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Abstract

This report describes a double-exponential algebraic equation for the time course of irreversible
enzyme inhibition following the two-step mechanism E + I 
 E·I → EI, under the steady-state
approximation. Under the previously invoked rapid-equilibrium approximation [Kitz & Wilson
(1962) J. Biol. Chem. 237, 3245] it was assumed that the rate constant for the reversible dis-
sociation of the initial noncovalent complex is very much faster than the rate constant for the
irreversible inactivation step. The steady-state algebraic equation reported here removes any re-
strictions on the relative magnitude of microscopic rate constants. The resulting formula was
used in heuristic simulations designed to test the performance of the standard rapid-equilibrium
kinetic model. The results show that if the inactivation rate constant is significantly higher than
the dissociation rate constant, the conventional “kobs” method is incapable of correctly distin-
guishing between the two-step inhibition mechanism and a simpler one-step variant, E+ I → EI,
even for inhibitors that have very high binding affinity in the reversible noncovalent step.

Key words: enzyme kinetics; inhibition; irreversible inhibition; covalent inhibition; steady-state
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1. Introduction

The standard algebraic method of fitting irreversible inhibition data [1, Chap. 9] is based
on the simplifying assumption that the reversible formation of the initial noncovalent enzyme–
inhibitor complex is essentially instantaneous on the time scale of the experiment. This assump-
tion implies that the rate constant for covalent inactivation (“kinact”) is very much smaller than
the dissociation rate constant (“koff”). However, an examination of existing experimental results
reveals that the typical values of rate constants for the covalent inactivation step [2, Fig. 63]
are not significantly smaller than the typical dissociation rate constants of therapeutically rele-
vant enzyme inhibitors [3]. Thus, the rapid-equilibrium approximation clearly does not hold in
many experiments, in which covalent inhibitors are evaluated for potency as possible therapeutic
agents. This means that the standard algebraic equations normally used to fit covalent kinetic
data might not be appropriate in many cases.

One possible solution to this difficulty is to utilize mathematical models that are based on the
numerical solution of systems of simultaneous first-order ordinary differential equations (ODEs).
This approach avoids having to make any simplifying assumptions, either about the underlying
inhibition mechanism, or about the magnitude of microscopic rate constants. For example, the
software package DynaFit [4, 5], which implements a highly advanced numerical ODE solver
algorithm [6], was used in the study of covalent inhibition of the EGFR kinase [7]. However,
one significant disadvantage of mathematical models that rely on the numerical solution of ODE
systems is that that the requisite numerical algorithms are highly complex by comparison with
the closed-form algebraic equations. Most importantly, high quality ODE solving algorithms are
implemented in only very few off-the-shelf software packages.

In this report we present a simple algebraic mathematical model that can be used either to
simulate or to fit covalent inhibition data by using any generic software package and does not
require a highly specialized ODE solving algorithm. The algebraic model presented here allows
that the three microscopic rate constants for two-step covalent inhibition (“kinact”, “kon”, and
“koff”) can have arbitrary values. The model is based on two simplifying assumptions. First, it
is assumed that there is no inhibitor depletion, meaning that the concentration of the inhibitor is
assumed to be very much higher than the concentration of the enzyme. The second simplifying
assumption is that the uninhibited reaction rate is constant throughout the entire assay, meaning
that the positive control progress curve can be mathematically described as a straight line.
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2. Methods

This section describes the theoretical and mathematical methods that were used in heuristic
simulation described in this report. All computations were performed by using the software
package DynaFit [4, 5]. Explanation of all mathematical symbols is given in the Appendix, see
Table A.1 and Table A.2.
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Figure 1: Kinetic mechanisms of substrate catalysis (top) and covalent inhibition (mechanisms
A – C). For details see text.

2.1. Kinetic mechanisms of irreversible inhibition
In this report we will consider in various contexts the kinetics mechanisms of substrate

catalysis and irreversible inhibition depicted in Figure 1. The top reaction scheme in Figure
1 represents the basic Michaelis-Menten reaction mechanisms for substrate catalysis [8]. In the
inhibition mechanisms A through C, it is assumed that the covalent inhibitor I is kinetically com-
petitive with the substrate S, because the inhibitor binds only to the free enzyme E and not to the
Michaelis complex E·S. Kinetic mechanisms A and B both include two consecutive steps, where
E·I is a reversibly formed noncovalent initial complex. However, the theoretical assumptions
underlying the two kinetic models are different.

Mechanism A pertains to the steady-state approximation in enzyme kinetics, where the mag-
nitudes of the microscopic rate constants k1, k−1, and k2 can have any arbitrary values. Under
those circumstances the steady-state inhibition constant is defined as KI = (k−1 + k2)/k1 ac-
cording to Malcolm & Radda [9]; the second order covalent efficiency constant also known as
“kinact/Ki” is defined as keff = k1 k2/(k−1 + k2). In contrast, mechanism B is invoked under the
rapid equilibrium approximation [10], where it is assumed that the inactivation rate constant k2
is negligibly small compared to the dissociation rate constant k−1 and that the enzyme, inhibitor,
and the noncovalent complex are always at equilibrium. If so, the steady-state inhibition con-
stant KI simplifies to its rapid equilibrium counterpart Ki = k−1/k1 and the second order covalent
efficiency constant is defined more simply as keff = k1 k2/k−1.
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Kinetic mechanism C formally describes a direct formation of the irreversibly formed cova-
lent conjugate EI. In this case, the second-order bimolecular rate constant k1 plays the role of the
covalent efficiency constant keff . Note that under mechanism C there is no distinction between
the steady-state and rapid-equilibrium approximations, because the noncovalent initial complex
E·I is absent.

