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Abstract

The efficient computation of molecular integrals and their derivatives is a crucial

step in molecular property evaluation in modern quantum chemistry. As an integral

tensor decomposition technique, the density-fitting (DF) approach becomes a popular

tool to reduce the memory and disk requirements for the electron repulsion integrals. In

this study, an application programming interface (API) framework, denoted Molint

(MFW), for the computation of molecular integrals and their first derivatives, over

contracted Gaussian functions, for the density-fitted methods is reported. The MFW

is free software and it includes overlap, dipole, kinetic, potential, metric, and 3-index

integrals, and their first derivatives. Furthermore, the MFW provides a smooth ap-

proach to build the Fock matrix and evaluate analytic gradients for the density-fitted

methods. The MFW is a C++/Fortran hybrid code, which can take advantage of

shared-memory parallel programming techniques. Our results demonstrate that the

MFW is an efficient and user-friendly API for the computation of molecular integrals

and their first derivatives.
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1 Introduction

Computation of molecular integrals is a crucial step of any molecular property evaluation in

modern quantum chemistry.1–20 Especially, the computation of electron repulsion integrals

(ERIs) requires a special attention. To overcome memory and disk problems associated

with the conventional 4-index ERIs, tensor decomposition of ERIs has attracted significant

interest.21–38 The most popular ERI factorization technique is the density fitting (DF) ap-

proach.21–28,35–38 In the DF technique, the four-dimensional ERI tensor is replaced with the

three-dimensional tensors, expanding ERIs in terms of a predefined auxiliary basis set.

In addition to the energy, analytic gradients for electron correlation methods with the DF

approach have been reported for MP2 with conventional HF reference (DF-MP2),39–41 as well

as with the DF-HF reference,42 the second-order coupled cluster (CC2),43,44 local MP2 (DF-

LMP2),45 complete active space second-order perturbation theory (DF-CASPT2),46 orbital-

optimized MP2, MP2.5, and MP3 (DF-OMP2, DF-OMP2.5, DF-OMP3),47,48 local time-

dependent coupled cluster response theory (DF-TD-LCC2),49 the coupled-cluster singles and

doubles and CCD methods (DF-CCSD and DF-CCD),50 and recently for the coupled-cluster

singles and doubles with perturbative triples [DF-CCSD(T)] method.51

One may use the existent 4-index integrals code to generate 3-index DF integrals. How-

ever, a better approach to develop new integral codes for 3-index integrals. In a 2004 study,

Ahlrichs52 presented an efficient algorithm to compute 3-center integrals based on the Obara-

Saika (OS) scheme. In 2017 and 2018 studies, Samu and Kállay 53,54 implemented various

approaches, such as OS, McMurchie and Davidson(MD), and Rys quadrature, for compu-

tations of 3-index ERIs and their first derivatives. Efficient implementations of 3-index

ERIs are available in Libint library of Valeev,16,55,56 which is available in Psi4,57 in Mrcc

program,58 and in some commercial software.

In this research, an application programming interface (API) framework, denoted Molint

(MFW), for the computation of molecular integrals and their first derivatives, over contracted

Gaussian functions, for the density-fitted methods is reported. The MFW is an efficient and
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“user-friendly" API framework, which provides a straightforward way to access molecular

integrals and their derivatives. The MFW includes overlap, dipole, kinetic, potential, met-

ric, and 3-index integrals as well as their first derivatives. Furthermore, the MFW provides

a smooth approach to build the Fock matrix and compute the molecular gradients. The

MFW is a C++/Fortran hybrid code, which can take advantage of shared-memory par-

allel programming techniques. The features and efficiency of the MFW are demonstrated in

illustrative applications.

2 Spherical Gaussians

The general form of unnormalized primitive Gaussian type orbitals (GTOs) centered at RA

can be written as

Gijk(a, |r−RA|) =
(
x− Ax

)i(
y − Ay

)j(
z − Az

)k
e−a|r−RA|

2

, (1)

which may be further simplified to:

Gijk(r, a,A) = xiAy
j
Az

k
Ae
−ar2A . (2)

The full set of GTOs with the same angular momentum number l = i + j + k and the

same exponent a are said to constitute a shell. The number of GTOs in a shell with angular

momentum l is

N c
l =

(l + 1)(l + 2)

2
. (3)

A real valued spherical GTOs with quantum numbers l and m, with exponent a, centered

at A is given by,

Glm(r, a,A) = Slm(xA, yA, zA)e−ar
2
A , (4)
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where Slm(rA) is the real solid-harmonics,

Sl,m(r, θ, φ) = (−1)m
√

8π

2l + 1
rlRe[Y m

l (θ, φ)],m > 0, (5)

Sl,−m(r, θ, φ) = (−1)m
√

8π

2l + 1
rlIm[Y m

l (θ, φ)],m > 0. (6)

A shell of spherical GTOs contains all GTOs of the same a and l, but different |m| ≤ l. The

number of spherical GTOs in a shell with l and m is

N s
l = 2l + 1, (7)

The relationship between spherical GTOs and Cartesian GTOs can be written as1

Glm(r, a,A) = NS
lm

(l−|m|)/2∑
t=0

t∑
u=0

[|m|/2−vm]+vm∑
v=vm

C lm
tuvGi,j,k(r, a,A), (8)

where

i = 2t+ |m| − j, (9)

j = 2(u+ v), (10)

k = l − i− j, (11)

NS
lm =

1

2|m|l!

√
2(l + |m|)!(l − |m|)!

2δ0m
, (12)

C lm
tuv =

(
− 1
)t+v−vm 1

4t

(
l

t

)(
l − t
|m|+ t

)(
t

u

)(
|m|
2v

)
, (13)

5



vm = 0;m ≥ 0, (14)

vm = 1/2;m < 0. (15)

CGTOs can be written as

Gµlm(r, a,A) =
∑
p

dµpGlm(r, ap,A), (16)

where dµp are the contraction coefficients.

3 Cartesian Gaussians

The primitive GTOs can be written as

Gijk(r, a,A) = xiAy
j
Az

k
Ae
−ar2A . (17)

One of the important feature of the Cartesian GTOs is that they can be factorized as

follows

Gijk(r, a,A) = Gi(x, a, Ax)Gj(y, a, Ay)Gk(z, a, Az), (18)

where for example

Gi(x, a, Ax) = xiAe
−ax2A . (19)

The normalization constant for a Gaussian is:

Ni =
( 2

π

)1/4 2ia(2i+1)/4√
(2i− 1)!!

. (20)
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3.1 Normalization of Contracted Cartesian GTOs

The general form of unnormalized contracted Cartesian Gaussian type orbitals (CGTOs)

centered at the RA can be written as

χµ(rA) =

np∑
p

dpµGp(apµ, rA), (21)

where dpµ are the contraction coefficients and np is the number of PGOs, and:

Gp(apµ, rA) = xiAy
j
Az

k
Ae
−apµr2A . (22)

The contraction coefficients dpµ already include normalization constants so that the re-

sulting combination is properly normalized. Published contraction coefficients d̃pµ are linear

coefficients for normalized primitives, hence the normalization-including contraction coeffi-

cients dpµ have to be computed from them. Hence, a normalized CGTO can be written as

follows:

χµ(rA) = N

np∑
p

d̃pµG̃p, (23)

where d̃pµ are linear coefficients for normalized primitives G̃p. Hence,

χµ(rA) = N

np∑
p

d̃pµNpGp. (24)

Now let us define (apply primitive normalization):

dpµ = Npd̃pµ, (25)
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then,

χµ(rA) = N

np∑
p

dpµGp. (26)

Finally, we employ normalization scheme of the Libint package.16,55 In this scheme,

Cartesian Gaussian functions in a shell of angular momentum l have the same normalization

factor N , which is determined such that the Cartesian functions xl, yl, and zl are normalized

to unity.

π3/2

(
2l − 1

)
!!

