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Abstract: 16 

Hybrid organic-inorganic perovskites have attracted immense interest as a promising material for 17 

a variety of optoelectronic and sensing applications. However, issues regarding long-term stability 18 

have emerged as the key bottleneck for applications and still require further study. Here, we 19 

develop automated experimental workflow based on combinatorial synthesis and rapid throughput 20 

characterization to explore long-term stability of these materials in ambient conditions, and apply 21 

it to four model perovskite systems: MAxFAyCs1-x-yPbBr3, MAxFAyCs1-x-yPbI3, CsxFAyMA1-x-22 

yPb(Brx+yI1-x-y)3 and CsxMAyFA1-x-yPb(Ix+yBr1-x-y)3. We have both established a new workflow and 23 

found out the main tendencies in the mixed cation and anion systems, which led to the discovery 24 

of non-trivial composition regions with high stability. The Non-negative Matrix Factorization and 25 

Gaussian Process regression are used to interpolate the photoluminescent behavior of vast 26 

compositional space and to study the overall behavior of the phase diagram. This interpolative 27 

regression analysis helps to distinguish mixtures that form solid solutions from those that segregate 28 

into multiple materials, pointing out the most stable regions of the phase diagram. We find the 29 

stability dependence on composition to be extremely non-uniform within the composition space, 30 

suggesting the presence of potential preferential compositional regions. This proposed workflow 31 
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is universal and can be applied to other perovskite systems and solution-processable materials. 1 

Furthermore, incorporation of experimental optimization methods, e.g., those based on Gaussian 2 

Processes, will enable the transition from combinatorial synthesis to guide materials research and 3 

optimization. 4 

 5 

6 
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Hybrid organic-inorganic perovskites (HOIPs) have received immense research attention due to 1 

the combination of outstanding optoelectronic properties and low fabrication cost, making them 2 

uniquely attractive for numerous applications, including photovoltaics1, light-emitting diodes2,3 3 

photodetectors4, and ionizing radiation sensors5,6. In general, three-dimensional (3D) HOIPs adopt 4 

an ABX3 structure and are typically comprised of a monovalent cation, A = (CH3NH3
+ (MA); 5 

CH(NH2)2
+ (FA); Cs+), a divalent metal cation, B = (Pb2+; Sn2+), and halide anion X = (Cl-; Br-; I-6 

). More than a thousand perovskite-inspired candidate compounds have been theoretically 7 

predicted during the last few years,7-10 a number that can be expanded further via doping and 8 

alloying to generate a virtually unlimited range of possible solid solutions.  9 

 Despite the extensive theoretical effort, the synthesis of these materials preponderantly 10 

relied on Edisonian trial-and-error approach. This synthesis usually entailed modifying a single 11 

compositional or synthesis variable and observing the changes in structure and functionalities. 12 

Combined with lengthy processing and optimization times, this approach has been inefficient in 13 

its ability to explore vast design spaces. Furthermore, the capability to predict the outcomes 14 

quantitatively, offer a reasonable understanding of variable correlations, factors challenging 15 

reproducibility, and parameters necessary to facilitate the commercialization of the material of 16 

interest has been lacking. Consequently, despite theoretical predictions, only a small fraction of 17 

predicted HOIP compounds has been experimentally realized in the form amenable to materials 18 

property (high-quality thin film) and single-crystal device level studies.  19 

 Currently, the primary concern at the forefront of scientific and application-driven research 20 

is the stability of these materials in the pure or device-integrated form11,12. Ultimately, the 21 

application potential of HOIPs will be determined equally by the intrinsic properties of pure HOIP 22 

materials and by material stability and responses to environmental conditions such as light, 23 

humidity, and heat. Recently, it has been demonstrated that the alloying or solid solution formation 24 

can alleviate many of these factors. Alloying to form solid solutions between FAPbI3, MAPbBr3, 25 

and CsPbI3 has shown to be the pathway to combat the instability issue and allow for the 26 

development of more stable HOIP photovoltaics13-15. However, solid solutions in HOIP families 27 

that derive from the alloying and substitution on monovalent and divalent cations and anion sites 28 

can lead to the endmembers belonging to different crystallographic groups and possessing 29 

dissimilar structural and optoelectronic properties and non-monotonic stability over compositional 30 

space. The interplay of the variability of endmember structures in conjunction with the classical 31 
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thermodynamic factors such as limited mutual solubilities gives rise to complex phase spaces with 1 

multiple solid solutions and two- and three-phase regions, etc. A large number of possible solid 2 

solutions, the fact that different aspects of the figure of merit are optimized in the other areas of 3 

the phase diagram, and the need for optimization of synthesis conditions for each specific 4 

composition make the classical search and optimization of these materials extremely tedious. To 5 

date, only a few tens of solid solution systems have been explored16-18 compared to over thousands 6 

of possible variants analyzed theoretically7-9 and hundreds of thousands of possible 3- and 4- 7 

composition systems.  8 

Recently, several groups have demonstrated the applications of the automated experiment 9 

to materials discovery, including synthesis19-21 and full device-preparation workflows22. For 10 

example, MacLeod et al. developed an autonomous research system that produces and 11 

characterizes a thin film sample22. It then utilizes software that applies a Bayesian optimization 12 

algorithm to determine the next sample to synthesize. Such approach of iterating between 13 

automated experimentation and machine learning-based experiment planning has resulted in early 14 

successes in addressing high-dimensional problems in experimental physics23, chemistry24, life-15 

sciences25, and recently starting to be implemented in the materials sciences26-30. High throughput 16 

pipelines for the discovery of new perovskites for solar cells have also been reported. Sun et al. 17 

fabricates and characterizes 75 different perovskite solar cells over two months18. A deep neural 18 

network diagnostic was utilized for accelerated X-ray diffraction analysis of the fabricated 19 

perovskite thin films. These works are mostly focused on the optimization of optoelectronic 20 

devices. The combinatorial approaches in materials synthesis using techniques as similar to pulsed 21 

laser, physical vapor, and chemical vapor depositions, etc., have been actively explored for over 22 

