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Abstract  
 
Here we report new chemical entities that are highly specific in binding towards the 3-chymotrypsin-
like cysteine protease (3CLpro) protein present in the novel SARS-CoV2 virus. The viral 3CLpro 
protein controls coronavirus replication. Therefore, 3CLpro is identified as a target for drug molecules. 
We have implemented an enhanced sampling method in combination with molecular dynamics and 
docking to bring down the computational screening search space to four molecules that could be 
synthesised and tested against COVID-19. Our computational method is much more robust than any 
other method available for drug screening e.g., docking, because of sampling of the free energy surface 
of the binding site of the protein (including the ligand) and use of explicit solvent. We have considered 
all possible interactions between all the atoms present in the protein, ligands, and water. Using high 
performance computing with graphical processing units we are able to perform large number of 
simulations within a month's time and converge to 4 most strongly bound ligands (by free energy and 
other scores) from a set of 17 ligands with lower docking scores. Based on our results and analysis, we 
claim with high confidence, that we have identified four potential ligands. Out of those, one particular 
ligand is the most promising candidate, based on free energy data, for further synthesis and testing 
against SARS-CoV-2 and might be effective for the cure of COVID-19.  
  



1. Introduction  
 
The current situation of the world is extraordinary due to Coronavirus Disease-2019 (COVID-19) 
pandemic. COVID-19 is caused by a new pathogen, severe acute respiratory syndrome coronavirus 2 
(SARS-COV-2) Virus which is from the family of betacoronavirus genus 1,2. The infection with the 
new pathogenic SARS-CoV2 can result in long term reduction in lung function, arrhythmia, and death. 
This virus is found to have much stronger binding energy with the host cell than its predecessors and 
thus spreads more efficiently. This family of SARS virus is different and thus there is a huge need for 
drug candidates and vaccines to be invented in a few months to tackle the pandemic. The current crisis 
is mainly because of the lack of any specific antiviral drugs that could function against the SARS-CoV2 
or due to a lack of preparedness for finding and producing a new vaccine. To mitigate the risks posed 
by viruses, including the SARS-CoV-2, it is imperative that research efforts for the development of new 
antiviral agents targeting this virus be pursued with renewed invigoration. However, identification of a 
drug candidate is a time-consuming process and the final release of new drugs for patients takes a 
minimum of 10 years of research to identify potential efficacious molecules with less toxicity, testing 
in animals followed by human, and regulatory approvals. Moreover, the viruses have the tendency and 
ability to mutate rapidly in response to drug molecules, and thus it is imperative that an in-depth 
understanding of structure-activity relations with respect to the biology should evolve in order to 
combat current and future outbreaks.  
 
The scientific world is responding to this pandemic by three major paths of innovation. The most 
focused research currently in progress is the development of vaccine candidates and clinical trials of 
existing FDA approved drugs for other relevant diseases, in order to repurpose them for the COVID-
19. The third set of scientists are focusing on innovating new chemical entities (NCEs), as repurposing 
of drugs may fail and the reach of the vaccine could be limited all over the world in the initial 2-3 years.  
The research on NCEs is dependent on finding targets i.e., the proteins that are envisaged as moderators 
of functions, to help the virus propagate in human body. So, NCEs are designed to inhibit these proteins 
either on viruses or in human cells to stop the biological pathways hence control the disease. The ab 
initio design of NCEs predominantly starts from the computational screening of large sets e.g., millions 
of chemicals already available in chemical databases.  So the key approach of this high-throughput 
computational screening3 is to identify molecules from existing molecular databases that may have a 
therapeutic effect on coronavirus.  
The main protease (Mpro 3CLpro) of coronavirus is an attractive drug target because of its function in 
processing the polyproteins that are translated from the viral RNA. Mpro is a key CoV enzyme for 
mediating viral replication and transcription. The Mpro has similar cleavage-site specificity to that of 
picornavirus 3C protease (3C pro). Therefore it is also known as 3C or 3C-like main protease (3CL 
Mpro). Jin et.al. recently reported the X-ray structures4 of the SARS-CoV-2 Mpro and its complex with 
N3 inhibitor. The crystal structure of COVID-19 main protease in complex with an inhibitor N3 is 
reported4 at RCSB Protein Data Bank as entry 6LU7. Liu et. al. in a subsequent publication predicted a 
list of commercial medicines that might work as inhibitors5 for 2019-nCoV. They have used molecular 
docking for targeting Mpro. These predicted drugs formed more hydrogen bonds with 2019-nCoV 
Mpro compared to lopinavir/ritonavir. Walls et. al. recently showed that SARS-CoV-2 S uses 
membrane associated protein ACE2 of human cells to enter6. The receptor-binding domains of SARS-
CoV-2 S and SARS-CoV S (SARS coronavirus identified in 2003) bind with similar affinities6 to ACE2 
of human cell. They found that the SARS-CoV-2 S glycoprotein uses a furin cleavage site at the 
boundary between the S1/S2 subunits, which is processed during biogenesis sets the virus SARS-CoV2 
different from SARS-CoV and SARS-related CoVs. They reported a cryo-EM structure of the SARS-
CoV-2 S ectodomain trimer, which is another hotspot for designing vaccines and inhibitors. 