2.2. Mathematical models

2.2.1. General mathematical model for the reaction progress
The progress of enzyme reactions is represented by Eqn (1), where F is the experimental

signal such as fluorescence intensity; F0 is the experimental signal observed at time zero (i.e.,
a baseline signal as a property of the instrument); [P] is the concentration of product P at the
reaction time t in some appropriate concentration units, such as micromoles or nanomoles per
liter; and rP is the molar response coefficient of the product under the given conditions. The molar
response coefficient rP is a proportionality constant that translates the product concentration to
an experimentally observable signal, such as UV/Vis absorbance, fluorescence, or peak area, in
appropriate instrument units.

F = F0 + rP [P] (1)

2.2.2. Uninhibited substrate kinetics
In the absence of inhibitors, it is assumed that the product concentration changes over time

according to the linear Eqn (4), where v0 is the uninhibited initial rate according to Eqn (2) and
t is the reaction time. The linearity of Eqn (4) implies that the uninhibited reaction rate v0 stays
effectively constant under the given experimental conditions. This in turn implies either that the
initial substrate concentration is very much higher than the Michaelis constant KM defined by
Eqn (3); or that only a negligibly small fraction of the substrate S is converted to the product P
at the end of the uninhibited assay; or that both of the above assumptions are satisfied.

v0 = k2s [E]0
[S]0

[S]0 + KM
(2)

KM =
k−1s + k2s

k1s
(3)

[P] = v0 t (4)

2.2.3. Steady-state model for two-step covalent inhibition
In the presence of a covalent inhibitor following the steady-state mechanism A the concen-

tration of product P changes over time according to the double-exponential Eqn (5). The two
exponential amplitudes a1, a2 and the two first-order rate constants r1, r1 are defined by Eqns
(7)–(10), respectively. The underlying assumptions are (1) zero substrate conversion, implied by
the linear Eqn (4), and (2) zero inhibitor depletion, in the sense that the inhibitor concentration is
very much higher than the active enzyme concentration. Exactly identical algebraic expressions
for r1 and r1 were derived previously by Cornish-Bowden [11] in the context of analyzing the
changes in the residual enzyme activity as opposed to the amount of reaction product.
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[P] =
v0

[I]0

1
k∗eff

[
1 − a1 exp (−r1 t) − a2 exp (−r2 t)

]
(5)

F = F0 +
V0

[I]0

1
k∗eff

[
1 − a1 exp (−r1 t) − a2 exp (−r2 t)

]
(6)

a1 =
α + β

2α
(7)

a2 =
α − β
2α

(8)

r1 =
γ − α

2
(9)

r2 =
γ + α

2
(10)

α =

√(
[I]0 k∗1 + k−1 + k2

)2 − 4 [I]0k∗1 k2 (11)

β = [I]0 k∗1
k−1 − k2

k−1 + k2
+ k−1 + k2 (12)

γ = [I]0 k∗1 + k−1 + k2 (13)

k∗1 =
k1

1 + [S]0/KM
(14)

k∗eff =
k∗1 k2

k−1 + k2
(15)

The auxiliary variables α, β, γ, and k∗1 are defined by Eqns (11)–(14); t is the reaction time;
[I]0 is the total or analytic concentration of the inhibitor, assumed to be effectively constant
throughout the inhibition assay; and k∗eff is the apparent covalent efficiency constant. Note that
the sum of exponential amplitudes a1+a2 is by definition equal to unity, because (α+β)/2α+(α−
β)/2α = 1. Thus, in this sense a1 and a2 are relative amplitudes. The second exponential term,
with amplitude a2, decays faster than the first term, with amplitude a1, because by definition
α and γ are both positive and therefore (α + γ) > (α − γ), which implies r2 > r1 for the two
first-order rate constants.

The definition of k∗1 in Eqn (14) expresses the assumption that the inhibitor (I) is kinetically
competitive with the substrate (S), in the sense that S and I bind to the same enzyme form, E.
If the inhibitor happened to be kinetically non-competitive with the substrate, in the sense that
the inhibitor would bind simultaneously and equally strongly to the free enzyme E and to the
Michaelis complex E·S, the definition of k∗1 would change such that k∗1 = k1. This situation could

5



arise experimentally for example in covalent inhibition assays of protein kinases following an
Ordered Bi-Bi catalytic mechanism [8], in which the inhibitor might be kinetically competitive
with ATP (i.e., noncompetitive with peptide substrate) but at the same time the assay might mon-
itor the appearance of the phosphorylated peptide, as opposed to ADP. Irreversible inhibition of
bi-substrate enzymes such as protein kinases, specifically under the rapid-equilibrium approxi-
mation, is discussed in detail in ref. [12].

2.2.4. Rapid-equilibrium model for two-step covalent inhibition
Under the rapid-equilibrium approximation symbolized by the kinetic mechanism B, the

product concentration changes over time according to Eqn (16) previously derived by Tian &
Tsou [13]; see their equations (A10) and (A15) in the original numbering. This algebraic model
is shown here merely to highlight similarities and differences in comparison with the steady-state
model represented by Eqn (5), as discussed below.

[P] =
v0

[I]0

K∗i
k2

[
1 − exp

(
−k2

[I]0

[I]0 + K∗i
t
)]

(16)

2.2.5. One-step covalent inhibition
Under the simplifying assumption of (1) zero substrate conversion and (2) zero inhibitor de-

pletion, and also assuming that the given inhibitor follows the one-step kinetic mechanism C,
the concentration of product P changes over time according to Eqn (17). Thus, under the steady-
state approximation, the two-step inhibition mechanism is described by double-exponential ki-
netic equation Eqn (5), whereas the one-step inhibition mechanism C is described by a single-
exponential kinetic Eqn (17). Note that Eqn (16) was also previously derived by Tian & Tsou
[13]; see their equation (A13) in the original numbering, after setting “k′

+0” in that equation to
zero, to account for purely competitive irreversible inhibition.