20 years31.  23 

However, until now, solution-based combinatorial synthesis has been limited to custom 24 

design microfluidic or robotic manipulation systems16,19,20,32. Also, until recently, the limiting 25 

factors for combinatorial methods were the availability of high-throughput characterization 26 

techniques and machine learning tools that allow the characterization results to be integrated into 27 

the correlative models and further reduced to predictive physical laws. Note that continuous 28 

combinatorial libraries like those used in pulsed laser deposition also require composition 29 

characterization, since the local composition can significantly differ from the expected due to the 30 

specifics of the deposition process. Here, the use of the 96-well plate-based libraries addresses 31 
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both issues. First, the compositions, in this case, are controlled by the pipetting/dilution process 1 

and endmember concentrations and, as such, are determined precisely (or at least as good as 2 

macroscopic synthesis). Second, using the 96-well plate allows for simple characterization via the 3 

optical spectrometry enabled by the optical plate reader. In addition, the synthesis and 4 

characterization of up to 96 different compositions can be done at one time. The defining 5 

characteristic of this study is the automated exploration, characterization of vast compositional 6 

spaces and utilizing the material knowledge to determine the optimal compositional regions to 7 

exploit for specific optoelectronic properties. An added perk to the developed workflow is that it 8 

is also cost-effective as compared to other autonomous research systems described in the literature. 9 

In this work, we establish the workflow for the rapid synthesis and characterization of 10 

HOIPs via combinatorial synthesis combined with rapid throughput photoluminescent (PL) 11 

screenings. To gain insight into the variability of the optical band gap and PL properties across the 12 

compositional series, we adopt an approach based on the multivariate statistical analysis. We map 13 

composition-optical property (luminescence) and stability relationships simultaneously across the 14 

ternary phase diagram and use the Gaussian Processing framework to determine associated 15 

uncertainties. This study establishes the utilization of automated synthesis and enables the creation 16 

of data-driven machine learning (ML) models for accelerated discovery of large compositional 17 

space in HOIPs with optimized properties for multifunctional optoelectronics. This approach can 18 

be extended to higher-dimensional spaces via the evolutionary experiment optimization in the 19 

future studies. 20 

Results and Discussion 21 

 To effectively explore the photoluminescent properties over multidimensional 22 

compositional spaces, we develop a workflow combining robotic synthesis, automated 23 

characterization, and machine learning techniques, as shown in Figure 1. Here, robotic synthesis 24 

is used to create a combinatorial library all at once in a chosen multidimensional compositional 25 

space. Optoelectronic properties and their evolution with time are explored using automated 26 

optical methods, providing insight into the bandgap energy and the stability of the resulting 27 

materials. The Gaussian Process optimization, the machine learning technique employed here, is 28 

used to extrapolate the observed behaviors across the compositional space, and the associated 29 

uncertainties can be further used to guide the selection of new compositional points. Overall, the 30 
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developed workflow is an exploratory one that prioritizes materials discovery but can be used for 1 

the optimization of optoelectronic devices. Here, we performed only one iteration. 2 

 3 

 4 

Figure 1. A schematic of the automated workflow for the combinatorial discovery of HOIP 5 
materials. The combinatorial library is first created in a chosen multidimensional compositional 6 
space using the pipetting robot (robotic synthesis). The precipitation of 92 microcrystals of HOIP 7 
is indicated by the change in color in a well-plate. Photoluminescent properties are measured over 8 
the combinatorial library as a function of time (automated characterization). This data is analyzed 9 
via machine learning methods to yield information on the time-dependent behaviors in the system 10 
that can be further used to navigate the compositional space.  11 
 12 

 In this study, we chose to explore several 3D ABX3 ternary and quasi-ternary systems of 13 

mixed A cations and X anions. As a model, we decided on Cs-MA-FA as the cation solutions and 14 

I- and Br- as anions to verify our observations relative to previously explored endmembers and 15 

explore optoelectronic properties and stability in the individual systems. For the combinatorial 16 

libraries of triple (monovalent) cations, 92 combinations of (Cs/MA/FA)PbI3 and 92 combinations 17 

of (Cs/MA/FA)PbBr3 solid solutions are synthesized in two separate well plates. For the 18 
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combinatorial library of mixed cations and anions, 184 combinations of (Cs/MA/FA)Pb(I/Br)3 are 1 

synthesized in two independent 96 well plates. The photos of these plates are shown in Figure S2 2 

(a-b). It is important to note that this approach is universal and can be applied to other perovskite 3 

systems. 4 

 Firstly, utilizing a programmable pipetting robot and employing classical 96-well 5 

microplates shown in Figure 1, we create combinatorial libraries of ternary MAxFAyCs1-x-yPbBr3 6 

and MAxFAyCs1-x-yPbI3 and quasi-ternary CsxFAyMA1-x-yPb(Brx+yI1-x-y)3 and CsxMAyFA1-x-7 

yPb(Ix+yBr1-x-y)3 systems. The composition of each well is controlled by pipetting the desired 8 

quantity of endmember solutions. Precipitation of microcrystals occurs via an antisolvent 9 

approach6,16. Each system, consisting of 92 samples, is synthesized in a separate well plate. Details 10 

of synthesis and photos of each microplate are provided in the supplementary information. We 11 

utilize an automated Multi-Mode well plate reader with the capability to perform 12 

photoluminescence (PL) spectroscopy to characterize compositional dependent optoelectronic 13 

properties. Details of these measurements are provided in the supplementary information. Recent 14 

studies have demonstrated that the dynamical processes related to HOIPs formation, ionic 15 

movement, degradation, and phase changes can be understood by studying the evolution of their 16 

luminescent properties33-35. Although a relatively simple measurement to perform, characterizing 17 

a combinatorial library with a conventional PL set-up would be laborious. By utilizing the 18 

automated reader, we are effectively able to measure the optoelectronic properties of 96 19 

compositions in roughly five minutes. Repeating this process for several hours yields the set of 20 

time- and composition-dependent data on the optoelectronic properties and stability of the chosen 21 

system. It should be noted that in this study, the intrinsic stability of each composition in ambient 22 

conditions is explored. Here, the focus is not on the optimization of the electronic properties, but 23 

the exploration of vast compositional spaces and time evolution of PL properties, i.e., PL aging. 24 