Bung et. al. recently published7 their initial work on de novo design of NCEs for SARS-CoV-2 , 
targeting 3CLpro protein. They have performed deep neural network-based (DNL) generative and 
predictive methods for in silico design of NCEs. They have started with a dataset of ~1.6 million small 
molecules from the ChEMBL database8 to train the DNL model. They filtered out stereochemistry, 
salts, undesirable atoms or groups, and SMILES string greater than 100 symbols. The DNL model and 
filtration method are explained in detail in their paper. Subsequently, they filtered artificial intelligence 
(AI) generated small molecules based on various physicochemical properties such as drug like ness9 
and synthetic accessibility10. Finally, these filtered small molecules were docked using AutoDock 
Vina11 to the energy minimized 3CLpro structure (PDB ID: 6LU7) and ranked based on their virtual 
screening scores. They have docked 3960 molecules and obtained 1333 small molecules that have 
virtual screening scores below -7.0.   
 
In the paper, Bung et.al. reported final high potential7 (to qualify as drug candidates) 31 NCE molecules 
with virtual screening scores between -8.3 and -7.5. Out of these 31, they refer to 16 molecules which 
are similar to already FDA approved drugs darunavir, lopinavir, ritonavir, indinavir, saquinavir, and 
ASC09 and are currently in clinical trials for SARS-CoV-2. Moreover, reported virtual screening scores 
for their  NCE molecules are better than the drugs in clinical trials. They have reported the rest 15 NCEs 
showed higher virtual screening score against 3CL protease of SARS-CoV2 than the other set of 16 
molecules. The highest virtual screening score they reported is -9.1 and the highest Tanimoto 
coefficient12  with the existing protease inhibitors among the top 15 molecules is 0.90.  
 
While virtual screening tools are popular in use,  the limitations of methods like docking with different 
variations in methodologies are well-established facts in the literature 13,14. The target ligand docking 
often fails to produce or identify the right ligands (NCE) which could be the best possible bet i.e., high 
specificity towards the target. The failure is caused by multiple factors, e.g., proper sampling of the 
binding site, flexibility of the protein (change of conformation of protein due to binding of the ligand), 
non-existence of solvent (i.e., the solvent-ligand interaction) in the model and finally that results into 
the definition of the scoring function (missing entropic contributions). Therefore, often, docking is used 
for qualitative estimation of the chemical space of the target, and subsequently, medicinal chemists use 
their intuition (to design scaffolds) and synthesize large numbers of molecules (chemical library). This 
library of molecules is then tested in biological assays to screen further for better efficacy.   
 
Therefore, here, we propose a much robust methodology to address some of the issues mentioned above 
and reduce the sub-set of NCEs for further synthesis and testing. Our methodology is to perform a large 
scale all-atom molecular simulation on the target-ligand complexes followed by enhanced free energy 
methods to identify the set of ligands with high specificity. In this method, we use molecular docking 
to select a set of chemical entities that shows significant interaction (high score) with the protein. These 
molecules then are subjected to molecular dynamics simulations with water as the explicit solvent. 
Solvation of molecules in water (or any other solvent) is critical for identifying right ligands that could 
bind at the binding site of the protein with high stability and not get solvated  in water. Molecular 
dynamics (MD) simulations are therefore used as an additional filter to identify ligands with high 
stability. The stable structures (i.e., protein-ligand bond state in water) identified from the MD 
simulations are further used for enhanced free energy sampling.  Since entropy plays an important role 
in the specificity of binding, quantitative estimation of free energy is essential for better comparative 
binding specificity among various ligands interacting with proteins. Also, defining a score associated 
with the binding for these ligands i.e., chemical entities is important to choose the best set of 
NCEs/potential drug candidates.  
 