[P] =
v0

[I]0

1
k∗1

[
1 − exp

(−k∗1 [I]0 t
)]

(17)

2.2.6. General ODE model for two-step covalent enzyme inhibition
In the context of differential-equation modeling, the two-step inhibition mechanism A in

Figure 1 is mathematically represented by the ODE system defined by Eqns (18)–(24).
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d[E]
dt

= −k1s[E][S] + (k−1s + k2s)[E·S] − k1[E][I] + k−1[E·I] (18)

d[S]
dt

= −k1s[E][S] + k−1s[E·S] (19)

d[E·S]
dt

= +k1s[E][S] − (k−1s + k2s)[E·S] (20)

d[P]
dt

= +k2s[E·S] (21)

d[I]
dt

= −k1[E][I] + k−1[E·I] (22)

d[E·I]
dt

= +k1[E][I] − (k−1 + k2)[E·I] (23)

d[EI]
dt

= +k2[E·I] (24)

The ODE system defined by Eqns (18)–(24) was automatically generated by the software
package DynaFit [5] from symbolic input. See the Supporting Information for details.

3. Results

According to Cobelli et al. [14], “[t]he notion of identifiability addresses the question of
whether it is at all possible to obtain unique solutions for unknown parameters of interest in
a mathematical model, from data collected in well defined stimulus-response experiments per-
formed on a dynamic system represented by the model.” Structural identifiability analysis [15]
is concerned with idealized data, completely free of the error, whereas practical identifiability
analysis takes the inevitable random error into account [16]. In this section we first address both
the structural and the practical identifiability of the newly derived algebraic model for covalent
inhibition. We then use this model to conjure up a hypothetical irreversible inhibitor that has
very strong initial binding affinity, as measured by the dissociation equilibrium constant Ki of
the initial noncovalent complex, and yet apparently follows the “one-step” kinetic mechanism C,
as if the complex E·I were absent.

3.1. Structural identifiability analysis

The results of structural identifiability analysis are illustrated in Figure 2. Idealized, noise-
free data were simulated by using the following values of model parameters in Eqn (6): F0 = 0;
V0 = 0.0005 RFU/sec;1 k∗1 = 0.5 µM−1s−1; k−1 = 0.001 s−1; and k2 = 0.01 s−1. Note that
k2/k−1 = 10, meaning that that rapid-equilibrium approximation (requiring k2 << k−1) does
not hold. The inhibitor concentrations were 0.5, 1, 2, 4, 8, and 16 nM. The simulated time

1 RFU stands for relative fluorescence units, but in the more general case it could represent any other appropriate
instrument unit such as UV/Vis absorbance units, chromatographic peak areas, radioactive counts, etc.
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Figure 2: Results of structural identifiability analysis. Idealized, noise-free data were simulated
by using the algebraic Eqn (5) and fit by using the ODE system Eqns (18)–(24)

coordinates were 0, 60, 120, 180, ..., 3000 seconds (50 simulated time points, stepping by one
minute). The artificial data were subsequently subjected to a global fit [17] to an ODE model
defined by Eqns (18)–(24). In the ODE model, the fixed parameters were [E]0 = 1 pM, [S]0 = 1
µM, k1s = 10 µM−1s−1, k−1s = 9.9 s−1, k2s = 0.1 s−1, and rP = 104 RFU/µM. Accordingly,
the Michaelis constant value was KM = (0.1 + 9.9)/10 = 1 µM. The globally optimized model
parameters were the molar response coefficient rP and the rate constants k1, k−1 and k2; locally
optimized2 model parameters were the eight baseline offsets, F0, fit separately for each progress
curve. DynaFit [5] scripts that were used for the simulation and for the fitting are listed in the
Supporting Information.

The best-fit values of the globally optimized model parameters and the associated formal
standard error were as follows: k1 = (1.0012± 0.0003) µM−1s−1; k−1 = (0.00102± 0.00001) s−1;
k2 = (0.01011±0.00003) s−1; and rP = (10000.10±0.04) RFU/µM. The expected best-fit value of
k1 was 1 µM−1s−1, because the simulated value of k∗1 = k1/(1+ [S]0/KM) was 0.5 µM−1s−1 and the
adjustment factor 1+[S]0/KM in this case is equal to 1+1/1 = 2. Thus, the fitted and theoretically
expected values of all adjustable model parameters agree within five significant digits. The best-
fit model curves also agree with the simulated data within five significant digits, as is illustrated in
the residual plot shown as the bottom panel of Figure 2. The very small systematic discrepancies
between the algebraic and ODE models, shown in the slightly non-random distribution of the
residuals of fit, are due to the inevitable propagation of round-off and truncation errors.

2 Local optimization means that the optimized parameter is adjustable in the fitting model such that the best-fit value
is specific only to a subset of experimental data points, such as in this case each individual progress curve.
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The two main conclusions that can be reached from the results of this heuristic simulation
study are as follows. First, the theoretical model represented by Eqn (5) is algebraically correct,
because it is congruent with a fully independent mathematical representation provided by the nu-
merical solution of an equivalent ODE system. Second, the algebraic model is structurally identi-
fiable with respect to all three microscopic rate constants that appear in the inhibition mechanism
A. Thus, in the purely hypothetical case of having access to entirely noise-free experimental data,
it would always be possible to determine all three rate constants k1, k−1 and k2 by performing a
global least-squares fit of combined reaction progress curves similar to those shown in Figure 2.

3.2. Practical identifiability analysis
In the practical identifiability study the roles of the algebraic vs. numerical models were

reversed. Artificial data were simulated according to the differential-equation system Eqns
(18)–(24), this time with a finite level of experimental noise added to the results. The pseudo-
experimental data were subsequently fit by using the algebraic model represented by Eqn (6).
The requisite DynaFit [5] input scripts are listed in the Supporting Information.
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Figure 3: Artificial data simulated by using the ODE system Eqns (18)–(24). Left: Pseudo-
experimental data (symbols) and the corresponding idealized model curves. Right: Enzyme
species concentrations evolving over time at [I]0 = 80 nM. The “concentration” axis is in µM
units.

