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ABSTRACT  

Given the diverse mechanistic possibilities for the overall 6e-/6H+ transformation of ammonia to dinitro-

gen, identification of M(NHx) intermediates involved in N–N bond formation is a central mechanistic 

challenge. In analogy to water oxidation mechanisms, which widely invoke metal oxo intermediates, 

metal imide and nitride intermediates have commonly been proposed for ammonia oxidation, and stoi-

chiometric demonstration of N–N bond formation from these metal-ligand multiply bonded species is 

well-precedented.  In contrast, while the homocoupling of M–NH2 species to form hydrazine has been 

hypothesized as the key N–N bond forming step in certain molecular ammonia oxidation systems, well-

defined examples of this transformation from M–NH2 complexes are essentially without precedent. This 

work reports the first example of net ammonia oxidation mediated by a molecular Ni species, a trans-

formation carried out via formal NiII/NiIII oxidation states. The available data are consistent with a NiIII–

NH2 intermediate featuring substantial spin at N undergoing N–N bond formation to generate a 

NiII2(N2H4) complex.  Additional and structurally unusual Nix(NyHz) species – including a Ni2(trans-

N2H2) complex – are characterized and studied as intermediates in the Ni-mediated ammonia oxidation 

cycle described herein. 

 

INTRODUCTION 

Ammonia (NH3) offers attractive opportunities for energy storage and use, for example as a hy-

drogen fuel carrier or as a combustible, energy-dense fuel.1 For such applications, catalysts that mediate 

the 6e-/6H+ conversion of ammonia to N2 are key and have been the subject of many studies.2 Well-

defined molecular model systems are amenable to detailed mechanistic interrogation, and their study in 

this context is expanding rapidly. Stoichiometric ammonia oxidation (AO) to N2 has been demonstrated 

for transition metal complexes of Mo,3 Mn,4 Os,5 and Ru.6,7 More recently, AO catalysis has been report-

ed using Ru8 and Fe9 complexes under chemical and electrochemical conditions. 
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Several of these molecular catalyst systems (or closely-related derivatives) can also mediate re-

lated 4e-/4H+ water oxidation catalysis (WOC) to liberate O2,10 raising the question as to whether am-

monia and water oxidation proceed through conceptually related pathways. For WOC, the intermediacy 

of metal oxo species are often implicated, and O–O bond formation is posited to occur via bimolecular 

oxo coupling or nucleophilic attack of a metal oxo intermediate by H2O (Fig. 1).11,12 

 

 

Figure 1. (top) Proposed pathways for O–O bond formation in water oxidation catalysis (charges not 

specified) (middle) Proposed pathways for N–N bond formation in ammonia oxidation catalysis (charg-

es not specified) (bottom) Proposed N–N coupling pathway discussed in this work from a Ni–NH2 spe-

cies 

In analogy to WOC, intermediates featuring metal-to-nitrogen multiple bonds (specifically, metal 

nitride and imide intermediates) have been proposed for several systems that mediate stoichiometric or 

catalytic ammonia oxidation.3,4abd,5abd,6ab,8ac Furthermore, bimolecular nitride (M≡N)4ab,5b,13 and imide 

(M=NR)14 coupling, and the nucleophilic attack of amines on terminal imides5d,8a,15 and nitrides,16 have 

been implicated in relevant N–N bond forming reactions.  

In contrast, well-defined examples of N–N bond formation through bimolecular coupling of par-

ent metal-amide intermediates (M–NH2)  are lacking, despite such coupling having been recently hy-

pothesized in catalytic ammonia oxidation mediated by (tetramesitylporphyrin)Ru(NH3)2.8d  The concep-

tually related reductive elimination of an N−N single bond from M−NR217,18 and M−N=R19 species have 

also been demonstrated, although such examples are likewise uncommon.  