2l

np,nq∑
p,q

dpµdqµ(
apµ + bqµ

)l+3/2
=

1

N2
, (27)

the final coefficients are:

d′pµ = Ndpµ. (28)

3.2 The Gaussian Product Rule

The famous Gaussian product rule can be written as:

e−ax
2
A e−bx

2
B = Kx

AB e−px
2
P , (29)

where

p = a+ b, (30)

µ =
ab

a+ b
, (31)

XAB = Ax −Bx, (32)
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Px =
aAx + bBx

p
, (33)

Kx
AB = e−µX

2
AB . (34)

3.3 Gaussian Overlap Distribution

Let us use the following short-hand notation

Ga(r) = Gikm(r, a,A), (35)

Gb(r) = Gjln(r, b,B). (36)

The Gaussian overlap distribution can be written as

Ωab(r) = Ga(r)Gb(r), (37)

which can be factorized to:

Ωab(r) = Ωx
ij(x, a, b, Ax, Bx)Ω

y
kl(y, a, b, Ay, By)Ω

z
mn(z, a, b, Az, Bz), (38)

where the x-component can be written as

Ωx
ij(x, a, b, Ax, Bx) = Kx

ABx
i
Ax

j
Be
−px2P . (39)

Gaussian Overlap Distribution has the following trivial properties

Ωx
i+1,j = xAΩx

ij, (40)

Ωx
i,j+1 = xBΩx

ij, (41)
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Ωx
i,j+1 − Ωx

i+1,j = XABΩx
ij. (42)

4 Hermite Gaussians

The Hermite Gaussian with exponent p centered on P is defined as follows

Λtuv(r, p,P) =
( ∂

∂Px

)t( ∂

∂Py

)u( ∂

∂Pz

)v
e−pr

2
P , (43)

where rP = r−P.

This functions are can be factorized as in the case of Cartesian GTOs

Λtuv(r, p,P) = Λt(x, p, Px)Λu(y, p, Py)Λv(x, p, Pz). (44)

The x-component for example

Λt(x, p, Px) =
( ∂

∂Px

)t
Λ0(x, p, Px), (45)

where

Λ0(x, p, Px) = e−px
2
P . (46)

Hermite functions have the following recursion relation:

xPΛt =
1

2p
Λt+1 + tΛt−1. (47)
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5 Evaluation of The Boys Function

Before continue to the evaluation of molecular integrals let us consider the Boys function,

which is central for the computation of potential and electron repulsion integrals.

Fn(x) =

∫ 1

0

t2ne−xt
2

dt, (48)

where Fn(x) is the n-th order Boys function. Asymptotic values of the Boys function are

Fn(0) =

∫ 1

0

t2n dt =
1

2n+ 1
, (49)

and at large x:

Fn(x) ≈ (2n− 1)!!

2n+1

√
π

x2n+1
. (50)

The Boys function satisfies the upward recursion:

Fn+1(x) =
(2n+ 1)Fn(x)− exp(−x)

2x
, (51)

and the downward recursion:

Fn−1(x) =
2xFn(x) + exp(−x)

2n− 1
. (52)

The downward recursion is computationally more stable for small x values.

Saunders59 suggest the following series expansion for the boys function:

Fn(x) = e−x
∞∑
k=0

(2x)k

(2n+ 1)(2n+ 3) . . . (2n+ 2k + 1)
, (53)
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which may be written as

Fn(x) = e−x
∞∑
k=0

(2x)k

gnk
, (54)

where

gnk =
k∏
i=0

(2n+ 2i+ 1). (55)

Saunders note that this series is unconditionally convergent. However, for large values of n,

convergence can be slow.

A faster convergent modified Maclaurin series expansion is suggested by Gill, Head-

Gordon, and People9 as follows:

Fn(x) =
1

2
e−x

1

n+ 1/2

(
1 +

x

n+ 3/2

(
1 +

x2

n+ 5/2
(1 + . . . )

))
, (56)

The GHP method converges faster than Saunders’ method.

For the small arguments, we can expand the Boys function as a Taylor series as follows,

Fn(x) =
∞∑
k=0

Fn+k(x0)(−∆x)k

k!
, (57)

where ∆x is generally chosen as 0.1 and x0 = x − ∆x. The first six terms of the Taylor

series is a good approximation. Hence, we calculate Fn(x0), . . . , Fn+kmax(x0) from the series

expansion in Eq.(53)–Eq.(56) and we use these values to calculate Fn(x). Further, we only

need to compute the highest function Fnmax(x) required and all other lower order functions

can be calculated from the downward recursion relation

Fn(x) =
2xFn+1(x) + exp(−x)

2n+ 1
. (58)
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Final Strategy: Let us assume that we use a taylor expansion of order k+ 1 for the small

argument.

1. Pretabulate Fn(x) for 0 < x ≤ 30 and n = nmax + k with the ∆x = 0.1

2. Obtain all grid values for n = 0− nmax + k − 1 from the downward recursion.

3. To compute Fn(x) for an arbitrary x, find the closes point on the grid xg, then use a

k + 1-term Taylor expansion Eq.(57), where ∆x = x− xg should be used.

4. For x > 30 we may use the large argument.

5. For x = 30 we may use the Eq.(49).

6 McMurchie-Davidson (MD) Scheme

6.1 Overlap Distributions from Hermite Gaussians

Since the overlap distribution Ωij is a polynomial of degree i+ j in xp, we can expand it as

follows

Ωij(x) =

i+j∑
t=0

Eij
t Λt(xP ), (59)

where expansion coefficients are constant, they are independent of the electronic coordinates.

The expansion coefficients satisfy the following relation

Eij
t = 0, t < 0 or t > i+ j. (60)

Further, the Hermite expansion coefficients obey the following recursion relations,

Ei+1,j
t = XPAE

ij
t +

1

2p

(
iEi−1,j

t + jEi,j−1
t + Eij

t−1
)
, (61)
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Ei,j+1
t = XPBE

ij
t +

1

2p

(
iEi−1,j

t + jEi,j−1
t + Eij

t−1
)
, (62)

with

E00
0 = Kx

AB, (63)

E00
t = 0, t > 0. (64)

6.2 Overlap Integrals

Here we consider overlap integrals over primitives. With the following short-hand notation:

Ga(r) = Gikm(r, a,A), (65)

Gb(r) = Gjln(r, b,B). (66)

Overlap integrals are:

Sab = 〈Ga|Gb〉, (67)

which can be factorized as follows

Sab = SijSklSmn, (68)

The final formula for the total integral becomes

Sab = Eij
0 E

kl
0 E

mn
0

(π
p

)3/2
. (69)

14



6.3 Dipole Moment Integrals

Dipole moment integral can be written as

µab = 〈Ga|rC |Gb〉, (70)

where C is the origin of the Cartesian dipole-moment, and it is x-component can be written

as

µij = 〈Gi|xC |Gj〉, (71)

and the total integral can be written as:

µab = µijSklSmn + SijµklSmn + SijSklµmn, (72)

where

Sij = Eij
0

√
π

p
, (73)

and

µij =
(
Ei+1,j

0 +XACE
ij
0

)√π

p
. (74)

6.4 Kinetic Energy Integrals

The kinetic energy integral can be written as

Tab = −1

2
〈Ga|∇2|Gb〉, (75)
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it is x-component can be written as

Tij = −1

2
〈Gi|

∂2

∂x2
|Gj〉, (76)

and the total integral becomes:

Tab = TijSklSmn + SijTklSmn + SijSklTmn, (77)

the x-components can be written as follows:

Tij = −2b2Si,j+2 + b(2j + 1)Sij −
1

2
j(j − 1)Si,j−2. (78)

6.5 Hermite Coulomb Integrals

Hermite Coulomb integrals are required for the evaluation of the potential energy and elec-

tron repulsion integrals.