The simulated concentration plot in the bottom panel of Figure 3 shows that at [I]0 = 80 nM
the noncovalent complex E·I has a significant presence in the evolving reaction mixture and that
this noncovalent complex is formed gradually, as opposed to instantaneously, on the time scale of
the simulated experiment. These observations suggest that there is a good chance of successfully
determining all three rate constants that appear in the two-step inhibition mechanism A.
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Simulated data shown in Figure 3 were globally fit to the algebraic model represented by
Eqn (6). The overlay of the best-fit model curves on the simulated data points was visually
indistinguishable from the display of the simulated shown in Figure 3. The residual plots were
distributed randomly, similar to the residual plot shown in Figure 3, upper panel. The best-fit
values of globally adjustable model parameters are listed in Table 1. The columns labeled “low”
and “high” are lower and upper limits, respectively, of non-symmetrical confidence intervals
obtained by the profile-t method [18, 19] at 5% ∆SSQ level according to the empirical cut-off
criterion advocated by Johnson [20, 21].

parameter best-fit ± std. err. low high

V0, RFU/s 0.0005011 ± 0.000002
k∗1, µM−1s−1 0.046 ± 0.002 0.040 0.056
k−1, s−1 0.0007 ± 0.0001 0.0004 0.0014
k2, s−1 0.0008 ± 0.0001 0.0003 0.0012

Table 1: Results of practical identifiability analysis. For details see text.

The results displayed in Table 1 show that all three microscopic rate constants appearing in
the steady-state two-step covalent inhibition mechanism A could be reliably determined from
the simulated data. The non-symmetrical confidence interval for the apparent association rate
constant k∗1 spanned from 0.046 to 0.056 µM, while the theoretically expected value of k∗1 =
k1/(1 + [S]0/KM) = 0.05 µM. Similarly, the confidence intervals for k−1 and k2 were relatively
narrow (high/low ratios were approximately equal to 4) and encompassed the simulated values
(0.001 s−1 in both cases). The best-fit values of k−1 and k2 were only 20% to 30% lower than the
simulated values. The main conclusion is that, for at least some combinations of microscopic rate
constants appearing in the two-step mechanism A, all three rate constants (k1, k−1, and k2) can
be determined in ordinary kinetic measurements, such as those that are typical for plate-reader
assays usually performed in preclinical inhibitor screening.

3.3. “One-step” kinetics of a high-affinity inhibitor

Pseudo-experimental data were simulated by using the following values of model parameters
in Eqn (6): F0 = 0, V0 = 0.0005 RFU/sec; k∗1 = 0.5 µM−1s−1; k−1 = 0.001 s−1; and k2 = 0.01 s−1.
Note that those are the same parameters that were used in the structural identifiability analysis,
as described in section 3.1. However, in this case the simulated signal was perturbed by adding
a Gaussian-distributed random noise with the standard deviation equal to 0.5% of the maximum
simulated value. Each of the simulated progress curves were fit individually and separately to
the standard algebraic model [1, sect. 9.1] for the time course of covalent inhibition, represented
by the exponential Eqn (25), where Vi is the initial reaction rate in instrument units and kobs is
the apparent first-order rate constant corresponding to each inhibitor concentration.

F = F0 +
Vi

kobs

[
1 − exp (−kobs t)

]
(25)

The results of fit are shown graphically in Figure 4. Note that the residuals of fit in the
bottom panel are distributed randomly, which means that the single-exponential Eqn (25) is an
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adequate fitting model for this data, even though the data were simulated on the basis of a double-
exponential Eqn (5). The best-fit values of the apparent first-order rate constant kobs obtained at
each inhibitor concentration are collected in Table 2.
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Figure 4: Results of fit of each individual progress curve simulated by using Eqn (5), with
parameter values listed in the text, to Eqn (25), in order to determine the kobs values associated
with each inhibitor concentration listed in the right margin.

The kobs results collected in Table 2 were subjected to a model discrimination analysis ac-
cording to the procedure described in ref. [22], considering Eqn (26) and Eqn (27) as the two
candidate fitting models, according to the standard treatment described in ref. [1, sect. 9.1]
and elsewhere. The hyperbolic Eqn (26), corresponding to the two-step mechanism B, could be
reliably excluded from consideration, using four independent statistical model selection criteria
[22]. The preferred model was the linear Eqn (27), corresponding to the one-step mechanism C.
The fit to the linear Eqn (27) produced a very well defined value of k∗1 = (0.450±0.003) µM−1s−1,
with the 95% confidence interval computed by the profile-t method [18, 19] spanning from 0.443
to 0.457 µM−1s−1. The results of fit to the linear model regression model are shown in Figure 5.

kobs = k2
[I]0

[I]0 + K∗I
mechanism B (26)

kobs = k∗1 [I]0 mechanism C (27)
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[I]0, nM 1000 × kobs, s−1 ± std. err.

0.5 0.225 ± 0.006
1 0.458 ± 0.008
2 0.902 ± 0.016
3 1.327 ± 0.027
4 1.806 ± 0.045
5 2.280 ± 0.070
6 2.715 ± 0.101
8 3.485 ± 0.188

10 4.561 ± 0.320

Table 2: Best-fit values of the apparent first-order rate constant kobs obtained by fitting the
progress curves shown in Figure 4 to the exponential Eqn (25).
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Figure 5: Results of fit of the kobs values listed in Table 2 to Eqn (27), corresponding to the
one-step covalent inhibition mechanism C. For further details see text.