Pertinent to M–NH2 coupling, Collman and coworkers reported that treatment of a cofacial 

{(porphyrin)Ru(NH3)}2 complex with either tBuOOH or an oxidant with base afforded a mixture of 

Ru2(N2H4), Ru2(N2H2), and Ru2(N2) species as the N–N coupled products. The authors hypothesized hy-
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drazine formation to occur via coupling of two unobserved RuIII–NH2 fragments.5d  Relatedly, Sellmann 

and coworkers detected trace CpMn(CO)2(N2H4) from bulk electrochemical oxidation experiments with 

CpMn(CO)2NH3,3c again suggesting a possible role for an unobserved Mn–NH2 intermediate.5d 

Ammonia oxidation pathways that access N–N bond formation at the amide state may potentially 

traverse a narrower catalyst redox range compared to those involving higher-valent imide or nitride in-

termediates. In turn, such a pathway may provide a viable strategy for late transition metal complexes to 

mediate the multielectron AO process, given that metal-ligand multiple bonded moieties are generally 

less accessible in transition metals beyond Group 8 compared to earlier metals.20 

As part of our interest in exploring mid-to-late first row metals for AO catalysis,9 we report here 

on studies of a nickel system that mediates stepwise NH3 oxidation. A reactive NiIII–NH2 species is pro-

posed as a key intermediate en route to hydrazine formation via bimolecular reductive elimination to 

form dinickel NiII2(N2H4) complex; the latter species can facilitate further NxHy oxidation to ultimately 

yield ammonia-derived dinitrogen. 

 

RESULTS AND DISCUSSION 

Our group recently reported the synthesis of the tetradentate bis(phosphino)(thiolato)silyl ligand 

(HSiP2SiPr)21 and the nickel-bound species, [(SiP2S)Ni]2(N2) (1).22,23 Treatment of 1 with a THF solution 

of ammonia provides (SiP2S)NiII(NH3) (2). Deprotonation of the coordinated NH3 ligand with nBuLi in 

THF affords [(SiP2S)NiII(NH2)]Li (3), which can also be prepared by treatment of 1 with LiNH2 in THF 

(Scheme 1, Fig. 2A). 1H NMR data in C6D6 of 3 demonstrate the coordination of three THF molecules 

to the lithium cation,24 and recrystallization in benzene allows structural characterization of the solvent-

free derivative as a dimer, [(SiP2S)NiIINH2]2Li2 (Fig. 2B). Nickel complexes featuring a terminal NH2 

ligand are relatively uncommon, and to our knowledge, reported examples are limited to four-

coordinate, pincer-ligated NiII species.25 
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Scheme 1. Synthesis of compounds 2-5. Ar*O = 2,4,6-tri-tert-butylphenoxyl radical 

The cyclic voltammogram of 3 with 0.4 M [NBu4][PF6] in THF reveals an oxidation event at -

0.72 V vs. Cp2Fe/Cp2Fe+, corresponding to its formal NiII/NiIII couple. The reaction of 3 with one equiv-

alent of [Cp2Fe][BArF4] (BArF4 = B(3,5-(CF3)2C6H3)4) at -78 ºC in 1,2-dimethoxyethane (DME) regen-

erates its precursor ammonia adduct 2 in ca. 60% yield.26 Relatedly, our group had previously observed 

that the oxidation of an FeII–NH2 complex led to the corresponding FeII–NH3 species, possibly due to 

hydrogen atom abstraction from solvent by a transient FeIII–NH2 intermediate.27 Most interesting is the 

observation of an N–N coupled hydrazine product, [(SiP2S)NiII]2(N2H4) (4, ca. 40% yield) in the reac-

tion mixture. Of note, neither H2 nor free NH3 are detected as products in this oxidation reaction. Com-

plex 4 can be independently generated via treatment of the N2-adduct 1 with hydrazine. Its solid-state 

structure reveals an N–N bond length of 1.488(4) Å, slightly elongated compared to free hydrazine 

(1.449 Å, Fig. 2C).28 Oxidation of the 15N-labeled and 2H-labeled derivatives of 3, 

[(SiP2S)NiII(15NH2)]Li and [(SiP2S)NiII(ND2)]Li, respectively, affords the corresponding 

[(SiP2S)NiII]2(15N2H4) and [(SiP2S)NiII]2(N2D4) complexes as the N–N coupled products, confirming 

that the coordinated hydrazine fragment is exclusively amide-derived (Fig. 3).29  
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Figure 2. Crystal structures of compounds (A) 2, (B) 3, (C) 4, and (D) 6. Solvent molecules, disordered 

components, and C-H hydrogens omitted for clarity. Ellipsoids shown at 50% probability. 

