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ABSTRACT 

All-small-molecule organic photovoltaic (OPV) cells based upon the small molecule donor, DRCN5T, and 

non-fullerene acceptors, ITIC, IT-M, and IT-4F, were optimized using Design of Experiments (DOE) and 

machine learning (ML) approaches. This combination enables rational sampling of large parameter spaces 

in a sparse but mathematically deliberate fashion and promises economies of precious resources and time. 

The work focused upon the optimization of the core layer of the OPV device, the bulk heterojunction 

(BHJ). Many experimental processing parameters play critical roles in the overall efficiency of a given 

device and are often correlated, and thus are difficult to parse individually. DOE was applied to the (i) 

solution concentration of the donor and acceptor ink used for spin-coating, (ii) the donor fraction, and (iii) 

the temperature and (iv) duration of the annealing of these films. The ML-based approach was then used to 

derive maps of the PCE landscape for the first and second rounds of optimization to be used as guides to 

determine the optimal values of experimental processing parameters with respect to device efficiency. This 

work shows that with little knowledge of a potential combination of components for a given BHJ, a large 

parameter space can be effectively screened and investigated to rapidly determine its potential for high 

efficiency OPVs. 

Keywords: 
organic photovoltaics; Design of Experiments; machine learning, optimization; small-molecules; bulk 

heterojunction 

Graphical Abstract 

 



	

3	
	

 

INTRODUCTION 

Organic photovoltaics (OPVs) have emerged as a promising class of photovoltaic devices over the past two 

decades due to ease of manufacturing, inherent flexibility, semi-transparency, and potential for short energy 

payback times.1–5 Recently, record power conversion efficiencies (PCE) of 17% for OPVs have been 

reported,6–10 reinforcing the viability of these devices as serious contenders for widespread photovoltaic 

applications. The centerpiece of OPV devices is the bulk heterojunction (BHJ), which consists of donor and 

acceptor polymers or small molecules. Low bandgap polymers remain the most widely used donor 

components for producing high-efficiency devices.11–13 While small-molecule donors have seen less 

attention compared to low band gap polymers, they possess inherent advantages over polymer donors as 

they are not subject to batch-to-batch variability of molecular weight and the challenges of purification that 

are often problematic in polymer syntheses.14–18 These advantages have underpinned the growth of the 

literature describing and using these small molecular donors.19–26 Fullerenes and their derivatives have 

more recently fallen out of favor due to their weak absorption in the visible range and energy levels that are 

not easily modulated.27,28 Efficient non-fullerene acceptors now dominate the recent OPV literature with a 

growing list of members that includes Y6 and the extensive ITIC family of derivatives.24,27,29–33 These 

acceptors offer excellent tunability of absorption properties through well-developed modular organic 

chemistry.34,35 The devices optimized in this study contain the donor DRCN5T and one of three acceptors, 

ITIC, IT-M or IT-4F. These novel all-small-molecule blends leverage the inherent advantages of 

molecules, they have complementary absorption profiles, and this donor and these acceptors have already 

shown efficacy in other BHJs.36–39 

As is the case with all OPVs, the key to efficiency is achieving an ideal nanostructured phase-

separated morphology of the BHJ to promote exciton separation and productive harvesting of charge 

carriers.29,40,41 Optimizing a new combination of small molecules in a BHJ to form an appropriate 

morphology has been shown to be particularly challenging.23,42 The fine balance between competing factors 

that promote crystallization of both molecular components in the blend, and the kinetics of self-assembly 

within the film render this process difficult to optimize in a rational and methodical fashion.19,23,43–49 Many 

different methods such as thermal annealing,7,50,51 solvent vapor annealing,52–54 incorporation of high 

boiling point additives55 and combinations thereof,8,9,56,57 have been used to promote the formation of an 

ideal nanoscale phase-separated BHJ morphology. As a result of the large number of variables, the 

parameter space to optimize is wide, particularly with a system that has little in the way of prior 

investigation. 