In this work, we have considered final molecules reported by Bung et. al.7 for enhanced sampling at the 
binding site of the protein. We have rationally selected molecules that showed higher binding affinities 
toward the protein. Apart from this, we have also considered a few molecules that are very similar to 
darunavir (Tanimoto similarity of 0.91 and 0.90). Darunavir is currently in a clinical trial for COVID-
19 (ClinicalTrials.gov Identifier: NCT04252274). The details of all ligand structures (in 2D and 3D 
optimized) structures are given in Table 1. The computational details which to the best of our knowledge 
are novel for selecting NCEs for SARS-CoV2 are described in section 2 of the paper. In section 3 we 
have provided the results along with discussions.  
 

2. Computational Method  
In this work, we have used a combination of quantum chemicals calculations for optimization of 
structures of ligands (Table 1), molecular docking at the binding site of the protein, all-atom molecular 
dynamics (MD) of protein-ligand complex in water for finding the stability of the complex, and 
enhanced free energy sampling for final identification of the potential drug molecules. A detailed 
simulation protocol is described here.  
 
The geometry optimizations of all the ligands (listed in Table 1) are performed using a semi-empirical 
method at the PM6 level, followed by geometry optimization using density functional theory (DFT) 
with M06 functional and 6-311g (d,p) basis set. To account for the bulk solvent effects PCM method is 
used. Further, the partial atomic charges for the ligands are computed by fitting the electrostatic 
potential using CHELPG method as implemented in Gaussian09 code15. These charges are computed 
for the optimized structures using a single point calculation at the DFT with M06 functional with 6-
311g (d,p) basis set and water as the solvent.  
 
The virtual screening scores for binding are generated through docking to find out the affinity of all the 
ligands, with 3CL protease. In general, docking involves finding the optimal binding between protein 
and ligand. To get this optimal binding score the ligand conformational search is performed around the 
binding sites. Here, a genetic algorithm-based conformational search is employed to find the lowest 
energy conformation of the ligand. The ligand’s conformational search is carried out by creating the 
grid around the binding site of the protein. The binding site of 3CLpro is already known and is reported 
to the HIS-41 and CYS-148 protein amino acid residues cavity4. The docking of ligands and protein is 
conducted using Autodock416 software. The docking is carried out using the Lamarckian genetic 
algorithm (LGA) and a total of 100 GA-LA hybrid runs are used to perform the conformational search 
for the ligand. Further, the lowest energy protein-ligand cluster is used to repeat the docking for twice, 
and the consistency of the results are combined to get the best score. 
 
The lowest energy docked complexes, the protein-ligand systems obtained from docking, are used to 
perform MD simulations. The protein is modeled using CHARMM27 force-field17 parameters. The 
CHARMM27 force-field is employed for all the ligands, and the force-field parameters are generated 
using SwissParam18. The ligand partial atomic charges are computed by fitting the electrostatic potential 
using CHELPG method19 as implemented in Gaussian09 code. The protein-ligand systems are solvated 
in water and equilibrated using MD simulations at room temperature. At first, the systems are 
equilibrated using NVT ensemble at 300 K for 0.5 ns and extended to NPT ensemble at 300 K and 1 
atm for another 1 ns.  The temperature and the pressure during the simulations are maintained using 
velocity rescaling thermostat and Parrinello-Rahman barostat respectively. A time step of 2 fs is used 
to integrate the equation of motion and a non-bonded cut-off of 10 Å is used to perform the MD 



simulations.  These simulations are used to understand the stability of the interaction of the ligand with 
respect to the protein binding site in explicit water. We have quantified the interactions between the 
amino acids in the binding pocket and the ligand using hydrogen bond analysis. All MD simulations 
are performed using GROMACS-5.1.4 simulation package 20,21. Further, the equilibrated structure 
obtained from the 1ns MD simulations is used to perform the free energy analysis.  
 
