 

University of Strathclyde KnowledgeBase at https://doi.org/10.15129/8f47a175-3ac7-4791-a310-

82e6652bd9f5. 

 

ASSOCIATED CONTENT 

All data underpinning this publication are openly available from the University of Strathclyde 

KnowledgeBase at https://doi.org/10.15129/8f47a175-3ac7-4791-a310-82e6652bd9f5: 

 All the data collected with and without pre-processing, observations whose kinetic 

parameters were a function of solvent or antisolvent concentration, observations whose 

growth was measured as volume, data adjusted according to what was explained in the 

article (dataset_raw.csv and dataset_preprocessed.csv) 

 Molecular descriptors employed in random forests of the compounds in the database 

(moe_descriptors.csv) 

  Code employed to perform cluster analysis and random forests in R (script.html) 
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