Rtuv(p,RPC) =
( ∂

∂Px

)t( ∂

∂Py

)u( ∂

∂Pz

)v
F0(pR

2
PC), (79)

which can be obtained from the following auxiliary function

Rn
tuv(p,RPC) = (−2p)n

( ∂

∂Px

)t( ∂

∂Py

)u( ∂

∂Pz

)v
Fn(pR2

PC). (80)

Hermite coulomb integrals satisfy the following recursion relations :

Rn
t+1,u,v = tRn+1

t−1,u,v +XPCR
n+1
tuv , (81)

Rn
t,u+1,v = uRn+1

t,u−1,v + YPCR
n+1
tuv , (82)
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Rn
t,u,v+1 = vRn+1

t,u,v−1 + ZPCR
n+1
tuv , (83)

Starting from the highest

Rnmax
000 (p,RPC) = (−2p)nmaxFnmax(pR

2
PC), (84)

and using the recursion relations of Eqs.(81)–(83) we can generate all Hermite Coulomb

integrals. The maximum value of n is

nmax = t+ u+ v. (85)

6.6 Potential Energy Integrals

The potential energy integral can be written as

Vab = −
∑
C

〈Ga|
ZC
rC
|Gb〉, (86)

which can be written explicitly as follows:

Vab = −2π

p

∑
C

∑
tuv

ZCE
ab
tuvRtuv(p,RPC). (87)

Now we may write,

Vab =
2π

p

∑
tuv

Eab
tuv

[
−
∑
C

ZCRtuv(p,RPC)
]
, (88)

let us define

R′tuv = −
∑
C

ZCRtuv(p,RPC), (89)

17



hence, our final formula becomes:

Vab =
2π

p

∑
tuv

Eab
tuvR

′
tuv. (90)

Therefore, the contributions from all nuclei can be computed before the transformation.

6.7 Hermite Expansion for GTOs

Before proceed to the metric and 3-index ERIs, let us consider the Hermite expansion for a

GTO. For the x–component it can be written as:

Gi =
i∑
t=0

Ei
tΛt(xA), (91)

Starting from the following Using derivative relations of GTO we obtain the following

recursion relations:

Ei+1
t = (t+ 1)Ei

t+1 +
1

2a
Ei
t−1, (92)

and

Ei+1
t =

1

2a

(
iEi−1

t + Ei
t−1
)
. (93)

6.8 Metric Integrals

The metric integral is defined as follows,

JPQ =

∫ ∫
ϕP (r1)

1

r12
ϕQ(r2) dr1dr2, (94)
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which may be written as (in terms of primitives):

(a|b) =

∫ ∫
Ga(r1)Gb(r2)

r12
dr1dr2, (95)

Using Hermite expansion and the Laplace transform of r12 we obtain the following final

expression:

(a|b) =
2π5/2

ab
√
a+ b

∑
tuv

Ea
tuv

∑
t′u′v′

(−1)t
′+u′+v′Eb

t′u′v′Rt+t′,u+u′,v+v′(α,RAB), (96)

where

α =
ab

a+ b
. (97)

6.8.1 The MD4 Algorithm for Metric Integrals

Let us define

F b
t′u′v′ = (−1)t

′+u′+v′Eb
t′u′v′ , (98)

and

Rt+t′,u+u′,v+v′(α,RAB) =
2π5/2

ab
√
a+ b

Rt+t′,u+u′,v+v′(α,RAB). (99)

Then, we may write

(a|b) =
∑
tuv

Ea
tuv

∑
t′u′v′

F b
t′u′v′Rt+t′,u+u′,v+v′(α,RAB). (100)

For efficiency we evaluate above equation in two steps as follows

(a|b) =
∑
tuv

Ea
tuvg

b
tuv, (101)
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where

gbtuv =
∑
t′u′v′

F b
t′u′v′Rt+t′,u+u′,v+v′(α,RAB). (102)

Further efficiency can be achieved by decomposing ERI and gbtuv into Cartesian compo-

nents. Let us start with gbtuv

gbtuv = gi
′k′m′

tuv , (103)

and

gi
′k′m′

tuv =
∑
t′

F i′

t′

∑
u′

F k′

u′

∑
v′

Fm′

v′ Rt+t′,u+u′,v+v′(α,RAB). (104)

Then, we can write

(a|b) = gi
′k′m′

ikm , (105)

gi
′k′m′

ikm =
∑
t

Ei
t

∑
u

Ek
u

∑
v

Em
v g

i′k′m′

tuv . (106)

Following Helgaker et al, we call this algorithm as the MD4 algorithm.

6.9 3-Index Integrals

3-index TEI can be written as

(µν|Q) =

∫ ∫
χµ(r1)χν(r1)

1

r12
ϕQ(r2) dr1dr2, (107)
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3-index TEI may be written as (in terms of primitives):

(ab|C) =

∫ ∫
Ωab(r1)GC(r2)

r12
dr1dr2, (108)

where GC is a primitive function of auxiliary basis set.

Applying the same machinery of the MD method we obtain:

(ab|C) =
2π5/2

pq
√
p+ q

∑
tuv

Eab
tuv

∑
t′u′v′

(−1)t
′+u′+v′EC

t′u′v′Rt+t′,u+u′,v+v′(α,RPC), (109)

where c is the exponent of GC and

Px1 =
aAx1 + bBx1

p
, (110)

p = a+ b, (111)

α =
pc

p+ c
. (112)

6.9.1 The MD4 Algorithm for 3-Index TEI

Let us define

FC
t′u′v′ = (−1)t

′+u′+v′EC
t′u′v′ , (113)

and

Rt+t′,u+u′,v+v′(α,RPC) =
2π5/2

pc
√
p+ c

Rt+t′,u+u′,v+v′(α,RPC), (114)
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Then, we may write

(ab|C) =
∑
tuv

Eab
tuv

∑
t′u′v′

FC
t′u′v′Rt+t′,u+u′,v+v′(α,RPC). (115)

For efficiency we evaluate above equation in two steps as follows

(ab|C) =
∑
tuv

Eab
tuvg

C
tuv, (116)

where

gCtuv =
∑
t′u′v′

FQ
t′u′v′Rt+t′,u+u′,v+v′(α,RPC). (117)

Further efficiency can be achieved by decomposing ERI and gCtuv into Cartesian compo-

nents. Let us start with gCtuv

gCtuv = gi
′k′m′

tuv , (118)

and

gi
′k′m′

tuv =
∑
t′

F i′

t′

∑
u′

F k′

u′

∑
v′

Fm′

v′ Rt+t′,u+u′,v+v′(α,RPC). (119)

Then, we can write

(ab|C) = gi
′k′m′

ijklmn, (120)

gi
′k′m′

ijklmn =
∑
t

Eij
t

∑
u

Ekl
u

∑
v

Emn
v gi

′k′m′

tuv . (121)
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7 Obra-Saika (OS) Scheme

7.1 3-Index Integrals

Let us remember

(ab|C) =
∑
tuv

Eab
tuv

∑
t′u′v′

(−1)t
′+u′+v′EC

t′u′v′Rt+t′,u+u′,v+v′(α,RPC), (122)

where p = a+ b and c is the exponent of GC and

α =
pc

p+ c
, (123)

and

Rt+t′,u+u′,v+v′(α,RPC) =
2π5/2

pc
√
p+ c

Rt+t′,u+u′,v+v′(α,RPC). (124)

Now, let us introduce an auxiliary integral as follows:

ΘN
ixjxkx;iyjyky ;izjzkz = (−2α)−N

∑
tuv

Eixjx
t Eiyjy

u Eizjz
v

×
∑
t′u′v′

(−1)t
′+u′+v′Ekx

t′ E
ky
u′ E

kz
v′ R

N
t+t′,u+u′,v+v′(α,RPC),

(125)

note that

Θ0
ixjxkx;iyjykyizjzkz = gixjxkx;iyjyky ;izjzkz . (126)

Now let us define

FN(α,RPC) =
2π5/2

pc
√
p+ c

FN(αR2
PC), (127)
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and introduce an auxiliary function as follows:

ΘN
ijk = (−2α)−N

∑
tuv

∑
t′u′v′

(−1)t
′+u′+v′Eij

t E
k
t′Euvu′v′RN

t+t′,u+u′,v+v′(α,RPC), (128)

where

Euvu′v′ = Eiyjy
u Eizjz

v E
ky
u′ E

kz
v′ , (129)

and N ≤ l1 + l2 + l3 .