Since protein-ligand systems are complex in nature, exploring various important quantities like its 
thermodynamics, kinetics, microscopic description at the all-atom level, remain a challenge due to the 
length scales of the systems and also the time scales involved in the processes like dissociation or 
association22,23,24 of the ligand from/to the protein binding pocket, etc. Available computational 
resources are generally not sufficient to address these types of complexes where sampling is very 
important through all-atom descriptions with brute force MD. Therefore, here we have performed 
enhanced sampling using metadynamics25 (metaD) and it’s variant well-tempered metadynamics26 (wt-
metaD) using Plumed 2.3.027 patched with MD engine GROMACS 5.1.4. In a metadynamics 
simulation, a time-dependent bias is added to the system along some suitably chosen reaction coordinate 
(s) such that the deposited bias will eventually push the complex away from its minimum energy state, 
or else the system would have generally been trapped for a sufficiently long time. We added a bias 
V(s,t) in the form of Gaussians with every 500 steps (1 ps) deposition stride, with a gaussian hill-height 
of 2.0 kJ/mol, width(𝜎)of 0.1 nm, bias-factor 15 and at temperature (T) 300 K. Once the system 
converges, the free energy F(s) (Eq. 1)28 can be extracted by adding the deposited hills along the biased 
reaction coordinate (s). In a wt-metaD the amplitude of the bias is tuned such that the system converges 
smoothly. Here we used a tempering factor 𝛥T to tune the hills height and thus we achieved smooth 
convergence of the free energy landscape.   
 
The wt-metaD simulations are started from the MD equilibrated structure as starting configurations. 
Since the association of a ligand from aqueous medium to the binding site in protein is an entropy-
driven process and a much slower process in comparison to the dissociation of the ligand from the 
binding site, we mainly focused here on the dissociation of ligands (Figure S2) in enhanced sampling 
simulations.  
 
 

𝐹(𝑠) = − !"#!
!

V(s, t) 	+ 	C(t)                   (1) 
 
Since we are mainly interested here in the dissociation of the ligand from the binding site, we have 
considered the center of mass distance between heavy atoms in ligands and protein backbone in the 
vicinity of the binding pocket (Figure. S2) as the reaction coordinate. We have performed 20 
independent simulations for each ligand to have better sampling and to get statistically reliable results.  
 
Since, a strong binding pose will be more stable and its root-mean square deviation (RMSD) will be 
lesser. Therefore, high RMSD values can be used as an indicator to the poor binding pose and higher 
RMSD meaning a stable binding pose. Hence, to find out the top binding ligands according to their 
binding specificity, we further performed wt-metaD simulations taking aligned RMSD as the reaction 
coordinate. We chose the RMSD for the heavy atoms of the ligands and protein backbone as shown in 
Figure S2. One important thing to mention here is that in our RMSD metadynamics run, we started 
from the configuration corresponding to the minimum free energy value of the FES profile along the 
collective variable of center of mass distance (d). We performed 20 independent wt-metaD simulations 
with RMSD as the collective variable for each ligand with each run extending up to 2 ns. As described 



here we have performed several independent short metadynamics simulations with RSMD as the 
collective variable. So, this is similar to doing a much longer unbiased MD simulation where the starting 
structure of ligand-protein complex could overcome the local barriers and reach global minimum. 
Therefore, these independent trajectories were used to evaluate the stability that are translated into 
scores for the ligand-protein complexes. The analysis (scoring) methods from these trajectories are 
described along with the results and discussion. 

3. Results and Discussion  
The protein-ligand docking scores obtained from this study are shown in Table 3. The docking trend is 
found to be in qualitative agreement with the results obtained from Autodock Vina11. However, the 
absolute scores obtained from our simulations are different from that reported using Autodock Vina, 
due to the differences in force-fields used in Autodock 4 and Vina. The lowest energy docked 
complexes are examined to find the ligand location with respect to the protein binding site. The PI-06 
ligand is found to exhibit high binding affinity with the protein. Among the 17 ligands, PI-04, PI-06, 
PI-10 and PI-12 ligands are found to exhibit higher binding scores with the protein. All ligands 
considered in this study are found to be in the binding pocket and interacting with HIS41 and CYS 148. 
The best docking pose of 4 ligands obtained from docking are shown Figure 1.  The ligand position 
clearly indicates that the ligand prefers to stay at the binding site of the protein. 
 