 

 

 

 



 

 

6 

 

 

Figure 3. Partial 1H NMR spectra showing the resonance at 4.93 ppm (corresponding to the 4 N-H pro-

tons) of (A) compound 4 generated by treatment of 1 with N2H4 and (B-E) reaction mixtures generated 

by oxidation of isotopologues of 3 in DME (C6D6, 400 MHz, 298 K) 

The observation of a substantial amount of hydrazine via the oxidation of the nickel(II) amide 3 

suggests a direct role for a NiIII(NH2) species in the N–N coupling step. Considering that N–N coupling 

is triggered by the addition of oxidant, one mechanistic possibility is that N–N bond formation occurs by 

the reaction of two molecules of (SiP2S)NiIII(NH2) (3ox). Alternatively, a reaction between 3ox and 3 to 

form a monoanion, {[(SiP2S)Ni]2(N2H4)}-, followed its one-electron oxidation, leads to the same prod-

uct. We disfavor the latter scenario as we observe that treatment of 3 with 0.5 equivalents of 

[Cp2Fe][BArF4] in DME at -78 ºC fails to generate an EPR-active species (as would be expected for 

{[(SiP2S)Ni]2(N2H4)}-). Furthermore, the one-electron reduced congener of 4 is a mixed-valent NiI/NiII 

species with the NiI center bearing 19 e-, and thus likely an unstable, high-energy species. This argument 

is consistent with the electrochemistry data on 4 collected in 0.4 M [NBu4][PF6] in THF at 25 ºC, which 

reveals an irreversible reduction event with an onset at ca. -3 V vs. Fc/Fc+.   

We thus favor a mechanism for N–N coupling where two NiIII–NH2 fragments directly generate 

the hydrazine adduct 4; the competing generation of 2 following the oxidation of 3 is presumed to arise 

from hydrogen-atom abstraction of DME solvent by NiIII–NH2. Consistent with this mechanistic pro-

posal, carrying out the oxidation reaction of 3-2H in DME with twenty-fold dilution results in near quan-

titative formation of the amine product, (SiP2S)NiII(ND2H), and 1H NMR spectroscopy confirms the 

presence of the N–H proton. Only trace amounts of the N–N coupled hydrazine adduct are generated 

under these conditions. 
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It is useful to compare this mechanistic picture with a previous study from our lab, where we 

demonstrated that the same SiP2S ligand could support a structurally related NiIII–H species that under-

goes release of H2.22 This step was posited to occur via a transition state featuring direct H–H coupling 

between two NiIII–H fragments, in analogy to the proposed N–N coupling pathway proposed here (Fig. 

4).  

 

Figure 4. Comparison of proposed H–H and N–N bond formation by (SiP2S)NiIIIX species (X = H, 

NH2) 

Attempts to spectroscopically observe 3ox in situ by oxidation of 3 with [Cp2Fe][BArF4] were un-

successful.30,31 However, we find that small quantities of an S = ½ NiIII-NH2 can be generated by hydro-

gen atom abstraction from (SiP2S)NiII(NH3) 2 with 2,4,6-tri-tert-butylphenoxyl radical in 2-MeTHF, as 

observed by 77 K CW EPR spectroscopy (Fig. 5A).32 Based on variable temperature UV-vis data, the 

hydrogen atom abstraction of 2 by 2,4,6-tri-tert-butylphenoxyl radical in 2-MeTHF is more favorable at 

lower temperatures; new features at 670 nm and 870 nm grow in upon cooling the solution from -78 ºC 

to -130 ºC.33 This transformation is reversible upon warming the solution, which results in the regenera-

tion of the starting 2 and 2,4,6-tri-tert-butylphenoxyl radical, demonstrating that this process is in equi-

librium. Given the significantly increased stability of the observed Ni(III) amide compared to in situ-

generated 3ox, we propose that treatment of 2,4,6-tri-tert-butylphenoxyl radical with the amine complex 

2 results in a Ni(III) amide stabilized by hydrogen bonding to 2,4,6-tri-tert-butylphenol ((SiP2S)NiIII–