In spite of the wide range of combinations of processing parameters, BHJs are typically 

optimized in a one-variable-at-a-time (OVAT) fashion, resulting in lengthy and often incomplete or 

unsatisfactory device optimization. In addition, the actual process of optimization of OPV devices is often 

not described in any real detail in the literature, and thus little is known about combinations that did not 

work. It is therefore difficult to ascertain whether OVAT optimization has indeed led to the “best” possible 
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performance for a given set and range of variables tested as these parameters are often interconnected and 

convoluted—varying one could affect others simultaneously.58 In addition, anthropogenic biases can 

influence decision-making in a negative manner.59 An optimization method previously introduced by our 

research group for OPVs combines Design of Experiment (DOE) and machine learning (ML) approaches to 

(i) reduce the time required to optimize an OPV system, and (ii) increase the probability of discovering a 

true optimum.60 DOE is a rational method that samples large parameter spaces in a sparse but 

mathematically deliberate fashion that minimizes bias. ML-based algorithms are then combined with the 

DOE methodology to visually interpret the results and provide guidance for future experimental 

optimization conditions. 

Much of the landscape of the ML literature in the area of OPV uses computational methods to 

screen candidate molecules for high power conversion efficiencies (PCEs)61–64 to accelerate materials 

discovery.65 In the broader space of materials for clean energy applications, the combining of (sparse) 

experimental data with ML approaches is growing as the methods become more accessible, widely known 

and demonstrated. A very recent example is the concept of autonomous self-driving laboratories that 

perform experimentation and analysis, and even suggesting next steps, as shown for thin film materials for 

perovskite-based PV and other electronic devices.66 Another example describes the application of a 

response-surface methodology to tailor the phase and size of Ni2P nanoparticles, which are used as 

catalysts for hydrogen evolution reactions.67 Machine-learning-in-the-loop has been used to optimize the 

synthesis of PbS colloidal quantum dots for solar cells.68 An iterative ML approach enabled the 

optimization of transparent conductive oxides that serve as the basis for OPV and other optoelectronic 

devices.69 In terms of method development, Aspuru-Guzik’s Phoenics algorithm demonstrates a 

generalizable Bayesian approach for systems and devices with scant sampling (such as OPV devices) that 

are “black-box unknown objective functions.”70 

In this article, all-small-molecule OPV devices containing the donor molecule DRCN5T and one 

of 3 ITIC-based derivatives were optimized using a combination of DOE and ML approaches. This work 

aims to share the process of exploring the efficacy of the DOE and ML methodology for optimizing new 

BHJs based upon combinations of small molecules for which scant prior knowledge exists. This 

combination can be used to examine a large parameter space in an iterative fashion, which is particularly 

useful when equipped with only sparse antecedent data, if any. The optimization of multiple processing 

parameters simultaneously, reducing the number of experiments required to investigate such a parameter 

space to a fraction of what is required for OVAT optimization. 

EXPERIMENTAL METHODS 

Device Fabrication 
The donor and acceptor materials, DRCN5T, ITIC, IT-M and IT-4F were purchased from Ossila, and 

solvents were purchased from Sigma-Aldrich. All materials and solvents were used as received without 

further treatment unless otherwise stated. ITO coated glass substrates were purchased from Delta 
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Technologies (8–12 Ω/sq). ITO glass was sequentially sonicated in dichloromethane, deionized water, and 