The docked poses of the 13 other ligands are shown in Figure S1 of the supporting information, which 
clearly shows that the ligands prefer to stay in the binding pocket. Further to understand the docked 
complex stability and the interactions of the ligand with protein in the binding pocket, the best-docked 
complexes are solvated with water and MD simulations are performed. 
 
In case of docking, the protein is considered to be rigid and conformational search is carried out in the 
gas phase. It is very difficult to presume the docked complex as stable. Docking is mainly useful to 
eliminate the ligands that are very improbable. Hence, it is very important to perform all-atom MD 
simulations to assess the stability of the docked complex. Thus, the docked complexes with all-atom 
description are simulated in the presence of a solvent. The aqueous solvent environment plays an 
important role in the stability of the docked complex because of the solvation of ligands, and the 
dynamics of the solvated protein. 
 
The docked complexes are used as initial configurations to perform the MD simulations. The docked 
complex systems are equilibrated in water and simulations are performed at room temperature and 1 
atm pressure. The last 0.5 ns trajectory data obtained from NPT ensemble simulations are used to 
compute the RMSD for the binding site and ligand to assess the stability (See Table S1) of the protein-
ligand complexes and to validate the docking pose. The RMSD values are found less than 0.2 nm for 
all the protein-ligand complexes. This clearly shows that the protein-ligand systems are stable and the 
ligands prefer to be in the binding pocket. 
 
Further to elucidate the main interactions of the ligand with the protein amino acids in the binding 
pocket hydrogen bonding scenarios are analyzed. The involved interacting groups of protein and ligands 
through hydrogen bonds are listed in Table 2. Almost all the ligands are found interacting with the -
NH2 groups of the protein. The most common interacting amino acids in the binding pocket are THR26, 
ASN142 and GLN189. The PI-04, PI-06, PI-08, PI-10, PI-11, PI-13, and PI-17 ligands are found to be 
interacting with a greater number of residues in the binding pocket than the other ligands. However, 
this observation is only based on the hydrogen bonding performed on the structure obtained from 
equilibrium NPT simulations and it is highly probable that ligands might show other predominant 



interactions.  To find out the contribution from all possible interactions one needs to explore the 
complete free energy surface associated with the ligand-protein binding. 
  
The entropic contributions associated with the solvent and the conformational changes of the protein-
ligand complexes are not accounted for in the docking. In the case of MD simulation, the sampling 
around the binding site of the protein is also not enough as conformations might get stuck in local 
minima. Therefore, enhanced sampling of ligand binding and change in conformation of ligands is 
important to ascertain the most stable (bound) protein-ligand complex from the set of 17 complexes 
reported here. The equilibrium structure obtained from MD simulations is used as the starting 
configuration in the enhanced wt-metaD simulations. The average free energy of dissociation for all the 
ligands obtained from wt-metD simulations is reported in Table 3 and the corresponding  free energy 
profiles are shown in Figure 2 (a). Here, the average free energy values are obtained from 20 
independent dissociation simulations for each ligand to get better sampling and statistically reliable 
results. The free energy values are found to be in the range of from -22.7 to -4.8 kJ/mol for all the 
ligands (see Table 3). The PI-06, PI-08, PI-11 and PI-14 ligands are found to exhibit higher energy 
barriers in the same order compared to the other ligands. The maximum free energy of association is -
22.7 kJ/mol, which is observed for PI-06 ligand. These four ligands clearly outperformed all other 
ligands. However, PI-06 is the best among these four with -8 kJ/mol lower free energy from the second 
best PI-14. To better understand the free energy behavior, the profiles for these four ligands are 
separately shown in Figure 2 (b). The free energy surfaces displayed in Figure 2(a) and (b) show a 
complex and rugged free energy landscape with multiple local minima and one global minimum i.e., at 
the binding site. This behavior represents multiple interactions between the ligands and the residues of 
the binding site.  
 