The values of microscopic rate constants used in simulating the artificial data shown in Fig-
ure 4 were k∗1 = 0.5 µM−1s−1, k−1 = 0.001 s−1 and k2 = 0.01 s−1. The apparent covalent efficiency
constant is defined as k∗eff = k∗1 × k2/(k−1 + k2). Accordingly, the “true” value of the covalent effi-
ciency constant was k∗eff = 0.5×0.01/(0.001+0.01) = 0.454545 µM−1s−1. Thus the best-fit value
k∗1 = (0.450 ± 0.003) µM−1s−1 and the “true” value keff = 0.454 µM−1s−1 are in good agreement.
Importantly, this agreement between the “true” and best-fit values of k∗eff ≡ “kinact/K∗i ” holds even
though the individual values of kinact and K∗i could not be determined from the simulated data.
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4. Discussion

Challenges in evaluating covalent inhibitors as potential drugs
Reliable evaluation of irreversible enzyme inhibitors as potential therapeutic agents is ex-

ceptionally challenging for the biochemical data analyst engaged in drug discovery. The reason
is that the overall potency of covalent inhibitors consists of two separate and yet intertwined
contributions. First, the inhibitor’s binding affinity is measured by the inhibition constant, Ki.
Second, the inhibitor’s chemical reactivity is measured by the inactivation rate constant kinact.
However, we have previously documented that at least some inhibitors currently being prescribed
as experimental anti-cancer drugs effectively follow the one-step kinetic mechanism C [22]. In
those cases, the only available measure of potency is the efficiency constant keff , also known as
“kinact/Ki”, which blends together both affinity and reactivity such that those two distinct molec-
ular properties can no longer be evaluated separately.

Irreversible inhibitors express their potency in a dynamic fashion, in the sense that the resid-
ual enzyme activity decreases over time, along with the gradual evolution of the permanent co-
valent bond between the enzyme and the inhibitor. Thus, in order to evaluate the potency of
covalent inhibitors, we need mathematical models that describe the gradual formation of the fi-
nal reaction product while appropriately taking into account that the rate of product formation
(i.e., enzyme activity) inevitably decreases over time. As a result, all mathematical models for
the progress of covalent inhibition assays are by definition nonlinear. This complexity presents
an additional challenge when compared with measuring the potency of noncovalent inhibitors,
where the assay in many cases can be arranged such that the reaction progress is nearly linear.

Existing models for the progress of covalent inhibition
Currently existing nonlinear regression models for the progress of covalent inhibition assays

can be divided into two categories, according to the mathematical formalism involved. In the
first category are highly advanced differential equation models, which eliminate any simplify-
ing assumptions about the relative magnitude of microscopic rate constants, such as the rapid-
equilibrium approximation [8]; about the relative concentration of reactants, such as requiring
a very large excess of inhibitor over enzyme; or about the reaction conditions, such as assum-
ing strict linearity of the positive control progress curve. One important disadvantage of these
ODE models is that they require highly specialized software algorithms for the numerical (i.e.,
iterative) solution of ODE systems.

In the second category of mathematical models are algebraic equations, such as Eqn (25)
originally derived by Tian & Tsou [13], where the definition of kobs is given by Eqns (26)–(27).
Eqn (25) applies only to covalent inhibition assays where the uninhibited positive control reaction
proceeds at a strictly constant rate, meaning that the plot of product concentration over time is
linear. We have previously described a closely related algebraic model that allows for the control
assay to be exponential, as opposed to linear [23]. On the one hand, these algebraic models
have the major advantage that they can be implemented in any software system that allows the
investigator so specify an arbitrary algebraic equation. On the other hand, both of these algebraic
equations are based on the rapid-equilibrium approximation in enzyme kinetics [8]. Accordingly,
it is assumed the chemical inactivation step (rate constant k2 in Figure 1) is very much slower
than the dissociation of the noncovalent complex (rate constant k−1).

In the specific case of the single-exponential model represented by Eqn (25), Cornish-Bowden
[24, sec. 7.2.2] pointed out that “if k2 is not small enough to allow formation of E·I to be treated
as an equilibrium [...] the loss of activity does not follow simple first-order kinetics: there is no
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exact analytical solution, but the kinetics may still be analyzed by numerical methods.” How-
ever, Cornish-Bowden’s statement that there is no “analytical solution” happens to be incorrect,
because the desired exact analytic (i.e., algebraic) solution does exist and is represented by the
newly derived double-exponential Eqn (5).

A need for the newly derived steady-state algebraic model
Why is it important to have at our disposal a closed-form algebraic model for the time-

course of covalent inhibition assays under the steady-state approximation? There are at least two
important reasons, which are now addressed in their turn.

The first and most important need for the algebraic model newly presented in this report is
that the overly simple rapid-equilibrium approximation (k2 << k−1) is almost certainly violated
in many practically relevant cases. This is especially true for the most promising drug candidates.
The Kinetics for Drug Discovery (K4DD) project [3] revealed that the dissociation rate constants
for therapeutically relevant enzyme inhibitors are frequently in the range corresponding to hour-
long drug–target residence times, which implies k−1 < 0.0001 s−1 or even k−1 < 0.00001 s−1

in many cases. On the other hand, Abdeldayem et al. [2] reported that the large majority of
covalent inhibitor drugs and drug candidates are associated with inactivation rate constants in
the range from approximately k2 = 0.0001 s−1 to k2 = 0.01 s−1. Therefore, assuming that the
initial (noncovalent, reversible) binding affinity of covalent inhibitors is reasonably similar to the
binding affinity of their noncovalent structural analogs, we can conclude that the typical values of
dissociation rate constants are not very much larger than the covalent inactivation rate constants,
as is required by the rapid-equilibrium approximation. Thus, the single-exponential equation
Eqn (25) for the reaction progress is very likely to be invalid, especially in the case of highly
potent covalent drugs.

The second reason to have available an algebraic equation as the theoretical model for the
progress of steady-state covalent inhibition assays is convenience and portability. The newly
derived algebraic Eqn (5) can be implemented even in general-purpose software systems such as
in Microsoft Excel, as opposed to requiring highly specialized ODE solving algorithms that are
only available in very few software packages. In fact, a relevant Microsoft Excel template file is
attached as one of the Supporting Information documents.