2-propanol each for 10 min and then dried with an Ar gun (99.998% Ar). The ITO substrates were then 

cleaned for 10 min in an air plasma with a Harrick plasma cleaner (1.0 torr, PDC 32G, 18W). Zinc acetate 

dihydrate, ethanolamine and 2-methoxyethanol were purchased from Sigma-Aldrich. ZnO sols were 

prepared according to prior literature,71 and the ZnO solution left for 12 hours before the first use. The age 

of ZnO precursor solution varied from one day to two weeks and within this time frame, no discernible 

differences in device performance were noted. Both ZnO and BHJ layers were cast using static dispensing 

from a pipetter with sufficient solution to wet the entire substrate (100 µL), followed by spin-casting. After 

plasma cleaning, the substrates were again cleaned with a stream of Ar and the ZnO layer was then 

immediately deposited. 120 μL of ZnO sol was spin-cast in air for 60 s at a spin speed of 4000 rpm and an 

acceleration of 900 rpm/s. The cast films were then annealed in air at 200 °C for at least 30 minutes.71 BHJ 

precursor solutions (chloroform solvent) containing the donor and acceptor components were prepared in 

an Ar atmosphere glovebox and heated overnight at 40 °C in sealed amber glass vials with a teflon cap. The 

DRCN5T/ITIC BHJ precursor solutions were formulated from concentrated stock solutions of DRCN5T 

and ITIC in chloroform and diluted to arrive at chloroform solutions of the desired concentration and donor 

fraction. The DRCN5T/IT-M and DRCN5T/IT-4F solutions used to fabricate were, however, individually 

prepared by dissolution in chloroform directly (no stock solutions). Before spin-casting, the chloroform 

solutions were filtered through a 0.22 μm PTFE filter. BHJ films were prepared by spin-casting 100 µL of 

BHJ solution at 4000 rpm and an acceleration of 900 rpm/s for 30 s onto Ar-cleaned ZnO-coated ITO 

sheets and were immediately transferred to a glovebox for thermal annealing in an N2 atmosphere. 

Annealing was carried out on a hotplate topped by an aluminum block with a thermocouple insert to ensure 

accurate temperature and uniform heat distribution. The top electrodes were then deposited as follows: a 

hole blocking layer of molybdenum oxide (8 nm) and top electrodes comprising Ag (20 nm) and Al (60 

nm) were deposited at 0.1, 2.0 and 2.5 Å/s, respectively using thermal evaporation under high-vacuum 

conditions (~5×10-6 Pa). Device areas were 0.155 ± 0.01 cm2. 

Characterization 
Thickness measurements of the BHJ films were performed using a Digital Instruments/Veeco multimode 

AFM in tapping mode and the resulting data were processed using Gwyddion.72 PV characteristics were 

measured at ~25 °C in air under AM 1.5G simulated light (Pico Variable LED source from G2V Optics 

Inc. at 100 mW/cm2 equivalent intensity from 400 nm to 1100 nm) with a light source calibrated as 

previously described.60 

Machine learning approaches 
The machine learning algorithm was adapted from Scikit-learn, using a standard scalar and a support vector 

machine (SVM) using a radial basis function (RBF) kernel with an epsilon of 10-5, a tolerance of 10-5, a 

regularization parameter (C) of 1.0 and gamma values as indicated in the Supporting Information 

(table S2).60 
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RESULTS AND DISCUSSION 

The OPV devices in this study had an inverted device architecture with ZnO and MoOx interfacial layers 

and ITO and Mg/Al as the electrodes, as shown in Figure 1. The BHJs consisted of the small-molecule 

donor DRCN5T and one of 3 non-fullerene acceptors, ITIC, IT-M or IT-4F. The flatband HOMO and 

LUMO levels as well as the chemical structures of the donor and acceptor materials are shown in Figure 1. 