Thus, we are able to discover the compositions or compositional regions in the phase diagram that 25 

might be suitable for optoelectronic applications, such as solar cells. 26 

Firstly, we explore the PL properties of the four materials systems before prolonged 27 

exposure in ambient conditions. Upon further inspection of this exploration, we can provide 28 

conclusions about what region of the phase diagram would be optimal for certain applications. 29 

Figure S3 in supplementary information shows the corresponding PL spectra of the yielded 30 

microcrystals immediately after precipitation by chloroform. Each panel illustrates the 31 
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composition-PL emission from the mixture of three precursors with 92 different concentrations 1 

and the formation of three-component solid solutions. As can be seen, the shift in the emission 2 

wavelength in quasi-ternary systems with varying concentrations of halide is significant. Also, it 3 

is particularly challenging to understand the trend in alloying behavior. To get insight into the 4 

variability of the optical band gap and PL properties across the compositional series, we adopt an 5 

approach based on the multivariate statistical analysis. 6 

For ternary systems, this synthesis and characterization yield a set of spectra as 7 

𝐴(𝑥, 𝑦, 𝜔, 𝑡), where A is the PL emission, x and y define the composition, ω is the wavelength, and 8 

t is the time since synthesis. As a first step towards gaining insight into the compositional 9 

dependence of optoelectronic properties, we choose the initial PL spectra 𝐿(𝑥, 𝑦, 𝜔)  =10 

 𝐿(𝑥, 𝑦, 𝜔, 0) and analyze the spectral dataset using unsupervised linear unmixing. This set of 11 

methods generally includes techniques such as Principal Component Analysis (PCA), Non-12 

negative Matrix Factorization (NMF), and Independent Component Analysis (ICA), with the 13 

choice of decomposition method dictated by the physical constraints on endmembers and loading 14 

maps. We choose NMF as the simplest method that gives rise to non-negative components and 15 

decomposes the initial time spectra as  16 

𝐿(𝑥, 𝑦, 𝜔) =  𝐿(𝑥, 𝑦)𝑤(𝜔) 

ே

 ୀ ଵ

(1) 17 

where 𝐿(𝑥, 𝑦) are the loading maps that represent the variability of spectral behaviors across 18 

compositional space and 𝑤(𝜔) are the endmembers that determine characteristic spectral 19 

behaviors. The number of components, N, is set at the beginning of the analysis and can be chosen 20 

based on the quality of decomposition, anticipated physics of the systems, etc..  21 

 It is important to note that blind linear separation methods explicitly assume that the nature 22 

of the characteristic behaviors, 𝑤(𝜔), is unknown, but the system is linear in these components. 23 

If the endmembers are assumed to be known, e.g., comport to the spectra of pure endmembers, 24 

then Eq. (1) will become the linear regression model, and additional unknown components can be 25 

introduced to account for chemical reactivity and formation of new compounds. Such an approach 26 

is expected to be beneficial for spectrophotometric data (i.e., optical absorption). However, this is 27 

not the case for PL data that can show complex behavior as a function of composition, crystallinity, 28 

defect properties, and environmental stability. Hence, here we use unconstrained linear blind 29 
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separation to allow for possible chemical reactions and morphological evolution in the system. At 1 

the same time, we limit the analysis to the linear unmixing as a natural first approximation.  2 

 To interpolate between the NMF components, we use the Gaussian Processing (GP) 3 

regression.36,37 GP is a general approach for determining the unknown function, f, from a set of 4 

noisy observations D = (x1, y1), . . .(xN , yN ). The constraints of the GP model are very general, and 5 

it is only assumed that the observational noise  has zero mean. Given the observations, the 6 

function f is constructed via Bayesian inference in a function space. In this analysis, it is assumed 7 

that the function f  has a prior distribution f ~ 𝒢𝒫(0, 𝐾(𝑥, 𝑥ᇱ)), where  𝐾 is a kernel function. The 8 

kernel describes the correlations between the values of the function across the parameter space. 9 

The functional form of the kernel is postulated at the beginning of the process, whereas the kernel 10 

hyperparameters are optimized during the regression, y = f(x) + . The learned kernel is then used 11 

for predicting function values at new points. The choice of the kernel can be dictated by the known 12 

physical constraints on the system; in the cases when such prior knowledge is absent, the typical 13 

option is the Gaussian (or Radial Basis Function, RBF) kernel, which corresponds to a Bayesian 14 

linear regression model with an infinite number of basis functions36. The output of the GP 15 

regression is the predicted function values and uncertainty maps representing the quality of 16 

prediction. Additionally, the learned kernel parameters can yield information on the physics of the 17 

system. We note that because GP is formulated in a Bayesian setting, the uncertainty quantification 18 

is inherent in GP-based methods and this has been the primary motivation for choosing this method 19 

as compared to readily available simpler interpolation schemes since the uncertainty allows the 20 

formulation of the strategies for exploratory and exploration-exploitation searches through the 21 

composition space as will be explored in the future. 22 

 Here, GP is used as a universal interpolator to convert the set of measurements in the 23 

chosen compositional space into the dense maps of functional responses. The GP interpolation is 24 

implemented using the GPim library32 in Python. The visualization of functional behaviors in 25 

ternary diagrams is performed using the ternary library. 26 

 27 
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 1 

Figure 2. Multivariate analysis of the PL data immediately after synthesis for the explored 2 
compositional spaces: (a,b) MAxFAyCs1-x-yPbBr3, (c,d) MAxFAyCs1-x-yPbI3, (e,f) CsxFAyMA1-x-3 
yPb(Brx+yI1-x-y)3 and (g,h) CsxMAyFA1-x-yPb(Ix+yBr1-x-y)3. The PL spectrum shows the characteristic 4 
behavior for each composition series and the inset ternary diagrams are the compositional 5 
dependencies of the PL intensities. The ternary inset plots are the loading maps that represent the 6 
variability of the spectral behaviors across the compositional space. Specifically, the intensity of 7 
the color map indicates how the characteristic spectrum describes that composition. The 8 
corresponding triangle maps before GP interpolation is found in supplementary information, 9 
Figure S4. 10 
 11 