7.1.1 The OS2 Algorithm for 3-Index TEI

In this section let us use an abstract notation for the auxiliary integral as follows:

ΘN
abC = (−2α)−N

∑
tuv

Eab
tuv

∑
t′u′v′

(−1)t
′+u′+v′EC

t′u′v′RN
t+t′,u+u′,v+v′(α,RPC), (130)

note that

Θ0
abC = (ab|C). (131)

In this notation angular momentum components of a Ga function are ia, ja, ka for x, y, z,

directions, respectively.

We may start with the following auxiliary integral:

ΘN
000 = Kx

ABK
y
ABK

z
ABFN(αR2

PC), (132)

where N ≤ l1 + l2 + l3

Then, we use Ahlrich’s OS2 algorithm.52 In the OS2 algorithm we start with Eq.(132)

and apply vertical recurrence relation (VRR) to increment the angular momentum of the
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first function on the bra side (given here for the x direction) as:

ΘN
a+1x,0,0 = XPAΘN

a00 −
α

p
XPCΘN+1

a00 +
ia
2p

(
ΘN
a−1x,0,0 −

α

p
ΘN+1
a−1x,0,0

)
, (133)

where ia ≤ l1 + l2.

When all ΘN
a+b,0,0 functions are computed, then we proceed to the ket side as the following

VRR:

ΘN
a,0,C+1x =

α

c
XPCΘN+1

a,0,C +
iaα

2pc
ΘN+1
a−1x,0,C +

iC
2c

(
ΘN
a,0,C−1x −

α

c
ΘN+1
a,0,C−1x

)
, (134)

if auxiliary function is a solid harmonic then,

ΘN
a,0,C+1x =

α

c
XPCΘN+1

a,0,C +
ia

2(p+ c)
ΘN+1
a−1x,0,C , (135)

where iC ≤ l3.

Now we have all ΘN
a+b,0,C functions. Hence, we can obtain all (a + b, 0|C) type integrals

from Θ0
a+b,0,C . The next step is horizontal recursion relation (HRR) in the contracted basis:8

(a, b+ 1x|C) = (a+ 1x, b|C) + RAB(ab|C). (136)

7.1.2 The OS1 Algorithm for 3-Index TEI

In the OS1 algorithm we start with Eq.(132) with N ≤ l1 + l2 + l3 and apply VRR to

increment the angular momentum of the first function on the bra side (given here for the x

direction) as:

ΘN
a+1x,0,0 = XPAΘN

a00 −
α

p
XPCΘN+1

a00 +
ia
2p

(
ΘN
a−1x,0,0 −

α

p
ΘN+1
a−1x,0,0

)
, (137)

where ia ≤ l1 + l2 + l3.

When all ΘN
a+b+C,0,0 functions are computed, then we proceed to the ket side as the
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following the electron transfer recursion relation,10 ETRR:

ΘN
a,0,C+1x = −b

c
XABΘN

a0C +
ia
2c

ΘN
a−1x,0,C +

iC
2c

ΘN
a,0,C−1x −

p

c
ΘN
a+1x,0,C , (138)

if auxiliary function is a solid harmonic then,

ΘN
a,0,C+1x = −b

c
XABΘN

a0C +
ia
2c

ΘN
a−1x,0,C −

p

c
ΘN
a+1x,0,C . (139)

Further, since ETRR has the same order in both side of equations, it is enough to use (N = 0)

in the ETRR step:

(a, 0|C + 1x) = −b
c
XAB(a, 0|C) +

ia
2c

(a− 1x, 0|C) − p

c
(a+ 1x, 0|C), (140)

It is also possible to setup a reverse ETRR as follows:

(a+ 1x, 0|C) = − b
p
XAB(a, 0|C) +

ia
2p

(a− 1x, 0|C) − c

p
(a, 0|C + 1x). (141)

Now we have all (a+ b, 0|C) type integrals. The next step is the HRR as in the case of OS2.

8 First Derivatives of Integrals

The firs derivative relation for a GTO can be written as

∂Gi

∂Ax
= 2aGi+1 − iGi−1, (142)

To proceed higher derivative let us introduce the notation

∂qGi

∂Aqx
= Gq

i , (143)
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Then we have

Gq+1
i = 2aGq

i+1 − iG
q
i−1. (144)

Further, it is also interesting to consider the first derivatives of the overlap distribution.

Differentiating the overlap distribution we get the following equations:

∂Ωx
ij

∂Ax
= 2aΩx

i+1,j − iΩx
i−1,j, (145)

∂Ωx
ij

∂Bx

= 2bΩx
i,j+1 − jΩx

i,j−1. (146)

Further, we may expand the derivative relations using the Hermite functions as follows:60

∂Ωx
ij

∂Ax
=

i+j+1∑
t=0

(
2aEi+1,j

t − iEi−1,j
t

)
Λt, (147)

∂Ωx
ij

∂Bx

=

i+j+1∑
t=0

(
2bEi,j+1

t − jEi,j−1
t

)
Λt. (148)

9 The MD Scheme for the First Derivatives

9.1 Overlap Derivatives

At first note that we have a translational invarince relation (TIR):

∂Sab
∂Ax

+
∂Sab
∂Bx

= 0, (149)

where A and B are the the centers of the first and the second GTO, respectively.

Derivatives of overlap with respect to the x coordinate of the nucleus N can be written
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as:

∂Sab
∂Nx

=
∂Sab
∂Ax

δAN +
∂Sab
∂Bx

δBN , (150)

using TIR we may write:

∂Sab
∂Nx

=
∂Sab
∂Ax

(
δAN − δBN

)
. (151)

Hence, we just need to differentiate with respect to one of centers only.

Using derivative properties of overlap distribution we obtain the following final formulas:

∂Sab
∂Ax

=
(
2aEi+1,j

0 − iEi−1,j
0

)
Ekl

0 E
mn
0

(π
p

)3/2
, (152)

∂Sab
∂Ay

=
(
2aEk+1,l

0 − kEk−1,l
0

)
Eij

0 E
mn
0

(π
p

)3/2
, (153)

∂Sab
∂Az

=
(
2aEm+1,n

0 −mEm−1,n
0

)
Eij

0 E
kl
0

(π
p

)3/2
. (154)

9.2 Dipole Derivatives

Let us express x-component of µxab more explicitly:

µxab = 〈Ga|xC |Gb〉, (155)

where C is the origin of the Cartesian dipole-moment, typically zero.

For the dipole derivatives, the translational invariance relation is:

∂µab
∂Ax

+
∂µab
∂Bx

+
∂µab
∂Cx

= 0, (156)
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The last term is equal:

∂µab
∂Cx

= −Sab, (157)

hence,

∂µab
∂Ax

+
∂µab
∂Bx

− Sab = 0, (158)

If the dipole center is zero, then:

∂µab
∂Ax

+
∂µab
∂Bx

= 0. (159)

Derivatives of overlap with respect to the x coordinate of the nucleus N can be written

as:

∂µab
∂Nx

=
∂µab
∂Ax

δAN +
∂µab
∂Bx

δBN +
∂µab
∂Cx

δCN , (160)

If the dipole origin is zero, then:

∂µab
∂Nx

=
∂µab
∂Ax

(
δAN − δBN

)
. (161)

Using derivative relation of primitive Gaussians, we obtain derivatives for the x-component

of the dipole integrals as follows:

∂µxab
∂Ax

=
(
2aµi+1,j − iµi−1,j

)
SklSmn, (162)

∂µxab
∂Ay

= µij
(
2aSk+1,l − kSk−1,l

)
Smn, (163)
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∂µxab
∂Az

= µijSkl
(
2aSm+1,n −mSm−1,n

)
. (164)

Similarly, the derivatives for the y-component of the dipole integrals can be written as

follows:

∂µyab
∂Ax

=
(
2aSi+1,j − iSi−1,j

)
µklSmn, (165)