As the solvent effects are not included in the docking, the ligand-protein interactions are expected to be 
different from the wt-metD simulations, where the protein-ligand system is solvated in water. Thus, 
after performing wt-metaD simulations the protein-ligand complex configuration corresponding to the 
free energy minimum position (Figure 2) is superimposed with the complex obtained from docking. 
Figure 3 presents the superimposed structures of free energy surface (FES) minimum configuration and 
the docked complex for the PI-06 ligand. In the wt-metD, the ligand position is found to be in the 
binding pocket marginally away from the residues HIS41 and CYS148. The ligand in the docked pose 
is shown as red sticks, whereas the FES minimum pose is shown as blue sticks. Further, to assess 
binding landscape of ligand-protein and to validate the binding pose from the FES, the RMSD based 
free energy is computed. 
 
To understand the FES of binding poses of the ligands in detail we looked into the FES as a function of 
RMSD (collective variable) as described in the computational method section. For the poorly bound 
ligands, it is expected the RMSD (with respect to the lowest energy binding structure obtained from 
FES described in Figure 2) will be higher in comparison to the strongly bound structures. Therefore, 
RMSD can be attributed as a measure of the binding between the ligands and proteins. Thus, we took 
the minimum free energy configuration from Figure 2 as the starting structure for wt-metaD simulations 
and RSMD as the collective variable. In Figure 4a we present the free energy as a function of aligned 
RMSD for all the ligands. Here each FES is averaged over 20 independent runs. From FES of Figure 4 
(a) it is evident there are stable conformations for all the ligands below 0.2 nm of RMSD. So, there is 
global minimum for all the ligands close to the starting conformation and almost no other local or global 
minimum are observed. However, there is some existence of metastable states after 0.3 nm of RMSD. 
Further, to quantify the binding of ligands to the protein we have computed the probability of the ligand-
protein complex within 0.2 nm of RMSD from all the trajectories we obtained from FES calculation 



with RMSD as collective variable. The trajectories (RMSD as a function of time) for four ligand-protein 
complexes are shown in Figure 5 to elucidate the stability of the ligands in the binding site. In Figure 4 
(b) we have depicted the distribution of the probability of RMSD for these four ligands (see Figure S3 
for all the ligands). For ligands PI-06, PI-08 and PI-11 we observed sharp peaks for distribution of 
probability values for RMSD below 0.2 nm and for PI-14 it is slightly lesser. It signifies PI-06, PI-08, 
PI-11 and PI-14 ligands are strongly bound at the binding site of protein. The probability of the RMSD 
value below 0.2nm could, therefore, be an indicator of binding. Higher the probability, stronger the 
bonding will be. These values are reported in Table 3 along with the free energy change for all the 
ligands.   
 
In a similar line to find the stability of ligand-protein complex we have calculated the average RMSD 
(s) from all the independent biased trajectories using following equation  
 

〈𝑠〉 = ∫%&	&	(!(#($)/'())	
∫ %&	(!(#($)/'())	

                                    (2)     
 
Here F(s) is the energy associated with the RMSD. A higher estimate of the average or 
thermodynamically preferred RMSD can then be considered an indication for poor instability of the 
complex. So higher the value (score) lower the stability and vice-a-versa. All these quantitative 
estimations of the stability (score) for each ligand using Eq. 2 are reported in Table 3.  
 
We have calculated two types of scores (probability of RMSD below 0.2 nm and average RSMD as per 
Eq. 2) from the biased trajectories that are obtained from metadynamics simulations. Figure 6 shows 
the correlation of these two types of scores with the FESs for all the ligands. It is evident that for the 
ligands with lower free energy barrier for dissociation (from the binding site) the average RMSD is 
lower and the probability of RMSD (below 0.2) is higher. These distinct correlations confirm that our 
method could well segregate the ligands that show higher stability than others. We have used docking 
structures with similar docking scores and well separated 4 ligands that bind the 3CLpro with much 
higher affinity. These ligands are in the order of PI-06 > PI-14> PI-11>PI-08 according to the free 
energy barrier and average RSMD. However, if we consider the probability of RMSD values less than 
0.2nm, then the resulting order is PI-06>PI-08>PI-11>PI-14. From all these scores. it is evident that PI-
06 clearly has a much higher probability compared to the other three ligands to bind the protein.       
 