NH2···H–OAr, 3ox’, Eq. 1). Such a scenario rationalizes the observation that 3ox’ formation is favorable 

at lower temperatures, due to the entropic penalties associated with formation of the hydrogen-bond sta-

bilized amide species.  
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Due to this observed equilibrium, although EPR samples of 3ox’ were prepared with a sub-

stoichiometric amount of organic radical compared to 2, unreacted phenoxy radical was invariably ob-

served in the EPR spectrum, in addition to a rhombic signal attributed to 3ox’ (g = [2.223, 2.084, 2.027], 

Table 1).34 Preparation of the analogous 15N- and 2H-labeled species (3ox’-15N and 3ox’-2H) from 

(SiP2S)NiII(15NH3) and (SiP2S)NiII(ND3), respectively, yielded near identical CW EPR spectra to that of 

the unlabeled sample, 3ox’ (Figure 5A). Nonetheless, consistent with its assignment as a NiIII-NH2 spe-

cies, pulse EPR data on 3ox’, 3ox’-15N, 3ox’-2H are able to definitively resolve hyperfine couplings to one 

isotopically sensitive nitrogen and two isotopically sensitive hydrogen nuclei.  

 

Figure 5. (A) X-band CW EPR spectra of 3ox’, 3ox’-15N, 3ox’-2H in 2-MeTHF. Acquisition parameters: 

MW frequency = 9.34 GHz; temperature = 77 K; MW power =  6.5 mW; modulation amplitude = 2 G; 
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conversion time = 82 ms. Asterisks denote the isotropic EPR signals arising from unreacted 2,4,6-tri-

tert-butylphenoxyl radical. (B) Field-dependent Q-band Davies ENDOR 1H minus 2H difference spectra 

of 3ox’ and 3ox’-2H. Simulation parameters: g = [2.223, 2.084, 2.027]; A(1Hα) = [10.3, -5.0, -4.3] MHz, 

A(1Hβ) = [7.0, -4.2, -4.0] MHz. 1H hyperfine tensors rotated 1Hα (α,β,γ)° = (24, 15, 0)° and 1Hβ (α,β,γ)° 

= (17, 10, 0)° relative to g-tensor frame. Acquisition parameters: MW frequency = 34.039 GHz; MW π 

pulse length = 80 ns; interpulse delay τ = 240 ns; πRF pulse length = 15 µs; TRF delay = 2 µs; shot repeti-

tion time (srt) = 6 ms; temperature = 12 K. 

 

 
Figure 6. A) X-band 14N HYSCORE spectrum of 3ox’ in 2-MeTHF measured at 337.5 mT (g = 2.066). 

B) Overlay of 14N simulation contours (red) with experimental difference contours (gray). Experimental 

conditions: microwave frequency = 9.760 GHz; temperature = 12 K; τ = 140 ns, t1 = t2 = 100 ns; Δt1 = 

Δt2 = 16 ns; shot repetition time (srt) = 1 ms.  Simulation parameters: g = [2.223, 2.084, 2.027]; A(14N) 

= ±[-2.57, -0.86, -1.35] MHz; e2Qq/h = 1.7 MHz; η = 1.0, 14N quadrupole tensor rotated (α,β,γ)° = (-10, 

60, 0)° relative to g-tensor frame.  

 

The hyperfine couplings to two distinct classes of hydrogen nuclei were detected through Q-band 
1H-2H Davies ENDOR, with A(1Hα) = ±[10.3, -5.0, -4.3] MHz and A(1Hβ) = ±[7.0, -4.2, -4.0] MHz, 

(Fig. 5B, see SI for additional pulse EPR data and details). Additionally, hyperfine coupling to two dis-

tinct phosphorus nuclei are observed and simulated as A(31Pα) = ±[285, 270, 110] MHz, A(31Pβ) = 
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±[120, 125, 375] MHz. The hyperfine coupling to nitrogen was determined as A(14N) = ±[-2.57, -0.86, -

1.35] MHz through a combination of X- and Q-band hyperfine sublevel correlation spectroscopy 