∂µyab
∂Ay

=
(
2aµk+1,l − kµk−1,l

)
SijSmn, (166)

∂µyab
∂Az

= Sijµkl
(
2aSm+1,n −mSm−1,n

)
. (167)

Finally, the derivatives for the z-component of the dipole integrals are:

∂µzab
∂Ax

=
(
2aSi+1,j − iSi−1,j

)
Sklµmn, (168)

∂µzab
∂Ay

=
(
2aSk+1,l − kSk−1,l

)
Sijµmn, (169)

∂µzab
∂Az

= SijSkl
(
2aµm+1,n −mµm−1,n

)
. (170)

9.3 Kinetic Energy Derivatives

Using the TIR, derivatives of kinetic energy integrals with respect to the x coordinate of the

nucleus N can be written as:

∂Tab
∂Nx

=
∂Tab
∂Ax

(
δAN − δBN

)
, (171)
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Using derivative properties of overlap distribution we obtain the following final formula for

the derivative with respect to Ax:

∂Tab
∂Ax

=
(
2aTi+1,j − iTi−1,j

)
SklSmn +

(
2aSi+1,j − iSi−1,j

)(
TklSmn + SklTmn

)
. (172)

Explicit equations for overlap (Sij) and kinetic integrals (Tij) were given in Eq.(73) and

Eq.(78). One may write the derivatives with respect to Ay and Az in a similar way.

9.4 Potential Energy Derivatives

Before starting to derivatives, let us define a more general potential function:

V qrs
ab,C = 〈Ga|

( ∂

∂Cx

)q( ∂

∂Cy

)r( ∂

∂Cz

)s 1

rC
|Gb〉, (173)

It becomes:

V qrs
ab,C = (−1)q+r+s

2π

p

∑
tuv

Eab
tuvRt+q,u+r,v+s(p,RPC), (174)

Hence, derivatives with respect to the nucleus N can be written as:

∂Vab
∂Nx

=
∂Vab
∂Ax

δAN +
∂Vab
∂Bx

δBN −
[∑

C

ZCV
100
ab,C δCN

]
, (175)

∂Vab
∂Ny

=
∂Vab
∂Ay

δAN +
∂Vab
∂By

δBN −
[∑

C

ZCV
010
ab,C δCN

]
, (176)

∂Vab
∂Nz

=
∂Vab
∂Az

δAN +
∂Vab
∂Bz

δBN −
[∑

C

ZCV
001
ab,C δCN

]
, (177)
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where

V 100
ab,C = − 2π

p

∑
tuv

Eab
tuvRt+1,u,v(p,RPC), (178)

V 010
ab,C = − 2π

p

∑
tuv

Eab
tuvRt,u+1,v(p,RPC), (179)

V 001
ab,C = − 2π

p

∑
tuv

Eab
tuvRt,u,v+1(p,RPC). (180)

The TIR for potential energy derivatives can be written as follows:61

∂Vab,C
∂Ax

+
∂Vab,C
∂Bx

+ V 100
ab,C = 0, (181)

∂Vab,C
∂Ay

+
∂Vab,C
∂By

+ V 010
ab,C = 0, (182)

∂Vab,C
∂Az

+
∂Vab,C
∂Bz

+ V 001
ab,C = 0. (183)

Therefore, the derivative with respect to Nx can be written as follows:

∂Vab
∂Nx

=
∂Vab
∂Ax

δAN +
∂Vab
∂Bx

δBN + ZN

(∂Vab,N
∂Ax

+
∂Vab,N
∂Bx

)
. (184)

Hence, the explicit equations become:

∂Vab
∂Ax

=
2π

p

∑
tuv

(
2aEi+1,j

t − iEi−1,j
t

)
Ekl
u E

mn
v R′tuv, (185)
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and

∂Vab
∂Bx

=
2π

p

∑
tuv

(
2bEi,j+1

t − jEi,j−1
t

)
Ekl
u E

mn
v R′tuv. (186)

9.5 Metric Derivatives

At first note that we have the following TIR for metric integrals:

(∂Ga

∂Ax
| 1

r12
|Gb

)
+
(
Ga|

1

r12
|∂Gb

∂Bx

)
= 0, (187)

Hence, if both orbitals have the same center, then the first derivative is zero. The derivative

with respect to the center N may be written as follows:

∂(Ga|Gb)

∂Nx

=
(∂Ga

∂Ax
|Gb

) (
δAN − δBN

)
. (188)

Using derivative relation of primitive Gaussians, we obtain derivatives along the x-axis

as follows:

∂(a|b)
∂Ax

=
∑
tuv

(
2aEi+1

t − iEi−1
t

)
Ek
uE

m
v

∑
t′u′v′

F b
t′u′v′Rt+t′,u+u′,v+v′(α,RAB), (189)

∂(a|b)
∂Ay

=
∑
tuv

Ei
t

(
2aEk+1

u − kEk−1
u

)
Em
v

∑
t′u′v′

F b
t′u′v′Rt+t′,u+u′,v+v′(α,RAB), (190)

∂(a|b)
∂Az

=
∑
tuv

Ei
tE

k
u

(
2aEm+1

v −mEm−1
v

) ∑
t′u′v′

F b
t′u′v′Rt+t′,u+u′,v+v′(α,RAB). (191)
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9.6 3-Index Derivatives

At first note that we have the following TIR for 3-index integrals:

∂(ab|C)

∂Ax
+

∂(ab|C)

∂Bx

+
∂(ab|C)

∂Cx
= 0, (192)

Hence, if all orbitals have the same center, then the first derivative is zero. The derivative

with respect to the center N may be written as follows:

∂(ab|C)

∂Nx

=
∂(ab|C)

∂Ax

(
δAN − δCN

)
+

∂(ab|C)

∂Bx

(
δBN − δCN

)
. (193)

Therefore, we need only derivatives with respect to the centers A and B.

Using derivative relation of primitive Gaussians, we obtain derivatives along the x-axis

as follows:

∂(ab|C)

∂Ax
=

∑
tuv

(
2aEi+1,j

t − iEi−1,j
t

)
Ekl
u E

mn
v

×
∑
t′u′v′

FC
t′u′v′Rt+t′,u+u′,v+v′(α,RPC), (194)

∂(ab|C)

∂Bx

=
∑
tuv

(
2bEi,j+1

t − jEi,j−1
t

)
Ekl
u E

mn
v

×
∑
t′u′v′

FC
t′u′v′Rt+t′,u+u′,v+v′(α,RPC). (195)

Similar expressions can be readily written for the y and z components of the centers.
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10 3-Index Integral Derivatives in the OS Scheme

Using the derivaive properties of GTOs we can write:

∂(ab|C)

∂Aδ
= 2a(a+ 1δ, b|C) − ia(a− 1δ, b|C), (196)

and

∂(ab|C)

∂Bδ

= 2b(a, b+ 1δ, |C) − ib(a, b− 1δ|C), (197)

where δ = x, y, z. Hence, following prescription of Head-Gordon and Pople,8 we can generate

the all derivative equations from Eq.(196) and (197).

11 Density-Fitting

The AO basis integrals can be cast into the following form with the help of DF approach:

(µν|λσ)DF =
Naux∑
Q

bQµνb
Q
λσ, (198)

The DF tensors bQµν are defined as follows:

bQµν =
Naux∑
P

(µν|P )[J−1/2]PQ, (199)

where

(µν|P ) =

∫ ∫
χµ(r1)χν(r1)

1

r12
ϕP (r2) dr1dr2, (200)
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and

JPQ =

∫ ∫
ϕP (r1)

1

r12
ϕQ(r2) dr1dr2, (201)

where χµ(r) and ϕP (r) are the primary and auxiliary basis set members, respectively.

12 Integral Direct Fock

In the AO basis, the Fock matrix can be written as follows:

fµν = hµν +
∑
λ,σ

Dλσ

[
(µν|λσ) − 1

2
(µλ|νσ)

]
, (202)

where D is the density matrix. For example, for the closed-shell case:

Dµν = 2
occ∑
i

CµiCνi, (203)

where Cµi are the MO coefficients.