DOE is more effectively implemented with some preliminary information since the variable 

space for a new material or device is often so vast—the first step of choosing a starting point may be 

difficult. Preliminary exploration can provide useful insights into simple questions of solubility of the 

components being studied, their thermal stability, and other specifics of the system being evaluated. Since 

little was known of these combinations of compounds for formulating an optimal BHJ, preliminary cells 

were prepared to evaluate three fundamental parameters: (i) exploration of three chlorinated solvents to 

determine which, if any, would result in uniform films of the small-molecules comprising the BHJ, (ii) 

whether thermal annealing was linked to efficiency,19,73,74 and (iii) a rough range of ratios of the two 

components in the BHJ that would result in OPVs with efficiencies greater than ~1%. An initial screening 

of commonly used chlorinated solvents, chloroform, 1,2-dichlorobenzene and chlorobenzene, showed that 

only layers comprising the components of the BHJ cast from chloroform yielded continuous films when 

spin-cast onto the ZnO layer, as shown in Figure S2. Thermal annealing was deemed essential as all 

devices fabricated without thermal annealing had PCEs less than 0.5%. Lastly, BHJs with donor fractions 

less than 0.5 generally showed low (< 0.5%) power conversion efficiencies, thus providing a lower 

boundary for optimization. These preliminary exploratory devices also revealed that the BHJ films often 

appeared non-uniform by visual inspection and were accompanied by particulates and streaks (even with 

filtration through a 0.22 μm PTFE filter prior to spin-casting); preparation of devices in duplicate was 

especially important to account for experimental variability. 

 

Figure 1. a) Structures of the donor (DRCN5T) and acceptor molecules (ITIC, IT-M and IT-4F), b) OPV 
device flatband diagram aligned at vacuum level. Values for the HOMO and LUMO levels are derived 
from the following references: DRCN5T,36 ITIC,37 IT-M,38 IT-4F,39 and all other materials.75 
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With the preliminary exploration complete, the DOE approach centered on the optimization of 4 

BHJ processing parameters: total solution concentration of the donor and acceptor, the ratio of 

donor:acceptor (represented by the donor fraction), the thermal annealing temperature, and the duration of 

the thermal annealing. Layer thickness is in part dictated by the viscosity of the BHJ solution used for spin-

casting and thus solution concentration is a proxy for layer thickness.76 Total concentration refers to the 

total weight of donor and acceptor dissolved in a known volume of chloroform. Donor fraction refers to the 

weight fraction of the donor material to the total weight of donor and acceptor dissolved in solution. 

The goal of the first round of DOE optimization is to sample a parameter space sufficiently wide 

to try to encompass all performance maxima (in this case, the PCE) within the range of chosen processing 

parameters. It is not feasible to investigate the entire parameter space of any given system, and larger 

ranges will require a larger number of levels (sampling points in a range) in order to capture sharper 

features of the response landscape. If for example, a donor fraction range of 0.1–0.9 is chosen, the number 

of levels (different values of donor fractions tested) required to attain useful resolution of this parameter 

range would require a burdensome number of devices. The information presented in Table 1 displays the 

processing parameters, ranges, and levels investigated in the first round of optimization for the 

DRCN5T/ITIC BHJ combination. A full factorial design (i.e. testing every possible combination of levels 

for each parameter) of this parameter space would consist of a total of 42 × 32 = 144 experiments/devices. 

The production of 6-device batches of OPVs, takes ~6 hours in our case, meaning that a full factorial 

design would require roughly 144 hours of hands-on experimental time. Even without accounting for the 

necessity of preparing devices in duplicate, this first round of exploratory DOE quickly becomes 

experimentally prohibitive. Given this fact, the number, range and/or levels of processing parameters could 

be reduced in order to decrease the number of devices manufactured, or one could apply a different 

sampling method. Employing the latter, a generalized subset design (GSD) would reduce the DOE array to 

a more tractable number of experiments, where the number of experiments is reduced by an integer fraction 

of the full factorial amount.77 The degree of integer reduction is chosen to be as large as possible while still 

realizing close to the same number of experiments at each parameter level (See the Supporting Information 

for a more detailed description of integer reduction). 

DRCN5T/ITIC-BASED BHJS 

Table 1. Parameters, ranges and levels for the first round of Design of Experiment optimization of 
DRCN5T/ITIC cells. 