We have shown the FES of dissociation in Figure 2. We observed the free energy profile for PI-06 has 
much higher energy of solvation i.e., at dissociated state than others. And for all the ligands there are 
local minima present along with one global minimum in the free energy landscape. To understand this 
feature, we looked into the dissociation trajectory for PI-06 ligand (see Figure 7). We showed the full 
dissociation of the ligand from the binding pocket to the aqueous environment. Initially, the ligand is at 
the binding pocket and explores various conformations (red wire representation). Due to the applied 
bias along the center of mass-center of mass distance (d), the ligand gradually escapes from the 
minimum of the potential well and explores other regions of the phase space (gray wire representation). 
Later, the ligand fully escapes from the binding pocket to the solvent (blue wire). As can be seen from 
the trajectory, the ligand strongly interacts with the protein backbone near the vicinity of the binding 
pocket which gives rise to these local features in the free energy landscape as observed in Figure 7. 
 



4. Conclusion  
In this paper we have performed large scale all-atom molecular dynamics simulations with enhanced 
sampling for ligands that binds to the 3CL protease of SARS-CoV2. These calculations are robust and 
are modelled similar to the experimental system by incorporating explicit solvent molecules and 
considering all-atom molecular models and interactions. We have considered a set of 17 ligands with 
lower virtual screening score (for 3CLpro of SARS-CoV2) and high Tanimoto score with respect to 
known HIV inhibitor e.g., already FDA approved drugs darunavir, lopinavir, ritonavir, indinavir, 
saquinavir, and ASC09. Our method could distinctively isolate these 17 ligands into 4  possible NCEs 
and could even identify the best compound with very high confidence. Upon fruitful synthesis and 
testing, these four NCEs is expected have much higher probability of success in clinic trials.   
 
The method described in this work is scalable for multiple target (protein from same family with 
similarities) – ligand binding that could result into much smaller subset of NCEs compared to docking 
or any other drug screening method. The method demonstrated here is envisaged to reduce the time of 
drug design and discovery significantly 
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Supplementary Material 
In the supplementary we have shown docking pose of all the ligands, RMSD values obtained from NPT 
MD simulation with respect to the docking pose, highlighted groups used calculation of center of mass 
collective variable for metadynamics simulation, time evaluation of RMSD for biased trajectories where 
RSMD of heavy atoms were considered as collective variables.      
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Table 1. Code-name, chemical structures of the ligands and QM Density Functional Theory (DFT) 
optimized structures  
 

Code Name 2D structure 3D DFT optimized structure 

PI-01 

 
 

PI-02 

 
 

PI-03 

 
 

PI-04 

 

 

PI-05 

 
 

PI-06 

 
 



PI-07 

 

 

PI-08 

 

 

PI-09 

 

 

PI-10 

 

 

PI-11 

 
 

PI-12 

 

 



PI-13 

 

 

PI-14 

 
 

PI-15 

  

PI-16 

  

PI-17 

 

 
 
  



 
Table 2 Interaction residues and functional groups the protein with the ligands.  

Ligand Code name Residue  Residue-ligand interacting 
groups  

PI-01 THR26 OH-C=O 

PI-02 THR24 
ASN142 
GLN189 

OH-C=O 
NH2-C=O 
NH2-C=O 

PI-03 HIS163 
HIS16 

NH2-C=0 
NH2-OH 

PI-04 GLY143 
SER144 
ASN142 
GLN189 

NH2-C=0 
NH2-C=0 
O-OH 
N-OH 

PI-05 ASN142 NH2-N (-SO2) 

PI-06 THR26 
ASN142 
GLY143 
CYS148 
GLY143 

NH2-O 
NH2-C=O; O-NH2 
NH2-N(-SO2) 
NH2-C=O 
NH2-O 

PI-07 HIS41 
ASN142 
GLU166 

NH2-C=O 
NH2-O 
O-NH 

PI-08 THR26 
ASN119 
ASN142 
GLY143 
LEU27 

NH2-O=C 
NH2-O=C 
NH2-O 
NH2-N 
O-NH (-NC=O) 