(HYSCORE) of 3ox’ and 3ox’-15N (Figure 6, see SI for additional spectra). In addition to the magnetic 

hyperfine interaction, the 14N nuclear sublevels are further split by the electric interaction of the I = 1 
14N nuclear quadrupole with the inhomogeneous electric field induced by electron density in p-orbitals 

at the nucleus.35,36 This provides a point-specific measure of the magnitude of the electric field gradient 

(EFG, parametrized by e2qQ/h) and its symmetry, with the asymmetry parameter η ranging from η = 0 

for pure axial symmetry to η = 1 for full rhombic symmetry. For the 14N nucleus in 3ox’, e2qQ/h = 1.7 

and η = 1, indicating a fully rhombic EFG. An EFG with η > 0.9 is generally only observed in cases 

where a lone pair is present at tri-substituted nitrogen in a roughly orthogonal orientation to other bonds, 

such as in hydrazine and imidazole.37,38,39 This is incompatible with an axially symmetric terminal amine 

(-NH3) ligand, which typically exhibit η values near zero, and only range as high as η ≈ 0.4 when one of 

the amine protons participates in a strong hydrogen bond which breaks this axial symmetry.40,41,42 Hence, 

the measured EFG is consistent with the H-bonded adduct of NiIII-NH2, 3ox’, depicted in Eq. 1. 

Using the experimental hyperfine values for 3ox’ and the corresponding isotopologues, spin den-

sity on the amide N is estimated at |ρN2s| ≈ 0.001 e- in the 2s orbital and a sum of |ρN2p| < 0.01 e- within 

the three 2p orbitals.43 Additionally, spin density at the amide protons of |ρHα| ≈ 0.0007 e- and |ρHβ| ≈ 

0.0008 e- are estimated on the two amide-based hydrogen nuclei, respectively.44 Based on these estimat-

ed spin density values,  species 3ox’ is best described as a Ni-centered metalloradical, rather than a Ni-

bound aminyl radical (Fig. 7). For an S = ½, d7 electronic configuration in an idealized trigonal bipyram-

idal geometry, the metal-centered spin density is anticipated to reside predominantly in the xy-plane (de-

fining the z-axis coincident with the C3-axis).45 Thus, we suggest that 3ox’ is best described by a closed-

shell axial Ni–N̈H2 group with an electron hole in the equatorial plane at nickel, with spin leakage onto 

the equatorial thiolate and phosphine donors.46 Additional support for this electronic structure descrip-

tion is provided by the extremely high electric field gradient asymmetry (η = 1) at 14N, as determined 

from the nuclear quadrupole coupling measured via HYSCORE discussed above. 
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Table 1. EPR simulation parameters for 3ox’ and 6ox, all hyperfine values are in units of MHz.  

 

 

Figure 7. Resonance structures of 3ox and 3ox’, formulated as either a Ni metalloradical or an aminyl rad-

ical.  

 

Scheme 2. Synthesis of compounds 6, 6ox, and 7. Ar*O = 2,4,6-tri-tert-butylphenoxyl radical. 
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Figure 8. (A) X-band CW EPR spectra of 6ox, 6ox-15N, 6ox-2H in 2-MeTHF, generated by hydrogen atom 

abstraction from the corresponding NiII aniline adduct. Acquisition parameters: MW frequency = 9.36 

GHz; temperature = 77 K; MW power = 6.5 mW; modulation amplitude = 2 G; conversion time = 82 

ms. 

To obtain spectroscopic data on a stabilized amide derivative, we pursued the synthesis of the 

corresponding NiIII anilide.47,48,49 Treatment of 1 with lithium anilide results in the formation of the dia-

magnetic anilide adduct, [(SiP2S)NiII(NHPh)]Li (6, Scheme 2), which was confirmed by XRD (see SI). 

Oxidation of 6 with [Cp2Fe][BArF4] in 2-MeTHF at -78 ºC results in the formation of an S = ½ species 

as determined by 77 K CW EPR spectroscopy, which is assigned as the neutral anilide complex, 

(SiP2S)NiIII(NHPh) (6ox). Additionally, treatment of the corresponding NiII aniline species 

(SiP2S)NiII(NH2Ph) (7) (generated in situ by treatment of 1 with aniline) with 2,4,6-tri-tert-

butylphenoxyl radical in 2-MeTHF at -78 ºC also results in generation of 6ox via hydrogen atom abstrac-

tion, as determined by 77 K CW EPR spectroscopy. For the case of 6ox, unreacted 2,4,6-tri-tert-

butylphenoxyl radical is not observed by EPR spectroscopy, and we do not believe there to be a hydro-

gen bonding interaction between the NHPh group and resulting 2,4,6-tri-tert-butylphenol, given that 

one-electron oxidation of 6 yields an identical EPR spectrum.  