“One-step” kinetics of high-affinity covalent inhibitors
One of the principal motivations for addressing the fundamental difference between the

steady-state approximation and the rapid-equilibrium approximation in the analysis of covalent
inhibition data has been the puzzling observation that many highly potent covalent inhibitors
apparently follow the one-step kinetic mechanism C. The inhibition of certain protein kinases
by ibrutinib represents a typical example [22, 25]. The occurrence of the one-step mechanism
has been described as “nonspecific affinity labeling” in textbook literature. Small-molecule in-
hibitors similar to iodoacetate and N-ethyl maleimide are assumed to simultaneously modify
many side-chains on the target protein molecule and have negligibly low initial binding affinity,
which presumably explains their one-step kinetic behavior. In contrast, highly specific inhibitors
that precisely target the enzyme’s active site are assumed to always follow the two-step kinetic
mechanism A or B [24, sec. 7.2.1] [1, sec 9.1]. In this sense, the fact that certainly highly specific
and high-affinity inhibitors also follow the one-step mechanism C might appear as a paradox.

In order to better understand the unexpected “one-step” kinetics of certain high-affinity in-
hibitors, in section 3.3 of this report we have conjured up an inhibitor with molecular properties
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that were perfectly known (i.e., simulated) in advance. The objective was to simulate a com-
pound that might approximate the kinetic properties of ibrutinib and similar “one-step” inhibitors
of protein kinases. This hypothetical inhibitor was characterized by high initial binding affinity,
with inhibition constant equal to Ki = 1 nM. We have simulated assays of this inhibitor at concen-
trations as high as [I](max)

0 = 10 nM, which is ten times higher than the inhibition constant. Under
the rapid-equilibrium approximation, it should be easily possible to determine the inhibition con-
stant from the simulated data, because at a ten-fold excess of the inhibitor concentration over the
inhibition constant the plot of kobs vs. [I]0 is expected to be highly hyperbolic. The maximum
observed kobs value should be closely approaching the asymptotically saturating value, which is
by definition equal to kinact. However, the actually observed kobs vs. [I]0 plot was essentially
linear, showing no sign of hyperbolic saturation. This means that only the covalent efficiency
constant keff = “kinact/Ki” could be determined from the simulated data, but not the values of
kinact and Ki considered separately.

The results of this simulation study confirm what has been observed experimentally for ex-
ample for ibrutinib inhibition of the TEC and BTK kinases [22, 25]. A highly specific, precisely
targeted, and high-affinity irreversible inhibitor characterized by an extremely low equilibrium
dissociation constant of the reversibly formed noncovalent complex, can indeed behave kineti-
cally though the reaction were proceeding via the simple one-step mechanism C. There are at
least two possible non-mathematical explanations of this potentially puzzling behavior.

The first intuitively accessible explanation of “one-step” kinetics has to do with the familiar
idea that those reversible (non-covalent) inhibitors that are characterized by extremely low dis-
sociation rate constant k−1 can behave as effectively irreversible on the time scale of the given
kinetic experiment. In fact, the distinction between truly irreversible (covalent) inhibition and ef-
fectively irreversible (non-covalent) inhibition can be so blurred that in many cases it can only be
established by specialized experiments [1, sec. 5.2]. See also our previous results on extremely
potent, non-covalent but nearly irreversible inhibitors of 5-α-ketosteroid reductase [26]. Impor-
tantly, if a given covalent inhibitor happens to be effectively or nearly irreversible already in the
first noncovalent binding step, the overall two-step covalent inhibition mechanism will kineti-
cally manifest as a one-step process. This is because the decrease in enzymatic activity over time
is exactly identical for the one-step irreversible mechanism, E + I → EI, and for the two-step
inhibition mechanism where both steps are irreversible, E + I → E·I → EI. See Appendix C for
mathematical details.

Another intuitively understandable reason for the puzzling “one-step” kinetic behavior of cer-
tainly highly specific and precisely targeted irreversible inhibitors has to do with the distinction
between the inhibition constant KI and the equilibrium dissociation constant Ki of the noncova-
lent enzyme–inhibitor complex. As an illustrative example, consider the hypothetical case of a
fully reversible inhibitor characterized by k1 = 106 M−1s−1 and k−1 = 0.0001 s−1, correspond-
ing to drug–target residence time of almost 3 hours. The corresponding equilibrium dissociation
constant is Ki = k−1/k1 = 0.0001/1.0 = 0.0001 µM = 0.1 nM. Now let us assume for the sake
of discussion that the initial noncovalent binding affinity of this molecule does not deteriorate by
appending to it a chemically reactive covalent warhead such that the inactivation rate constant is
k2 = 0.1 s−1, similar to a number known cases [2]. If so, the experimentally observable inhibition
constant now increases thousand-fold, because KI = (k−1 + k2)/k1 = (0.0001 + 0.1)/1 = 0.1001
µM = 100.1 nM. In a way, it is as though simply by attaching a reactive moiety to the molecule,
we had somehow turned a strong binder (Ki = 0.1 nM) to a moderate-to-weak binder (KI = 100.1
nM) without actually changing the intrinsic non-covalent binding affinity. In practical terms, it
means that it is essentially impossible to sufficiently saturate the enzyme with a highly reactive
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covalent inhibitor under experimental conditions most commonly utilized for the evaluation of
inhibitory potency. Indeed, it could easily happen that all practically useful inhibitor concen-
trations (i.e., those that are sufficiently low such that complete covalent inhibition will not be
essentially instantaneous) might be very much lower than KI – even as they might be very much
higher than Ki. If so, the compound in question will appear as a “one-step” inhibitor according
to the rule-of thumb ([I](max)

0 << KI leads to apparently “one-step” kinetics) first formulated by
Kitz & Wilson [10].

In conclusion, the steady-state algebraic model for two-step irreversible inhibition newly
derived in this report should serve as a convenient tool to help increase our understanding of
complex data-analytic issues arising in the evaluation of covalent enzyme inhibitors as potential
therapeutic agents.

Supporting information

The following supporting files accompany this document:

1. File BioKinPub-2020-03-SI.pdf: Listing of all DynaFit input scripts that were used to
generate this report; instructions for using the Microsoft Excel simulation file BioKin-TN-
2020-02-SI2.xls.