PI-09 THR26 
SER46 
HIS143 

NH2-O=C 
OH-O=C 
NH2-O 

PI-10 THR26 
SER46 
ASN142 
GLN189 
SER46 

NH2-O=C 
OH-O=C 
NH2-OH 
NH2-N 
NH2-OH 

PI-11 HIS41 
ASN142 

NH2-O=C 
NH2-OH 



GLN189 NH2-O=C; NH2-OH 

PI-12 HIS41 NH2-O=C 

PI-13 ASN142 
GLY143 
GLU166 
CYS148 

NH2-O=C 
NH2-O=C 
NH2-OH 
NH2-O=C 

PI-14 ASN142 
GLU166 
GLN189 

NH2-O=C 
NH2-O=C 
O-OH 

PI-15 GLY143 
GLU166 
CYS148 

NH2-O 
NH2-O 
NH2-O 

PI-16 ASN142 
GLU166 

NH2-N 
NH2-O=C 

PI-17 ASN142 
GLY143 
GLN189 
SER46 

NH2-O=C 
NH2-O=C 
NH2-N; NH2-O;  NH2-O=C 
O-NH 

 
  



 
 
Table 3 The docking score, free energies for dissociation, average RMSD values, probabilities (for 
RMSD < 0.2 nm) for all ligands.   

Ligand 
code 
name 

Docking 
score 

Free Energy 
(kJ/mol) 

Average RMSD 
(nm) as per Eq. 
2 

Probability of 
RMSD 
(RMSD < 0.2 nm) 

PI-01 -8.51 -6.49 (2.55)  0.507 0.361 

PI-02 -9.13 -7.6 (1.89) 0.450 0.254 

PI-03 -9.43 -5.7 (2.5) 0.313 0.472  

PI-04 -11.56 -8.1 (1.64) 0.222 0.594 

PI-05 -10.85 -7.26 (2.4) 0.250 0.443 

PI-06 -11.92 -22.7 (1.8) 0.152 0.842 

PI-07 -10.40 -6.05 (2.06) 0.350 0.418 

PI-08 -9.50 -11.27 (1.72) 0.184 0.722 

PI-09 -10.30 -5.37 (2.16)  0.345 0.453 

PI-10 -11.64 -5.2 (1.52) 0.389 0.317 

PI-11 -10.54 -14.8 (1.64) 0.177 0.719 

PI-12 -10.94 -10.89 (1.95) 0.237 0.522 

PI-13 -10.22 -10.5 (1.7)  0.153 0.666 

PI-14 -10.64 -14.86 (1.40) 0.160 0.642 

PI-15 -9.68 -6.39 (1.67)  0.276 0.384 

PI-16 -9.52 -10.6 (1.91) 0.170 0.604 

PI-17 -9.04 -4.8 (2.15) 0.309 0.156 

 
 



 
Figure 1  The best docking poses of lowest binding energy 4 ligands with protein (a) PI-04  (b) PI-06 
(c) PI-10 and (d) PI-12 are shown here. The active site of the protein (HIS41 and CYS148) is shown as 
red sticks. 
  



 
 
 

(a) 

 

(b) 

 

Figure 2: Average free energy with center of mass - center of mass distance (d) for dissociation of the 
ligands from the protein binding pocket. (a) Free energies for all the ligands. (b) Free energies for the 
top four ligands. For each ligand the errors in free energies are reported in Table 3. 
  



 
 
 

 
Figure 3: The zoom-in view for the superimposed structure of the PI-06 ligand docked pose and stable 
pose from the free energy minima. The Ligand in the docked pose is shown as red sticks and that of the 
free energy minimum structure is shown as blue sticks. 
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(b) 
 

Figure 4: (a) Average free energy with aligned RMSD for all ligands. (b) The number count 
distributions for the probability to find a system within 0.2 nm of RMSD.  
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(d) 

 
 
Figure 5: Time evolution of the RMSD for top four ligands, (a) PI-06, (b) PI-08, (c) PI-11 and (d) PI-
14. In each plot we show RMSD from all independent runs.  
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Figure 6  Average free energy of protein-ligand as a function of (a) average RMSD as per Eq. 2 and 
(b) probability of RMSD, here probability is calculated for the ligands which shows less than 0.2 nm 
RMSD. 
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Figure 7: The trajectory of the ligand dissociation from the protein binding pocket. Two different views 
(a) left, and (b) right, show the full dissociation of the ligand from the binding pocket, interaction of the 
ligand with the protein backbone in the vicinity of the binding pocket for the ligand PI-06 from an 
independent simulation. The colors of the ligand wire frames are from red (inside the binding pocket) 
to gray (in between) to blue (outside of the pocket).   
 