The EPR spectrum of 6ox is well-simulated as a rhombic signal (g = [2.175, 2.070, 2.0125]) with 

coupling to two 31P nuclei (A(31Pα) = ±[255, 220, 160] MHz, A(31Pβ) = ±[175, 280, 290] MHz, Table 1). 

Preparation of the 15N- and 2H-labeled analogues (6ox-15N, 6ox-2H) by hydrogen atom abstraction from 

(SiP2S)NiII(15NH2Ph) and (SiP2S)NiII(ND2Ph), respectively, results in similar CW EPR spectra as the 

natural abundance sample (Fig. 8). Again,  a combination of pulse EPR spectroscopies of 6ox, 6ox-15N, 

and 6ox-2H were utilized to determine hyperfine coupling to an isotopically sensitive nitrogen (A(14N) = 

±[-4.28, -31.37, -4.28] MHz, see SI) and an isotopically sensitive hydrogen nucleus (A(1H) = ±[21.5, 17, 

6] MHz, see SI). Based on these hyperfine coupling values, spin density of |ρH| ≈ 0.01 e- is estimated on 

the N-H hydrogen, and |ρN2s| ≈ 0.007 e- and |ρN2p| ≈ 0.16 e- are estimated on the anilide N.  
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The gas-phase DFT-optimized structure of 6ox (M06-L, def2tzvp [Ni] and def2svp [all other at-

oms]) bears a planar NPh fragment, and the spin density map exhibits significant spin delocalization into 

the phenyl π-system (see SI). These calculated results are suggestive that the spin-bearing nitrogen 2p 

orbital is in conjugation with the phenyl π-system, which likely contributes to the increased stability of 

6ox compared to 3ox. Compared to the hydrogen-bonded 3ox’, complex 6ox bears more spin density on the 

nitrogen atom, indicative of greater aminyl character. Relatedly, we posit that the absence of the hydro-

gen-bonding interaction in 3ox yields enhanced aminyl character compared to 3ox’. This notion is con-

sistent with 3ox engaging in N-centered radical reactivity to form 2 and 4, reacting as a “Ni–ṄH2” aminyl 

species.50 Gas-phase DFT calculations of 3ox (M06-L, def2tzvp [Ni] and def2svp [all other atoms]) are 

consistent with such a depiction; a Mulliken spin density of 0.4 e- is estimated on N, and 0.5 e- on Ni 

(see SI).  

Towards the eventual development of a Ni-mediated ammonia oxidation catalyst system, we next 

explored the possibility of further oxidizing the coordinated hydrazine ligand. Phenoxyl radicals have 

been used as reagents in stoichiometric and catalytic ammonia oxidation reactions.3,8bd,51 Accordingly, 

we were pleased to find that the treatment of the hydrazine adduct 4 with two equivalents of 2,4,6-tri-

tert-butylphenoxyl radical generates two equivalents of 2,4,6-tri-tert-butylphenol and the corresponding 

bridging diazene complex, [(SiP2S)Ni]2(trans-N2H2) (5, Fig. 2D). This diazene adduct is structurally un-

usual for a late first-row metal. To the best of our knowledge, there is only one example of a nickel 

complex featuring a coordinated N2H2 unit, bound side-on to a single Ni center.52 A CuI2(trans-N2H2) 

species related to 5 has also been described.53 XRD data confirm the assignment of 5 as an end-on bridg-

ing diazene and reveal a contracted N–N bond length of 1.277(2) Å compared to hydrazine-bridged 4 

(1.488(4) Å). Free diazene bears an N–N bond length of 1.252(2) Å,54 and hence compound 5 is best de-

scribed with an intact N–N double bond (HN=NH). By contrast, the aforementioned other example of a 