 Illustrated in Figure 2 is this combined NMF-GP analysis on the explored ternary phase 12 

diagrams. Here, we chose N = 2 as the simplest representation of variability in the system, as 13 

explained in Figure S5. The ternary phase diagrams represent 𝐿(𝑥, 𝑦) where x and y are the 14 

compositions of the precursors and Li is the weight of this characteristic spectrum for each 15 

composition. The density of experimental data points in the triangle plots is shown in Figure S1 16 

to guide how the sample points were chosen in the phase diagram. In the ternary phase systems, 17 

MAxFAyCs1-x-yPbBr3 and MAxFAyCs1-x-yPbI3, we directly observe the effect of cation doping on 18 

photoluminescent behavior. In the MAxFAyCs1-x-yPbBr3 system, the first component shown in 19 

Figure 2(a) demonstrates that FAPbBr3-rich compositions, represented by a red color in the inset, 20 

have a higher peak wavelength, and therefore lower bandgap energy than compositions, which are 21 

primarily solid solutions of CsPbBr3 and FAPbBr3. Highlighted in red of the second component in 22 

Figures 2(b) are the solid solutions mainly between Cs and MA region of the phase diagram with 23 

smaller emission wavelength and higher energy bandgaps. Similar cation effects are also apparent 24 
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in the MAxFAyCs1-x-yPbI3 system. MAPbI3-rich compositions shown in Figures 2(c) have a higher 1 

peak wavelength than other solid solutions shown in Figures 2(d). 2 

In the quasi-ternary phase systems, CsxFAyMA1-x-yPb(Brx+yI1-x-y)3 and CsxMAyFA1-x-3 

yPb(Ix+yBr1-x-y)3, halide effects become more apparent. In the CsxFAyMA1-x-yPb(Brx+yI1-x-y)3 system, 4 

we observe a distinct contribution of the Br- as shown in the first component in Figure 2(e). For 5 

this system, the second component shown in Figure 2(f) demonstrates much of the phase diagram 6 

is a solid solution with a broad emission having a peak wavelength of around 650 nm. In the 7 

CsxMAyFA1-x-yPb(Ix+yBr1-x-y)3 system, the first component in Figures 2(g) illustrates specific 8 

regions where the endmember corresponds to a wavelength close to 540 nm, clearly identifying 9 

the compositions that have undergone halide segregation upon synthesis and would not be suitable 10 

for optoelectronic devices. As shown in Figure 2(g), the majority of the phase diagram is dark 11 

blue, representing that the weight of this characteristic spectrum is approximately zero. 12 

Conversely, the red dots within the same phase diagram represent where this characteristic 13 

spectrum is highly weighted. If the GP were not perfomed along with NMF, there would be sample 14 

points within the phase diagram instead of the continuous image (Figure S4) because GP 15 

interpolates the weights between each sample point. Conversely, the second component shown in 16 

Figure 2(h) establishes that a majority of the phase diagram is a solid solution with a peak 17 

wavelength of around 720 nm. This analysis can provide crucial information about the optimal 18 

compositions for certain applications. 19 

 20 

Figure 3. (a) Comparison of the linear prediction and actual bandgap for the CsxMAyFA1-x-21 
yPb(Ix+yBr1-x-y)3 (red) and CsxFAyMA1-x-yPb(Brx+yI1-x-y)3 (blue) systems. (b) Comparison of linear 22 
prediction and actual bandgap of the interpolated quaternary system. The green line is plotted to 23 
show the deviation from slope 1 and the root mean squared error (RMSE) is calculated for 24 
evaluating the quality of the surrogate model. 25 
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 This data can further be used to analyze the compositional dependence of the bandgap 1 

energy. In this analysis, the position of the photoluminescence maximum is used as a measure of 2 

the bandgap in the material, and the concentration dependence of the latter can be analyzed. Here, 3 

we use the simple linear estimator to explore the cation and anion effects on the bandgap. For the 4 

pure Br system, the linear regression 𝐸𝑔 = 𝑎𝑥 + 𝑏𝑦 + 𝑐 where x and y correspond to 5 

concentrations in MAxFAyCs1-x-yPbBr3, yielding 𝑎 = -0.046, 𝑏 = -0.1, and 𝑐 = 2.33. 6 

Similarly, for MAxFAyCs1-x-yPbI3, the corresponding parameters are 𝑎ூ = -0.041, 𝑏ூ = 0.021, and 7 

𝑐ூ = 1.58 satisfying the Vegard’s law for bandgap energy as function of cation concentration in the 8 

HOIPs.  9 

 In the quasi-ternary systems CsxMAyFA1-x-yPb(Ix+yBr1-x-y)3 and CsxFAyMA1-x-yPb(Brx+yI1-x-10 

y)3 the composition dependence of the bandgap energy can be explored similarly, albeit for specific 11 

parameter combinations. Shown in Figure 3(a) is the comparison of the linear prediction and 12 

actual bandgap energies for the two systems. As can be seen, there is a general agreement between 13 

the predicted and the actual bandgap energy from the measurements, with an evidence of small 14 

deviation from Vegard’s law and a near-linear behavior in the bandgap energy in these systems. 15 

At the same time, the analysis of the quaternary diagram formed by aggregation of the data for all 16 

four plates illustrates significant deviation form linear model, Figure 3(b), indicative of the 17 

formation of more complex solid solutions and potential chemical segregation in higher 18 

dimensional composition space.  19 

 20 
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Figure 4. Time dependent PL spectra for several compositions in ambient condition: (a) 1 
MA0.84FA0.16PbBr3, (b) MA0.60FA0.32Cs0.08PbI2.04Br0.96, (c) MA0.68FA0.28Cs0.04PbI2.04Br0.96, (d) 2 
MA0.20FA0.72Cs0.08PbI0.60Br2.40, (e) MA0.44FA0.48Cs0.08PbI1.32Br1.68 and (f) MA0.36FA0.56Cs0.08PbI3.  3 
 4 