Two-electron part of the Fock matrix consists of so called J- and K-terms. The J-term

can be written as:

Jµν =
∑
λ,σ

Dλσ(µν|λσ). (204)

Applying the DF technique we obtain the following final formula for Jµν :

Jµν =
Naux∑
P

(µν|P )D′′′P , (205)

where,

D′′′P =
Naux∑
R

[J−1/2]PRD
′′
R, (206)
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D′′R =
Naux∑
Q

[J−1/2]RQD
′
Q, (207)

D′Q =
∑
λ,σ

Dλσ(λσ|Q). (208)

Hence, we can compute the 3-index integrals on the fly and contract them with the density

matrix to obtain Jµν .

The K-term can be written as:

Kµν =
∑
λ,σ

Dλσ(µλ|νσ), (209)

We can compute the K-term in a semi-direct algorithm with three steps, as follows:

• Step-1:

(Q|νi) =
∑
σ

Cσi(Q|νσ) cost = O ∗N2 ∗Naux, (210)

• Step-2:

CP
νi =

Naux∑
Q

[J−1/2]PQ(Q|νi) cost = O ∗N ∗N2
aux, (211)

• Step-3:

Kµν =
Naux∑
P

occ∑
i

CP
µiC

P
νi cost = O ∗N2 ∗Naux. (212)

The scaling of this algorithm is O(N4) and memory usage is 2 ∗O ∗N ∗Naux.
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13 Analytic Gradients

For a general density-fitted wave function based method, the analytic gradient equation in

the AO basis can be written as follows42

dE

dx
=

∑
µν

γµνh
x
µν −

∑
µν

FµνS
x
µν +

Naux∑
Q

∑
µν

ΓQµν(Q|µν)x −
Naux∑
P,Q

ΓPQJ
x
PQ. (213)

where γµν is the one-particle density matrix (OPDM), Fµν is the generalized Fock matrix

(GFM), ΓPQ and ΓQµν are the 2- and 3-index two-particle density matrices (TPDM), hxµν , Sxµν ,

JxPQ, and (Q|µν)x are the core Hamiltonian, overlap, metric, and 3-index integral derivatives,

respectively. All explicit equations for the PDMs and GFM were presented in our previous

papers.42,48,50,51

14 Molint Framework

The Molint framework consists of Molint, Tensor, Molecule, Options, Master,

and Basis libraries (Figure 1). Before illustrating the usage of the Molint framework, let

us introduce the core libraries.

14.1 Tensor Library

The Tensor library, which is written in C++, consists of six classes. These are Tensor1d,

Tensor2d, and Tensor3d for one-, two-, and three-dimensional arrays of double, respec-

tively, and Tensor1i, Tensor2i, and Tensor3i for one-, two-, and three-dimensional arrays

of integer, respectively. The Tensor library includes numerous functions to handle, ma-

nipulate, and operate large arrays of pointers. As an example, we illustrate some prominent

features of the Tensor2d class.

The Tensor2d class is developed to perform various tensor operations in a convenient

way. It handles 2, 3, and 4 dimensional tensors, and store them like a matrix. Further,
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the class take advantages of shared pointers. The memory allocation for a 2D tensor can be

performed with the Tensor2d class as follows:

Tensor2d(std::string name, int d1, int d2);

where, name: The lable of tensor, d1 and d2 are the first and second dimensions of the tensor.

An example of memory allocation is:

SharedTensor2d CmoA =

SharedTensor2d(new Tensor2d("Alpha MO Coefficients", nao, nmo));

where, CmoA is the MO coefficient matrix, nao and nmo are the number of the AOs and MOs,

respectively.

Similarly, 3- and 4-dimensional arrays can be allocated as follows:

K = SharedTensor2d(new Tensor2d("DFBCC B (Q|IA)", nQ, naoccA, navirA));

T = SharedTensor2d(new Tensor2d("T2 <Ij|Ab>", naoccA, naoccB, navirA, navirB));

Some important functions and example usages are:

• Print: void print(type output);

Example: T->print(output); where output can be type of std::string, const

char*, and FILE*.

• Set value: void set(int i, int j, double value);

Example: T->set(3, 5, 12.0);

• Set Tensor: void set(SharedTensor2d &A);

Example: T->set(A);

• Add value: void add(int i, int j, double value);

Example: T->add(3, 5, 12.0);
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• Add Tensor: void add(SharedTensor2d &A);

Example: T->add(A);

• Scale: void scale(double alpha); where alpha is the scaling value.

Example: T->scale(2.0);

• AXPY: The axpy function is used to add/subtract a SharedTensor via Blas routine.

void axpy(const SharedTensor2d &A, double alpha);

Example: T->axpy(2.0);

• Transpose: void trans(const SharedTensor2d &A);

Example: T->trans(A);

• Diagonalize: void diagonalize(const SharedTensor2d &eigvectors,

const SharedTensor1d &eigvalues, double cutoff, bool ascending);

Example: FockA->diagonalize(UeigA, eigA, 1.0E-10, true);

• Linear equation solver for Ax = b:

void cdgesv(const SharedTensor1d &b, int errcode);

Example: A->cdgesv(b, errcode);

• Matrix multiplication of C = αAB + βC type:

void gemm(bool transa, bool transb, const SharedTensor2d &A,

const SharedTensor2d &B, double alpha, double beta);

Example: C->gemm(false, false, A, B, 1.0, 0.0);

• General contraction of Cm,n = α
∑

k Am,kBk,n + βCm,n type:

void contract(bool transa, bool transb, int m, int n, int k,

const SharedTensor2d &A, const SharedTensor2d &B, double alpha, double beta);

Example: Let us try to evaluate the contraction of xabij =
∑

e t
ae
ij Fbe, where i, j active

occupied and a, b, e are active virtual indices:
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X->contract(false, true, naoccA*navirA*naoccA, navirA, navirA, T, F, 1.0,

0.0);

• Transformation of C = LTAL type:

void transform(const SharedTensor2d &A, const SharedTensor2d &L);

Example: C->transform(A, L);

• Dot product of value =
∑

mnk...Amnk...Bmnk... type:

double vector_dot(const SharedTensor2d &rhs);

Example: double value = A->vector_dot(B);

• Orthogonalization via modified Gram-Schmid algorithm:

void mgs();

Example: A->mgs();

14.2 Options Library

The Options library (liboptions) read the input file, default is input.inp, which includes

geometry and the MFW options. The MFW accepts the following user options:

• nocom: Do not shift the geometry to the center-of-mass. Type: Boolean, Default:

false.

• puream: Do use pure angular momentum functions? Type: Boolean, Default: true.

• print_level: This options is a flag to control printing extra information. Type:

integer, Default: 0.

• geom_units: Unit of the geometry. Type: string, Possible values: ang (default),

bohr.

• integral_cutoff: Integral cutoff value. Type: double, Default: 1.0E-10.
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• boys_cutoff: The cutoff value used in the evaluation of the Boys function. Type:

double, Default: 1.0E-15.

• boys_zero: The computational zero used in the evaluation of the Boys function. Type:

double, Default: 1.0E-6.

• delta_x: The step size in the Boys grid. Type: double, Default: 0.1.

• x_max: The maximum value of x for the Boys grid. Type: int, Default: 30.

• boys_maxiter: The maximum number of iterations in computing values of the Boys

grid. Type: int, Default: 1000.

• taylor_order: The order of Taylor expansion in computing the Boys function. Type:

int, Default: 6.

• boys_method: Method to compute the Boys grid. Type: string, Possible values:

ghp (default), saunders.