2. File BioKinPub-2020-03-SI2.xls: A Microsoft Excel template file that can be used to
simulate the reaction progress curves according to the steady-state kinetic mechanism A
in Figure 1.
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Appendix

A. Explanation of symbols

Symbol Unit Explanation

k1s M−1s−1 association rate constant for E+S→ E·S
k−1s s−1 dissociation rate constant for E·S→ E + S
k2s s−1 turnover number; k2s ≡ kcat
KM M Michaelis constant; KM = (k−1s + k2s)/k1
kS M−1s−1 catalytic efficiency constant; specificity constant; kS ≡ kcat/KM
k1 M−1s−1 association rate constant for E+I→ ...
k−1 s−1 dissociation rate constant for E·I→ E + I
k2 s−1 inactivation rate constant; k2 ≡ kinact
k∗1 M−1s−1 apparent association rate constant:

competitive: k∗1 = k1/(1 + [S]0/KM)
uncompetitive: k∗1 = k1 (1 + [S]0/KM)
noncompetitive k∗1 = k1

keff M−1s−1 second-order inhibition efficiency constant; keff ≡ “kinact/Ki”:
steady-state two-step mechanism A: keff = k1 k2/(k−1 + k2)
rapid-equilibrium two-step mechanism B: keff = k1 k2/k−1
one-step mechanism C: keff = k1

k∗eff M−1s−1 apparent inhibition efficiency constant:
competitive: k∗eff = keff/(1 + [S]0/KM)
uncompetitive: k∗eff = keff (1 + [S]0/KM)
noncompetitive k∗eff = keff

Ki M equilibrium dissociation constant of the E·I complex; Ki = k−1/k1
K∗i M apparent equilibrium dissociation constant:

competitive: K∗i = Ki (1 + [S]0/KM)
uncompetitive: K∗i = Ki/(1 + [S]0/KM)
noncompetitive K∗i = Ki

KI M inhibition constant; KI = (k−1 + k2)/k1
K∗I M apparent inhibition constant:

competitive: K∗I = KI (1 + [S]0/KM)
uncompetitive: K∗I = KI/(1 + [S]0/KM)
noncompetitive K∗I = KI

kobs s−1 apparent first-order rate constant for enzyme inactivation

Table A.1: Explanation of symbols: Microscopic rate constants and derived kinetic constants.

B. Derivation of Eqn (5)

The derivation of the steady-state algebraic model for covalent inhibition kinetics follows the
general principles utilized in ref. [27]. Accordingly, the reaction scheme displayed as mechanism
A in the main manuscript leads to the system of Eqns (B.1)–(B.7),
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Symbol Unit Explanation

[X] M concentration of reactant X, where X = S, P, I, or E
[X]0 M initial (total, analytic) concentration of reactant X
F AIU observed experimental signal in arbitrary instrument units (AIU)
F0 AIU baseline signal; baseline offset
rP AIU/M molar response coefficient of the reaction product P
v0 Ms−1 initial rate of the uninhibited enzyme reaction, at [I]0 = 0
V0 AIU s−1 observed uninhibited initial rate in arbitrary instrument units
vi Ms−1 initial rate of the inhibited enzyme reaction, at [I]0 > 0
Vi AIU s−1 observed inhibited initial rate in arbitrary instrument units
α, β, γ s−1 auxiliary variables (groupings of rate constants)
r1, r2 s−1 apparent bi-exponential rate constants
a1, a2 – bi-exponential amplitudes

Table A.2: Explanation of symbols: Concentrations, reaction rates, and auxiliary symbols.

d[E]
dt

= −k1s[E][S] + (k−1s + k2s)[E·S] − k1[E][I] + k−1[E·I] (B.1)

d[S]
dt

= −k1s[E][S] + k−1s[E·S] (B.2)

d[E·S]
dt

= +k1s[E][S] − (k−1s + k2s)[E·S] (B.3)

d[P]
dt

= +k2s[E·S] (B.4)

d[I]
dt

= −k1[E][I] + k−1[E·I] (B.5)

d[E·I]
dt

= +k1[E][I] − (k−1 + k2)[E·I] (B.6)

d[EI]
dt

= +k2[E·I] (B.7)

Assuming no substrate or inhibitor depletion ([I] = [I]0 and [S] = [S]0, where lower index
zero represents the total or analytic concentration), we can eliminate differential equations for [I]
and [S]:
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d[E]
dt

= −k1s[E][S]0 + (k−1s + k2s)[E·S] − k1[E][I]0 + k−1[E·I]

d[E·S]
dt

= +k1s[E][S]0 − (k−1s + k2s)[E·S]

d[P]
dt

= +k2s[E·S]

d[E·I]
dt

= +k1[E][I]0 − (k−1 + k2)[E·I]

d[EI]
dt

= +k2[E·I]

We now invoke the steady-state approximation for the substrate portion of the overall reaction
mechanism:

KM ≡ k2s + k−1s

k1s

[E·S]
[E] + [E·S]

=
[S]0/KM

1 + [S]0/KM

[E·S] = ([E] + [E·S])
1

1 + KM/[S]0

[E] = ([E] + [E·S])
1

1 + [S]0/KM

Utilizing the mass balance equation for the enzyme, we obtain the steady state concentrations
[E] and [E·S]:

[E]0 = [E] + [E·S] + [E·I] + [EI]

[E] + [E·S] = [E]0 − [E·I] − [EI]

[E] = ([E]0 − [E·I] − [EI])
1

1 + [S]0/KM

[E·S] = ([E]0 − [E·I] − [EI])
1

1 + KM/[S]0

This leads to the reduced system of three simultaneous linear differential Eqns (B.8)–(B.10)
for three unknowns:
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d[P]
dt

= ([E]0 − [E·I] − [EI])
k2s

1 + KM/[S]0
(B.8)

d[E·I]
dt

= ([E]0 − [E·I] − [EI])
k1

1 + [S]0/KM
[I]0 − (k−1 + k2)[E·I] (B.9)

d[EI]
dt

= k2[E·I] (B.10)

The above system of linear homogeneous ODEs can be solved by the method of Laplace
transform. For convenience, we have used the computer-algebra software package Maxima [28].
The integral solution produced by the Maxima Laplace transform algorithm is shown in Eqn
(B.11).