To gain insight into the compositional dependence of stability in these systems, we explore 5 

how the PL behavior of each composition changes as a function of time, providing insight into the 6 

stability of these microcrystals in ambient conditions. Shown in Figure 4 are several representative 7 

time-dependent photoluminescent behaviors. For the binary cation composition, 8 

MA0.84FA0.16PbBr3, shown in Figure 4(a), we observe a PL enhancement within the first 3 hours, 9 

indicating potential traps states are being passivated as time progresses under ambient conditions 10 

in agreement with previous PL studies.33 The PL intensity gradually begins to decrease over the 11 

remaining 3 hours. However, even after 6 hours of exposure in air, the PL peak does not entirely 12 

disappear, indicating that this binary composition did not fully degrade. Conversely, as shown in 13 

Figure 4(b), the PL intensity for the quasi-ternary composition, MA0.6FA0.32Cs0.08PbI2.04Br0.96, 14 

exhibits a more complicated behavior, in which there is a combination of peak intensity 15 

enhancement, peak position shift, peak separation, peak intensity decrease and, finally, the 16 

complete disappearance of the peak after approximately 6 hours in ambient conditions, 17 

demonstrating full degradation of this perovskite composition. Notably, this peak shifting and peak 18 

separation as time progress are indicative of phase separation in this iodide rich system.33 In the 19 

same phase diagram, a composition richer in MA and less in FA and Cs than in Figure 4(b), 20 

exhibits similar PL behavior shown in Figure 4(c); however, at the end of 6 hours under ambient 21 

conditions, the peaks have not entirely disappeared. While it is interesting to note that such small 22 

concentration variation can change the mechanism of degradation, it is out of the scope of this 23 

study to explore such a mechanism.  24 

 From analyzing the time-dependent PL behavior of quasi-ternary phase systems shown in 25 

Figures 4(d)-(e), we observe the effect of mixed halides on the instability of such compositions. 26 

Focusing on the composition, MA0.2FA0.72Cs0.08PbI0.6Br2.4, in the bromide rich mixed halide 27 

system, we find a slight peak shift towards lower wavelengths as the peak intensity gradually 28 

increases during the 6 hours of measurements as shown in Figure 4(d). The final composition 29 

remains stable. In the same quasi-ternary system, the composition, MA0.44FA0.48Cs0.08PbI1.32Br1.68, 30 

exhibits different behavior, as shown in Figure 4(e). The PL peak gradually shifts 100 nm towards 31 

lower wavelengths without apparent peak splitting, while the peak intensity changes. The final 32 
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decomposed composition also remains stable. Finally, for the ternary cation composition of 1 

MA0.36FA0.56Cs0.08PbI3, we observe an initial broad PL peak that gradually decreases in intensity, 2 

as shown in Figure 4(f). A small peak shift follows this to higher wavelengths as the peak splits 3 

into two and finally disappears.  4 

 The results illustrated in Figure 4 suggest that the time dynamics of the PL in the 5 

multicomponent system can be very complex, as the result of simultaneous processes of 6 

crystallization, defect healing, compositional changes induced by the, e.g., preferential I- oxidation 7 

in ambient, and chemical degradation. Correspondingly, it is difficult and time consuming to study 8 

the PL behavior of each composition in a vast compositional space separately. To explore the 9 

stability by time dependent-PL behavior across the compositional space systematically, we extend 10 

the analysis in Eq. (1) towards the joint analysis of spectral and time domain. Here, we analyze the 11 

full 𝐿(𝑥, 𝑦, 𝜔, 𝑡) dataset using NMF via the decomposition:  12 

𝐿(𝑥, 𝑦, 𝜔, 𝑡) =  𝐿(𝑥, 𝑦)𝑔(𝜔, 𝑡)

ே

 ୀ ଵ

(2) 13 

where 𝐿(𝑥, 𝑦) are the loading maps that represent the variability in behaviors across compositional 14 

space and 𝑔(𝜔, 𝑡) are the endmembers that determine characteristic behaviors in the time-spectral 15 

domain. Similar to the analysis of the initial state of PL behavior, the loading maps can be 16 

represented via the ternary phase diagram representation after GP interpolation. In contrast, the 17 

endmembers can be visualized via classical 2D representations. 18 
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 1 

Figure 5. The multivariate analysis of the stability in (a)-(f) MAxFAyCs1-x-yPbBr3 system and (g)-2 
(l) MAxFAyCs1-x-yPbI3 system. Shown as ternary diagrams are the compositional dependencies of 3 
the component intensities (top rows) and 2D NMF components (bottom rows). The 2D plots 4 
describe the PL behavior of the corresponding phase diagram (represented by a non-zero weight) 5 
as a function of wavelength and time. For the ternary phase diagrams, the color is indicative of 6 
how the characteristic PL behavior over time describes that compositional region. For the 2D plots, 7 
the color describes the intensity of the PL peak. The corresponding triangle maps before GP 8 
interpolation is found in supplementary information, Figure S7. 9 
 10 

 Employing this strategy, we begin by examining the time evolution of PL properties of an 11 

entire bromine ternary phase system, MAxFAyCs1-x-yPbBr3. As illustrated in Figure 5, this analysis 12 

is performed using N = 3 in Eq. 2 as it more accurately describes the dynamics of the system, 13 
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details can be found in Figure S6. Shown in Figures 5(a) and (d), the first component 1 

demonstrates that solid solutions between MAPbBr3, FAPbBr3, and CsPbBr3 having PL emission 2 

wavelength between 540˗550 nm experience an increase in PL intensity in the air as time 3 

progresses. Increasing PL intensity in ambient conditions has been previously attributed to a boost 4 

in the carrier radiative recombination rate.38 The PL properties of FAPbBr3 rich compositions 5 

exhibit different behavior, as shown in the second component in Figures 5(b) and (e). Firstly, we 6 

observe a broad PL emission between 530 and 570 nm. The PL intensity gradually decreases after 7 

approximately 160 minutes, an indication of compositional degradation. Finally, as shown in the 8 

third component Figures 5(c) and (f), the CsPbBr3 rich compositions exhibit a much narrower PL 9 

emission around 530 nm, signifying this compositional space with a higher bandgap emission and 10 

possibly higher crystallinity39. Although the PL intensity begins to decline, the compositions in 11 

this region remain stable under ambient conditions during the study. 12 

 Next, we explore the time evolution of PL behavior in the iodide ternary phase system of 13 