$set_ints

nocom true

integral_cutoff 1.0e-10

boys_cutoff 1.0e-15

delta_x 0.1

x_max 30

taylor_order 6

print_level 0

boys_method ghp

$end_ints
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14.3 Molecule Library

The Molecule library (libmolecule) read geometry, charge, and multiplicity information,

and pass all necessary information to Libmolint, which includes molecular integrals. An

example input is given as follows:

$set_molecule

0 1

O 0.000000000000 0.000000000000 −0.065775570538

H 0.000000000000 −0.759061990794 0.521953018295

H 0.000000000000 0.759061990794 0.521953018295

$end_molecule

The current version of the Molecule library accepts Cartesian coordinates only. The

libmolecule is directly called by the libmolint, hence; there is no need to call it when

interfacing the MFW

14.4 Master Library

The Master library (libmaster) is built for the purpose of the communication within the

MFW. In the MFW, users directly call libmolint only, and the constructor function creates

the libmaster object, let us denote it master. Then, master gets all necessary options

using the liboptions and store them. Similarly, the master get all necessary molecular

info, such as coordinates, inter atomic distances, nuclear repulsion energy and gradients,

and store them. Users can access the master object through the libmolint, and can get all

information stored in it. Let us denote the object of the libmolint as ints. Then, users

can access the master as follows:

SharedMaster master = ints->master();

The object master is reset in the destructor function of the libmolint.
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14.5 Basis Library

The Basis library (libbasis) is a built-in library, which reads in all required basis set(s)

information for a given molecule. The libbasis is directly called by in the libmolint,

hence; there is no need to call it when interfacing the MFW. Further, libbasis includes

common basis functions in a share directory in the Gaussian format. One can readily

add a new basis set as a .gbs file. The address of the share directory is defined as an

environmental variable MFWDATADIR. Hence, users should export it, for example:

export MFWDATADIR=/Users/ugur/lib/molintfw/share

14.6 Molint Library

The usage and features of the core libraries were explained in the previous sections. In here,

we focus on the Molint library (libmolint), which is capable of computing overlap, kinetic,

potential, dipole, metric, and 3-index integrals, as well as their first derivatives (Figure 2).

Now, let us demonstrate how to use the MFW. The constructor function for the libmolint

is described as follows:

Integrals(std::string file_name, std::string basis, std::string aux)

where file_name is the name of input file, basis and aux are the names of the primary and

auxiliary basis sets, for which there should be basis.gbs and aux.gbs files, respectively. At

first we need to construct the libmolint object as follows:

SharedIntegrals ints =

SharedIntegrals(new Integrals("input.inp", "cc-pvdz", "cc-pvdz-ri"));

Basic information such as the number of atoms, atomic orbitals, auxiliary basis functions,

and shells can be obtained from the object as follows:

natom = ints->natom();
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nao = ints->nao();

naux = ints->naux();

nshell = ints->nshell();

14.6.1 Common Integrals

The overlap integrals can be obtained form the object as follows:

Sao->copy(ints->compute_overlap_ints());

Of course, the Sao array should be formed previously, such as follows:

auto Sao = SharedTensor2d(new Tensor2d("AO-basis Overlap Ints", nao, nao));

Similarly, the kinetic and potential integrals can be obtained as follows:

Tao->copy(ints->compute_kinetic_ints());

Vao->copy(ints->compute_potential_ints());

where Tao and Vao are two-dimensional tensors (Tensor2d).

The dipole integrals can be obtained as follows:

Mdm = ints->compute_dipole_ints();

where Mdm is a three-dimensional tensor (Tensor3d), which can be formed as follows:

auto Mdm = SharedTensor3d(new Tensor3d("Mu (x,y,z|mu,nu)", 3, nao, nao));

The metric integrals can be computed as follows:

ints->compute_metric_ints();

Jmetric->copy(ints->metric());
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where Jmetric is a two-dimensional tensor of size naux × naux. One may obtain [J−1/2]PQ

directly instead of metric integrals as follows:

Jmhalf->copy(ints->metric_mhalf());

The DF factors can be computed in two steps. In the first step one can compute three-

index integrals as follows:

ints->compute_three_index_ints();

and in the second step the DF factors can be computed, according to Eq.(199), as follows:

ints->compute_df_factors();

Then, the DF factors can be obtained as follows:

Bdf->copy(ints->df_factors());

where Bdf is a two-dimensional tensor with row and column dimensions of naux and nao*nao,

respectively. Similarly, the three-index integrals can be obtained as follows:

Qmn->copy(ints->three_index_tei());

However, in order to proceed in this way, one should compute metric integrals before the DF

factors. Further, one may combine the computation of metric and DF factors, as follows:

ints->compute_df_integrals();

14.6.2 Density-Fitted Fock Matrix

So far, we have assume that there is enough memory to keep 3-index integrals in the core

memory. However, for larger computations one may prefer an integral direct approach, where

J- and K-terms of the Fock matrix can be computed. In our implementation we have a full

direct approach for the J-term and a semi-direct approach for the K-term. The memory

requirement of the semi-direct K (SDK) approach is 2 ∗O ∗N ∗Naux, which is significantly

low (by N
2O

) compare with N2 ∗Naux for the incore case. In our JK algorithm we build the

both terms simultaneously. For example, for the restricted HF (RHF) case:
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ints->compute_dffock_JK(noccA, FaoA, CmoA, DaoA, Jmhalf);

where noccA is the number of α spin occupied orbitals, FaoA is the AO basis Fock matrix,

CmoA is the MO coefficients matrix, DaoA is the density matrix, and Jmhalf is J−1/2.

For the unrestricted HF (UHF) case we need two call libmolint twice:

ints->compute_dffock_JK(noccA, FaoA, CmoA, Dtot, Jmhalf);

ints->compute_dffock_JK(noccB, FaoB, CmoB, Dtot, Jmhalf);

where Dtot is the total density matrix.

14.6.3 Integral Derivatives

The core-Hamiltonian term of analytic gradients in Eq.(213)
(∑

µν γµνh
x
µν

)
can be computed

as follows:

EgradH->copy(ints->compute_kinetic_grad(G1ao));

EgradH->add(ints->compute_potential_grad(G1ao));

where G1ao is the AO basis OPDM (γµν) and EgradH is a two-dimensional tensor, which can

be allocated as follows:

SharedTensor2d EgradH =

SharedTensor2d(new Tensor2d("-Core Hamiltonian Gradient:", natom, 3));

where natom is the total number of atoms.

The overlap gradient
(
−
∑

µν FµνS
x
µν

)
can be computed as follows:

EgradS->copy(ints->compute_overlap_grad(GFao));

EgradS->scale(-1.0);

where GFao is the AO basis GFM (Fµν) and EgradS is a two-dimensional tensor, which can

be allocated as follows:
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SharedTensor2d EgradS =

SharedTensor2d(new Tensor2d("-Overlap Gradient:", natom, 3));

The two-electron part of analytic gradients should be computed in two steps since we

employ different auxiliary basis sets for the reference and correlation energies. The details of

this separation procedure were given in our previous studies.42,47 The reference and separable

parts (RefSep) of 2- and 3-index PDMs can be merged before the contraction. The RefSep

contribution for the metric gradients
(
−
∑JKFIT

P,Q Γ
(RefSep)
PQ JxPQ

)
can be computed as follows:

EgradM->copy(ints->compute_metric_grad(Gaux_ref));

EgradM->scale(-1.0);

where Gaux_ref is the RefSep part of the 2-index TPDM (Γ(RefSep)
PQ ) and EgradM is a

two-dimensional tensor.

The RefSep contribution for the 3-index gradient
(∑JKFIT

Q

∑
µν ΓQµν(Q|µν)x

)
can be

computed as follows:

Egrad3I->copy(ints->compute_3index_grad(gQao_ref));

where gQao_ref is the RefSep part of the 3-index TPDM (ΓQ(RefSep)
µν ) and Egrad3I is a

two-dimensional tensor.

The correlation parts of the metric and 3-index gradients can be computed similarly. One

needs to call the same function but with the correlation parts of 2- and 3-index TPDMs.

Finally all gradient components are merged in to the final gradient.