Ni-N2H2 species features an elongated N–N bond length of 1.351(3) Å and is described as an HN–NH2- 

ligand.52 

In the absence of a radical H-atom abstractor, the hydrazine complex 4 slowly undergoes dispro-

portionation in THF at 25 ºC to yield the ammonia adduct 2 and diazene-bridged 5 in a 2:1 molar ratio 

(Eq. 2). Intermediate species have not been observed in the disproportionation reaction from 4 to 2 and 

5. One possible pathway for this transformation is the concerted transfer of an H2 equivalence between 

two Ni-bound hydrazine species (e.g. 4 or the mononuclear adduct, (SiP2S)Ni(N2H4)). A related dispro-

portionation reaction was reported for a mononuclear Ru system.55   

 4 THF, 25 ºC 2   +  ½ 5 (2)
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With the aim of regenerating the dinitrogen complex 1 with 2,4,6-tri-tert-butylphenoxyl radical, 

attempts to further oxidize 5 did not prove fruitful. However, treatment of the diazene-bridged species 5 

with excess NH3 in THF results in quantitative displacement of N2H2 by NH3 at nickel, yielding the 

amine-bound 2. Free N2H2 is unstable toward disproportionation to ½ N2 and ½ N2H4,56 and hence liber-

ates ammonia-derived N2 in this system upon displacement from nickel (Scheme 3).57  

 

Scheme 3. Stepwise oxidation of NH3 mediated by (SiP2S)Ni species. 

Diazene displacement from 5 thus closes an overall Ni-mediated ammonia oxidation cycle and 

regenerates the ammonia adduct 2. In this stoichiometric cycle, the conversion of 2 NH3 to ½ N2 and ½ 

N2H4 constitutes a net 4e-/4H+ process; under potential turnover conditions, the N2H4 generated upon 

diazene disproportionation might in principle undergo further iterative oxidation via hydrazine-bridged 4 

and diazene-bridged 5 to achieve the net 6e-/6H+ conversion of 2 NH3 to N2. Ongoing studies are di-

rected towards exploring this goal. 

 

CONCLUSION 

We have described for the first time a Ni-mediated ammonia oxidation sequence, where the key 

N–N bond forming step is consistent with homocoupling between two NiIII–NH2 species to generate a 

hydrazine-bridged dinickel complex. Reductive elimination of an N–N single bond from a M–NH2 in-

termediate has been postulated previously in ammonia oxidation systems, but stoichiometric observation 

of such reactivity has been lacking. The M–NH2 homocoupling pathway described here contrasts with 

mechanisms often invoked for water oxidation catalysis, where high valent metal oxo intermediates are 

often invoked to precede O–O bond formation. 

Akin to catalysts for water oxidation, species that mediate ammonia oxidation may traverse a 

broad oxidation state range during turnover (e.g. Mn + NH3 →→ Mn+3≡N + 3 H•). This is certainly true 

of some synthetic catalysts that mediate the reverse process of dinitrogen reduction via the distal path-

[NiII]

NH3

[Ni] NH2

[Ni]H2N

[NiII]

NH2

[NiIII]

NH2

Proposed Transition 
State for N–N Coupling

[NiII]
H2
N
N [NiII]
H2

[NiII] N
N [NiII]
H

H

- H+ - e-

- H•

+ NH3 N2H2  N2 + N2H4

2 3

45

3ox



 

 

15 

way.58 It is thus notable that the ammonia oxidation cycle described herein is carried out between the 

NiII and NiIII oxidation states. This narrow redox range is attributable to the fact that the N–N bond 

forming step can occur from an M–NH2 species (as opposed to a higher valent intermediate featuring a 

metal-to-nitrogen multiple bond), and that the redox load for H2N–NH2 reductive elimination is distrib-

uted between two metal centers. Carrying out multi-electron oxidation processes at a single redox couple 

(Mn/Mn+1) bypasses the need for higher valent intermediates;  a conceptually similar paradigm pertains 

to the alternating mechanism for the reverse nitrogen fixation process.58  Incorporating these features 

into the design of ammonia oxidation catalysts provides an attractive strategy for facilitating catalysis 

using Earth-abundant, late first-row metals.  
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