MAxFAyCs1-x-yPbI3. As shown in the first component in Figures 5(g) and (j), MAPbI3 rich 14 

compositions and a region of solid solutions between MAPbI3 and CsPbI3 experience high PL 15 

intensity at wavelengths around 800 nm that begin to decrease over time, indicating full 16 

degradation. The second component shown in Figures 5(h) and (k) details how FAPbI3 and solid 17 

solutions between FAPbI3 and MAPbI3 exhibit an increase in PL intensity that eventually 18 

decreases as time progresses. Finally, the third component shown in Figures 5(i) and (l) focuses 19 

on solid solutions with FA-rich compositions that show an increase in PL intensity, followed by 20 

an abrupt decrease. Overall, this analysis confirms that compositions in the ternary bromide system 21 

are more stable than compositions in the ternary iodide system in agreement with the literature40. 22 

Furthermore, this analysis offers the strategy in cation or anion management, which can 23 

successfully guide the design of compositions with higher stability or crystallizations in such 24 

ternary systems. 25 

To assess how the GP model fits the experimental data, we have estimated the Bayesian 26 

uncertainty model. The uncertainty maps for each three components in Figure 5 (a-c) is shown in 27 

supplementary information, Figure S8. The resultant RMSE values indicate the high quality of 28 

the GP prediction.  29 

 30 
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 1 

Figure 6. The multivariate analysis of the stability in quasi-ternary (a)-(f) CsxFAyMA1-x-2 

yPb(Brx+yI1-x-y)3 and (g)-(l) CsxMAyFA1-x-yPb(Ix+yBr1-x-y)3 systems. Shown as ternary diagrams are 3 
the compositional dependencies of the component intensities (top rows) and 2D NMF components 4 
(bottom rows), describing the PL behavior of the corresponding phase diagram (represented by a 5 
non-zero weight) as a function of wavelength and time. The color of the ternary phase diagram is 6 
indicative of how the characteristic PL behavior over time describes that compositional region. In 7 
the 2D plots, the color describes the intensity of the PL peak. The corresponding triangle maps 8 
before GP interpolation is found in supplementary information, Figure S9. 9 
 10 

We proceed further by exploring the evolution of the PL behavior over time of the two 11 

quasi-ternary systems: bromide rich CsxFAyMA1-x-yPb(Brx+yI1-x-y)3 and iodide rich CsxMAyFA1-x-12 

yPb(Ix+yBr1-x-y)3. The first component of the CsxFAyMA1-x-yPb(Brx+yI1-x-y)3 system shown in Figure 13 

6(a) and (d) demonstrates a shift in the energy bandgap of mixed iodide-bromide solid solutions 14 
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towards lower wavelengths with higher intensity of the PL emission as time progresses. We also 1 

observe a similar PL enhancement as exhibited in the MAxFAyCs1-x-yPbBr3 earlier with a final 2 

stable composition. We notice for a selected region with a solid solution between MAPbI3 and 3 

FAPbBr3 shown in Figure 6(b), the 2D NMF components in Figure 6(e) shows a significant blue 4 

shift towards lower wavelengths; a clear indication of phase separation as the time progresses 5 

which ultimately degrades. The third component in Figure 6(c) and (f) highlights a small region 6 

rich in MAPbI3 with emission wavelength around 760 nm. The PL emission slightly redshifts and 7 

finally disappears. An excellent example of this is the quasi-ternary system, CsxFAyMA1-x-8 

yPb(Brx+yI1-x-y)3, shown in Figures 6 (a-f). We conclude that in this system, CsPbBr3- and 9 

FAPbBr3-rich regions are more stable because not only the PL wavelength does not change in 10 

ambient as a function of time but also the PL intensity increases as their time in ambient conditions 11 

increases. We can further confirm this by looking at an individual composition, 12 

MA0.20FA0.72Cs0.08PbI0.60Br2.40, in this region that is represented in Figure 4(d). On the other hand, 13 

the remainder of the phase diagram experiences peak shifts along with a decrease in 14 

photoluminescent intensity, indicating that these compositions are less stable in ambient 15 

conditions. Furthermore, we can use the analysis demonstrated in Figure 3 as a material-property 16 

guide for exploring different optoelectronic applications.  17 

For the CsxMAyFA1-x-yPb(Ix+yBr1-x-y)3 system, a small CsPbI3-rich region can be seen in the 18 

first component in Figure 6 (g) and (j). This region of the phase diagram shows a broad PL 19 

emission between 500-600 nm, indicative of the degradation into PbI2 of these microcrystals. We 20 

conclude this from the yellow precipitates that formed along with the PL spectrum seen in Figure 21 

S10. As shown in Figure 6(j), this broad peak is indicative of PbI2. We observe the effect of halide 22 

segregation in solid solutions of MAPbI3 and FAPbBr3 as a function of time in the second 23 

component, as shown in Figure 6(h) and (k). As can be seen in the 2D NMF component, the PL 24 

emission shifts toward lower wavelengths. For both the second and third components shown in 25 

Figures 6(h) and (i), we see the degradation of iodide-rich compositions as time progresses. The 26 

third components in Figure (i) and (l) represent a solid solution between CsPbI3 and MAPbI3. The 27 

analysis of quasi-ternary systems demonstrates that most solid solutions in mixed halides 28 

experience compositional changes induced by possibly preferential I- oxidation in ambient, phase 29 

separation towards more stable components and ultimately experience chemical degradation. 30 
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This study demonstrated how robotics-assisted materials synthesis, combined with 1 

machine learning techniques, can explore vast compositional spaces in HOIPs. We accomplished 2 

this by first utilizing a pipetting robot and a Multi-Mode well plate reader to automate the synthesis 3 

and characterization of a large number of compositions. We developed a workflow to explore the 4 