[P] = exp

−
(
k∗1 [I]0 + k−1 + k2

)
t

2

 [
b2

b1
sinh

(
b1 t
2

)
− b3 cosh

(
b1 t
2

)]
+ b3 (B.11)

b1 =

√
k2

2 + 2 (k−1 − k∗1 [I]0) k2 + (k∗1 [I]0 + k−1)2 (B.12)

b2 =
k∗2s [E]0

k∗1 [I]0 k2

[(
k∗1 [I]0 + k−1 + k2

)
(k2 + k−1) − 2 (k−1 + k2)2 − 2 k∗1 [I]0 k−1

]
(B.13)

b3 =
k∗2s [E]0

k∗1 [I]0 k2
(k−1 + k2) (B.14)

k∗2s = k2s

(
1 +

KM

[S]0

)−1

(B.15)

k∗1 = k1

(
1 +

[S]0

KM

)−1

(B.16)

The final algebraic form for the product concentration [P] evolving over time, Eqn (5), was
obtained after introducing a number of algebraic simplifications into the integral solution dis-
played immediately above. In particular, the hyperbolic sine and the hyperbolic cosine functions,
which tend to be numerically unstable in actual data fitting, were eliminated by consider their
relationship to the relatively numerically stable exponential function:

sinh(x) =
exp(x) − exp(−x)

2
(B.17)

cosh(x) =
exp(x) + exp(−x)

2
(B.18)
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C. “One-step” kinetics of extremely tight-binding inhibitors

In this Appendix we provide a mathematical proof that a covalent inhibitor characterized by
extremely low value of the dissociation constant k−1 will kinetically follow the one-step inhibition
mechanism C in Figure 1. The proof can be obtained by considering the extreme hypothetical
scenario where k−1 is negligibly small relative to both k1 × [I]0 and k2. Thus, setting k−1 = 0 in
Eqn (B.9) and integrating the resulting system of linear differential equations Eqns (B.8)–(B.10),
using the method of Laplace transform, we obtain for the three state variables a time-dependent
solution shown in Eqns (C.1)–(C.3).

[P] =
k∗2s [E]0

k∗1 [I]0

[
1 − exp

(−k∗1 [I]0 t
)]

=
v0

[I]0

1
k∗1

[
1 − exp

(−k∗1 [I]0 t
)]

(C.1)

[E·I] = [E]0
[I]0 k∗1

k2 − [I]0 k∗1

[
exp

(−k∗1 [I]0 t
) − exp (−k2 t)

]
(C.2)

[EI] = [E]0

{
1 +

1
k∗1 [I]0 − k2

[
k2 exp

(−k∗1 [I]0 t
) − k∗1 [I]0 exp (−k2 t)

]}
(C.3)

Most importantly, note that the resulting Eqn (C.1) for the product concentration [P] is exactly
identical to the one-step kinetic equation Eqn (17). In other words, the assumption that k−1 = 0,
or very nearly so, renders the time-dependence of product concentration entirely insensitive to
the value of the inactivation rate constant k2. In fact, the only rate constant to which [P] is
sensitive is the second-order bimolecular association rate constant k1.

Please note that this conclusion contradicts Cornish-Bowden’s assessment of the steady-state
kinetic mechanism A. In particular, Cornish-Bowden [11] stated that “if k2 ≈ k1 [I]0 >> k−1 the
two relaxation times [1/r1 and 1/r2] defined by [Eqns (9)–(10)] are of similar magnitude and con-
sequently one would observe large deviations from first-order kinetics in any time scale.” This
statement is only partially correct, but not in a sense that is relevant to the analysis of continuous
assays with real-time monitoring of the product concentration [P]. It is indeed correct to state
that if k−1 happens to negligibly small while k2 and k1 [I]0 are of comparable magnitude, “large
deviations from first-order kinetics” would be observed with respect to both enzyme–inhibitor
complex concentrations, E·I and EI, as is shown in in the double-exponential equations Eqns
(C.2)–(C.3). However, if k−1 = 0, the product concentration [P] changes over time according
to the single-exponential Eqn (C.1). Thus, with respect to the product concentration changing
over time, there are no “deviations” from first-order kinetics and consequently the product con-
centration change over time exactly as they would do in the case of one-step kinetic mechanism
C.

See also a detailed analysis of the general kinetic scheme A → B → C presented by Fersht
[29, pp.143-144]. This is the simplest case of two consecutive irreversible reactions, governed
by rate constants k′1 and k′2 respectively. According to Fersht [29, p. 144, Eqn (4.31)], the
concentration of species A, in this case the mole fraction of enzyme that is capable of producing
product P in the catalytic cycle, is insensitive to the value of k′2 and decays according the first-
order, single-exponential equation Eqn (C.4).
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A
k′1−→ B

k′2−→ C

[A] = [A]0 exp
(−k′1 t

)
(C.4)

[B] = [A]0
k′1

k′2 − k′1

[
exp

(−k′1 t
) − exp

(−k′2 t
)]

(C.5)

[C] = [A]0

{
1 +

1
k′1 − k′2

[
k′2 exp

(−k′1 t
) − k′1 exp

(−k′2 t
)]}

(C.6)

Importantly, because the catalytically competent enzyme fraction decays according to the
first-order single-exponential rate law, at k−1 = 0 the product concentration [P] also follow a
(rising) single-exponential defined by Eqn (C.1). Thus, Cornish-Bowden’s prediction [11] that
there should be “large deviations from first-order kinetics” is unsupported by detailed theoretical
analysis.
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