15 Verification of the Molint Framework

The MFW code has been verified with respect to the Psi457 package for the computation

of energies, dipole moments, and analytic gradients for various density-fitted methods, such

as the Hartree-Fock (DF-HF), second-order perturbation theory (DF-MP2), coupled-cluster
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singles and doubles (DF-CCSD), and the CCSD with perturbative triples [DF-CCSD(T)]. All

comparisons were performed with my Dfocc module,36,37,42,47,48,50,51,62,63 which is available

in the Psi457 package, as well as it has an external version.

16 Illustrative Applications

Results from the DF-MP2 method were obtained for a set of alkanes for the assessment

of computational cost for single-point energy and analytic gradient computations. For

the alkanes set, Dunning’s correlation-consistent polarized valence triple-, quadruple-, and

quintuple-ζ basis sets (cc-pVTZ, cc-pVQZ, and cc-pV5Z) were employed with the frozen core

approximation.64,65 For the cc-pVXZ (X=T, Q, 5) primary basis sets, cc-pVXZ-JKFIT26 and

cc-pVXZ-RI66 auxiliary basis sets were employed for reference and correlation energies, re-

spectively. The DF-MP2 computations were performed with the external version of the

Dfocc module.

We consider a set of alkanes (CnH2n+2, n = 1− 10) to assess the efficiency of the MFW.

The total computational (wall) time for single-point frozen-core energy and analytic gradient

computations using the DF-MP2 method are presented in Tables 1–6. These computations

were performed on an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz computer (∼ 120

GB memory). In the MFW, 3-index integrals are parallelized using OpenMP API in the

Fortran side, while all other integrals use only 1 core. The computations of overlap,

kinetic, dipole, and potential integrals are already very fast; hence, there is no need to

consider parallelism for them. However, the computational time for metric integrals also

includes the cost of diagonalization and J−1/2 formation. Hence, our metric code is partially

parallelized, through basic linear algebra subprogram routines (BLAS and LAPACK).

Tables 1–3 reports computational (wall) time for single-point frozen-core DF-MP2/cc-

pVXZ (X=T,Q,5) energy computations with 1 and 8 cores. For the largest system considered,

C7H16 with cc-pV5Z/cc-pV5Z-RI, there are 1517 primary and 2807 auxiliary basis functions.
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For this system, the computation of metric integrals and the formation of J−1/2 is performed

just in 15 and 8 seconds, with 1 and 8 cores, respectively. Hence, the computations of metric

and one-electron integrals are already very fast, and we need to focus on the cost of 3-

index integrals, which are the time determining step in molecular integrals. The number

of primary and auxiliary basis functions (Nbf/Naux) in the largest systems considered are

608/1470 (cc-pVTZ/cc-pVTZ-RI), 1210/2530 (cc-pVQZ/cc-pVQZ-RI), and 1517/2807 (cc-

pV5Z/cc-pV5Z-RI). For these systems wall time for serial (1 core) and parallel (8 cores)

computations are 92.84 and 27.13 (cc-pVTZ), 630.15 and 166.49 (cc-pVQZ), and 1523.50

and 322.42 (cc-pV5Z) seconds. For the largest system considered, 1517 primary and 2807

auxiliary basis functions in the cc-pV5Z/cc-pV5Z-RI pair, the 3-index integrals are computed

just in 5.4 minutes, with 8 cores, on our moderately fast server. Furthermore, for this system,

our parallel code is 4.7-fold faster than the serial version. These results demonstrate that

the MFW is satisfactorily efficient for the computation of 3-index integrals.

The MFW is capable of computing analytic gradients providing the AO basis PDMs

and GFM. Tables 4–6 reports computational (wall) time for single-point frozen-core DF-

MP2/cc-pVXZ (X=T,Q,5) analytic gradient computations with 2 cores. Our first derivative

code has not been parallelized yet. However, in the case of 2 or more cores, we compute

derivatives for two different centers simultaneously. For the largest system considered, C5H12

with cc-pV5Z/cc-pV5Z-RI, there are 1115 primary and 2057 auxiliary basis functions. For

this system, the computation of the metric term of the analytic gradient is performed just

in 8 seconds. Hence, the computations of the metric and one-electron terms are already

very fast, and we need to focus on the cost of the 3-index term, which is the time deter-

mining step in analytic gradient evaluation. The number of primary and auxiliary basis

functions (Nbf/Naux) in the C5H12 molecule are 318/765 (cc-pVTZ/cc-pVTZ-RI), 635/1320

(cc-pVQZ/cc-pVQZ-RI), and 1115/2057 (cc-pV5Z/cc-pV5Z-RI). For these systems wall time,

with 2 cores, are 50.18 (cc-pVTZ), 358.90 (cc-pVQZ), and 2285.34 (cc-pV5Z) seconds. These

results demonstrate that the MFW is reasonably efficient for the evaluation of the analytic
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gradients for the density-fitted methods.

17 Future Directions

The first version of MFW, Molint 1.0, includes the essential integrals and their first deriva-

tives, as well as integral direct/semi-direct Fock and analytic gradients. In future releases,

we intend to include more challenging features such as the second derivatives, R12 and/or

F12 integrals, and gauge including atomic orbital (GIAO) integrals. Furthermore, a parallel

API framework for the graphical process unit (GPU) is in our “to do" list. However, all these

developments require a significant effort; hence, we believe that the MFW will cover these

features in the next years.

18 Conclusions

In this research, an application programming interface (API) framework, denoted Molint

(MFW), for the computation of molecular integrals and their first derivatives, over con-

tracted Gaussian functions, for the density-fitted methods has been reported. The MFW

includes overlap, dipole, kinetic, potential, metric, and 3-index integrals as well as their

first derivatives. Furthermore, the MFW provides a smooth approach to build the Fock

matrix and evaluate analytic gradients. The MFW is a C++/Fortran hybrid code, which

can take advantage of shared-memory parallel programming techniques. Moreover, the

MFW is free software, which can be obtained through an e-mail request from the devel-

oper (http://www.bozkayalab.hacettepe.edu.tr/en/menu/molint-47). The illustrative

applications have demonstrated that the MFW is an efficient and user-friendly API for the

computation of molecular integrals and their first derivatives. Consequently, considering

both the computational efficiency and an easy-to-use structure of the MFW, we conclude

that the MFW emerges as a very useful tool for computational quantum chemistry.
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Table 4: The number of primary and auxiliary basis functions (Nbf and Naux) in the cc-
pVTZ and cc-pVTZ-RI basis sets, wall time (in seconds) for the metric and 3-index terms
in DF-MP2 analytic gradient computations. All computations were performed on a single
node (2 cores) Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz computer (memory ∼ 120
GB).

Molecule Nbf Naux Metric 3-Index
CH4 86 201 0.05 0.89
C2H6 144 342 0.17 4.55
C3H8 202 483 0.31 12.73
C4H9 260 624 0.49 27.68
C5H10 318 765 0.73 50.18
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Table 5: The number of primary and auxiliary basis functions (Nbf and Naux) in the cc-
pVQZ and cc-pVQZ-RI basis sets, wall time (in seconds) for the metric and 3-index terms
in DF-MP2 analytic gradient computations. All computations were performed on a single
node (2 cores) Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz computer (memory ∼ 120
GB).

Molecule Nbf Naux Metric 3-Index
CH4 175 352 0.19 8.59
C2H6 290 594 0.52 32.78
C3H8 405 836 1.03 92.24
C4H9 520 1078 1.71 196.61
C5H10 635 1320 2.61 358.90
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Table 6: The number of primary and auxiliary basis functions (Nbf and Naux) in the cc-
pV5Z and cc-pV5Z-RI basis sets, wall time (in seconds) for the metric and 3-index terms in
DF-MP2 analytic gradient computations. All computations were performed on a single node
(2 cores) Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz computer (memory ∼ 120 GB).

Molecule Nbf Naux Metric 3-Index
CH4 311 557 0.54 45.85
C2H6 512 932 1.57 220.37
C3H8 713 1307 3.21 607.48
C4H9 914 1682 5.31 1257.25
C5H10 1115 2057 8.03 2285.34
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Figure 1: Components of the Molint framework.
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Figure 2: Capabilities of the Molint framework.
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