PL properties and stability in ambient conditions and applied it to four perovskite materials 5 

systems: MAxFAyCs1-x-yPbBr3, MAxFAyCs1-x-yPbI3, CsxFAyMA1-x-yPb(Brx+yI1-x-y)3 and CsxMAyFA1-6 

x-yPb(Ix+yBr1-x-y)3. In total, 368 compositions were synthesized, and their time-dependent PL 7 

behavior was explored within 4 days. It is well established that monitoring PL properties is an 8 

effective strategy for obtaining information on the optoelectronic quality of HOIPs41. However, 9 

PL properties are difficult to predict in a sizeable compositional space. Here, they were efficiently 10 

mapped as the entire optical characterization of a 96-well plate takes approximately five minutes 11 

for each system. The results allowed us to establish a composition-properties relationship for a 12 

large number of compositions across a specific phase diagram. In combination with machine 13 

learning techniques, specifically NMF and Gaussian Process, we gained insight into the variability 14 

of the optical bandgap and PL properties across the compositional series. Overall, this workflow 15 

is an exploratory process; however, combined with our knowledge and the knowledge in the 16 

literature, we are able to draw conclusions about the characteristics of our chosen perovskite 17 

systems. The interpolative regression analysis of PL properties helps to distinguish mixtures that 18 

form solid solutions from those that segregate into multiple materials in ambient conditions. The 19 

trend in PL emission wavelengths, and thus perovskite bandgaps, is found to be near-linear along 20 

some compositional axes.  21 

This experimental information is a necessary step in material’s design for specific 22 

applications. Clearly, the stability dependence on composition is extremely non-uniform within 23 

the composition space – with gradual evolution within solid solution spaces and rapid changes at 24 

the phase boundaries. The relationship of the degradation rates on the composition provides 25 

information on the kinetic mechanisms – e.g., transport or reaction limited kinetics. The observed 26 

results here can be further fed into the ML model to allow the physics-based generalization42, and 27 

hence increase the efficiency of the evolutionary search. This exploration necessitates the 28 

knowledge of relevant HOIPs physics and incorporation of these formulating the future search 29 

strategies. Notably, these sets of problems are virtually unexplored in the theory-based ML 30 

approaches since physical priors are usually very poorly known. In particular, stabilities are 31 
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extremely difficult to predict theoretically and rationalize, necessitating a combined approach of 1 

experiment, theory, and theory-informed intuition.  2 

 3 

Conclusion: 4 

Commonly, significant scientific progress is slowed by the utilization of Edisonian trial and error 5 

approaches, where one variable is changed at a time and result is then measured. Automated 6 

combinatorial synthesis provides the opportunity of accelerating the production of materials with 7 

large compositional spaces. In this article, we further advance this field of study by demonstrating 8 

a proof of concept for the development of an automated workflow that incorporates robotics 9 

synthesis and machine learning to explore the changes in photoluminescent behavior of vast 10 

compositional spaces in HOIPs. With this workflow, we synthesized and characterized 368 11 

different microcrystals within 4 days. It was demonstrated that a combination of laboratory 12 

automation and machine learning can be used for the rapid mapping of both the concentration-13 

dependent physical properties and long-term stability in broad concentration spaces of hybrid 14 

organic-inorganic perovskites, verifying the presence of the regions with high stability. This 15 

workflow is a necessary step to guide the material synthesis and to gain an insight into the overall 16 

behavior of the complex phase diagram of mixed perovskites. Therefore, this approach opens the 17 

pathway for the discovery of new HOIPs with optimized properties for multifunctional 18 

optoelectronics.  19 
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Materials and methods 17 

Synthesis of Precursor Solutions 18 

The MAPbBr3 0.3 M precursor solution was made by dissolving 0.0672 g of MABr and 0.2202 g 19 

of PbBr2 in 2 mL of n’n-dimethylformamide (DMF). The MAPbI3 0.3 M precursor solution was 20 

made by dissolving 0.2861 g of MAI and 0.8298 g of PbI2 in 6 mL of γ-butyrolactone (GBL). The 21 

FAPbBr3 0.3 M precursor solution was made by dissolving 0.2249 g of FABr and 0.6606 g of 22 

PbBr2 in 6 mL of n’n-dimethylformamide (DMF). The FAPbI3 0.3 M precursor solution was made 23 

by dissolving 0.1032 g of FAI and 0.2766 g of PbI2 in 6 mL of γ-butyrolactone (GBL). The 24 

CsPbBr3 0.3 M solution was made by dissolving 0.2554 g of CsBr and 0.4404 g of PbBr2 in 4 mL 25 

of dimethyl sulfoxide (DMSO). The CsPbI3 0.3 M solution was made by dissolving 0.3118 g CsI 26 

and 0.5532 g of PbI2 in 4 mL of n’n-dimethylformamide (DMF). Each solution was stirred at 500 27 

rpm for 1 hour until the precursors were completely dissolved. The vial was covered with 28 

aluminum foil to protect it from possible light effects. All steps mentioned were performed under 29 
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a nitrogen atmosphere. Approximately after one hour, the precursor solutions were used for the 1 

synthesis of microcrystals. 2 

Automated Synthesis of Microcrystals  3 

Automated synthesis of microcrystals was performed using Opentrons OT-2 pipetting robot. The 4 

protocol was written using their python API. In total, four microplates were synthesized and used 5 

for photoluminescence measurements. The exact volumes of the precursors deposited in each well 6 

plate is shown in Table 1. Once each of the precursors was deposited in their respective wells, 250 7 

µL of chloroform was added. Immediately after the addition of antisolvent, the microcrystals 8 

precipitated, and the solutions changed color indicating the presence of microcrystals.  9 

 10 

Figure S1. Schematic of the sample point distribution in the phase diagram for each microplate. 11 

We sampled compositions roughly equally spaced, approximately 8 at % apart, (except the initial 12 

data points from the triangle side which are 12 at % apart) to characterize the entirety of the phase 13 

diagram. 14 

 15 

 16 

 17 

 18 
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Table 1. Volumes of precursor solution in each well of the microplate. Precursor 1 is shown 1 

in black, precursor 2 in red, and precursor 3 in blue.   2 
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 2 

Figure S2. Photos of the four microplates synthesized in this study. Compositions of these plates 3 

are (a) MAxFAyCs1-x-yPbBr3, (b) MAxFAyCs1-x-yPbI3, (c) CsxFAyMA1-x-yPb(Brx+yI1-x-y)3 and (d) 4 

CsxMAyFA1-x-yPb(Ix+yBr1-x-y)3. The precipitated perovskite microcrystals can be clearly seen from 5 

the colors. In the plates containing iodide, we observe yellow precipitates, indicating the presence 6 

of PbI2, incomplete crystallization or non-perovskites phases.  7 

Photoluminescence Measurements  8 

BioTek Cytation Hybrid Multi-Mode Reader popular in biology and cell science is used for 9 

photoluminescence spectroscopy. In this equipment the data collection is designed through Gen 10 

5TM software with capability of data processing for most complex arrays. The reader features 11 

monochromators with variable bandwidths from 10-50 nm to optimize detection conditions, with 12 

unique excitation or emission parameters and filter-based fluorescence optics for high transmission 13 

and sensitivity. The monochromator can excite from both the top and the bottom of the microplate.  14 

Photoluminescence measurements were performed with an excitation wavelength of 450 nm and 15 

measured over the range of 500 to 799 nm with steps of 10 nm. It was measured from the bottom, 16 

approximately 7 mm below the well plate. All measurements were performed in a sweep mode. 17 

Photoluminescence measurements were performed every 10 minutes for approximately 6 hours.  18 
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 1 

Figure S3. Characteristic PL properties of 4 different plates at time zero in (a) CsxFAyMA1-x-2 

yPbBr3, (b) CsxFAyMA1-x-yPbI3, (c) CsxFAyMA1-x-yPb(Brx+yI1-x-y)3 and (d) CsxMAyFA1-x-yPb(Ix+yBr1-3 

x-y)3 systems. The color change in each panel represents different concentration of precursors. 4 

 5 

 6 

 7 

Figure S4. The complementary maps to Figure 2. The triangle maps demonstrate the analysis of 8 

PL responses prior to GP interpolation. 9 

 10 

 11 
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Determining the correct number of components, N, for Non-negative Matrix Factorization 1 

(NMF): 2 

Overall, the operator chooses the number of components (N) based on the knowledge of the 3 

system. In this study, we chose the number of components subjectively by visually inspecting the 4 

loading maps as we increase the number of components. However, we can estimate the “optimal” 5 

number of components analytically by checking the error between NMF and the actual matrix. We 6 

then calculate the error difference, 𝛿ଵ, by subtracting the error for N + 1 components by N 7 

components. We do this for N + k components, building a list of delta values. Once 𝛿ଵ is not 8 

changing substantially, we assume that the approximation is not improving by adding more 9 

components.  10 

 We have included exemplary figures that help demonstrate how we chose a certain number 11 

of components for both Figures 2, 5, and 6. As an example, we compared the number of 12 

components for the model system: MAPbI3, FAPbBr3 and CsPbBr3 at t = 0. We observe similar 13 

components once we increase the number of components. For example, for N = 3, the first 14 

component from N = 2 has been split into the first and third components.  To determine the number 15 

of components used for our stability measurements, we followed a similar approach. For the visual 16 

determination, we noticed that after three components, the components began to look quite similar; 17 

therefore, we decided to use three components for this part of the experiment. This observation is 18 

confirmed by our analytical approach.  19 

 20 

 21 
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 1 

Figure S5. Visual comparison for determining the correct number of components for Non-negative 2 

Matrix Factorization (NMF) for the CsxFAyMA1-x-yPb(Brx+yI1-x-y)3 quasi-ternary system at time zero 3 

in Figure 2.  4 
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 1 

Figure S6. Visual comparison for determining the correct number of components for Non-negative 2 

Matrix Factorization (NMF) for the CsxFAyMA1-x-yPb(Brx+yI1-x-y)3 quasi-ternary system in Figure 6 3 

as it was exposed to ambient conditions.  4 

 5 
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 1 

Figure S7. The corresponding triangle maps in Figure 4 showing the PL analysis performed 2 

without the GP interpolation. 3 

 4 

The assessment of the Gaussian process (GP) model with the experimental data 5 

The Gaussian process (GP) belongs to the category of ‘lazy’ machine learning algorithms, for 6 

which, there are no pure “train” and “test” phases (unlike for many other mainstream ML 7 

algorithms such as deep learning). The reason for using “train”/“test” or “fit”/“predict” 8 

terminology is simply consistency from a coding standpoint. The quality of GP prediction or, more 9 

precisely, model’s (un)certainty, is usually accessed via Bayesian uncertainty estimates. The 10 

uncertainty maps for each three components is included here. We have also performed a classical 11 

model validation. Here, 80% of the labelled data is used for extrapolating the entire phase diagram. 12 

Then, the values corresponding to the other 20% of the labelled data are compared with GP 13 

predictions in those points, Figure S8. The resultant RMSE values are shown, indicating of high 14 

quality of the prediction. 15 
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 1 

Figure S8: The estimated Bayesian uncertainty for the assessment of GP model for the three 2 

components in Figure 5 (a-c). The resultant root mean squared error (RMSE) calculated for each 3 

component is also shown. The line with large uncertainties is related to large spaing between 4 

measurement points in the parameter space. 5 

 6 

 7 

 8 

 9 

Figure S9. The corresponding triangle maps in Figure 5 showing the PL analysis performed 10 

without the GP interpolation. 11 

 12 
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 1 

Figure S10. PL spectra of CsPbI3 microcrystals as function of time. We observe a broad peak 2 

around the 500-600 nm region with extraneous peaks at higher wavelengths. In combination with 3 

the color of the precipitates, this spectrum indicates the formation of PbI2 microcrystals instead of 4 

CsPbI3. Overall, this is indicative of this composition being unstable before exposure to ambient 5 

conditions.  6 