BHJ concentrations (mg/ml) 5.0 7.5 10.0 12.5 
Number of experiments 4 6 6 4 
Donor Fractions 0.6 0.7 0.8 0.9 
Number of experiments 4 6 6 4 
Annealing Temperatures (°C) 120 140 160 	

Number of experiments 7 6 7 	
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Annealing Time (seconds) 100 200 300 	

Number of experiments 7 6 7 	

 

Through implementation of integer reduction of the DOE array using the GSD algorithm, the total 

number of experiments was reduced from 144 reduced to 20, with a close to equal number of experiments 

performed at each different parameter level. A detailed list of each of the parameter levels for each of the 

20 experiments can be found in Figure S3. For all experimental conditions, at least two chips comprising 5 

cells each (10 cells total) were fabricated and tested. 

Before analysis, the data is passed through a filter that excludes non-representative data 

(statistical outliers) that would otherwise skew the analyses. Devices exhibiting anomalous metrics 

compared to others made under the same experimental conditions can be systematically identified and 

excluded according to precise rejection criteria. Examples of devices with anomalous metrics include those 

with shorts in the device, and thus should be rejected as non-representative. Here we apply a universal 

rejection of Voc < 0.65 V, which is likely to result from a device defect. On average, 8 devices from each 

experiment will pass the data filter but some combinations of processing parameters lead to devices that are 

more likely to be rejected. The data that does pass this filter comprises the dataset analyzed in the following 

steps. 

An analysis of variance (ANOVA) is then conducted in order to quantify the relative 

contribution of each processing parameter.60 A lower percent contribution means that the processing 

parameter has little impact, relative to the other parameters within the range tested. The ANOVA in 

Figure 2 shows the contribution of all 4 processing parameters, total concentration, donor fraction, 

annealing temperature, and annealing duration on the PCE from the first round of DRCN5T/ITIC 

optimization. The ANOVA reflects the data acquired from the 20 experiments outlined in Figure S3. Donor 

fraction and total concentration influence the PCE to the greatest degree over the ranges tested with 

annealing temperature contributing very little. It is important to note that the small contribution from 

annealing temperature does not mean that annealing temperature is an insignificant processing parameter, 

but rather that the range tested was too narrow to have a major effect on performance. Each processing 

parameter influences PCE as noted by the variance of the Jsc, Voc, FF, Rsh, or Rsr to different degrees; a set 

of ANOVA for each round of optimization is provided in the Supporting Information, as well as pair plots 

for each processing parameter and photovoltaic metric (Jsc, Voc, etc.). A pair plot is simply a scatter plot of 

any two studied metrics (e.g. Jsc vs total concentration) that can be used to graphically assess any 

correlations between any two parameters/metrics of interest. The pair plots for every pair of 

parameters/metrics are shown in Figure S8. From these pair plots, it becomes clear that PCE is most 

heavily influenced by donor fraction (as previously concluded from the ANOVA). Subplots of Figures S8 

e,m show that devices with a donor fraction of 0.8 had dramatically higher PCE and Jsc than other donor 

fractions. 
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Figure 2. ANOVA plot from the first round of optimization of the BHJ comprising DRN5T/ITIC, 
revealing the relative contribution of each processing parameter on the resulting PCE. In the range tested, 
the annealing temperature has little influence on PCE. 

The topographic-style maps shown in Figure 3 are a digestible and succinct representation of the 

data from the experiments outlined in Figure S3, of the first round of DRCN5T/ITIC blend optimization. 

The maps relate an output (in this case PCE, but in other cases Jsc or FF) to the processing parameters. Each 

data point represents the champion device from every one of the prescribed devices in the experimental list 

in Figure S3. The entire array of PCE plots for the first round of DRCN5T/ITIC optimization includes all 4 

processing parameters. In this figure, within a row, every map has the same annealing duration [e.g. maps 

(a), (b) and (c) contain data points of devices that had annealing durations of 300 s] and within a column, 

every map has the same annealing temperature [e.g. maps (a), (d) and (g) contain data points of devices that 

were annealed at 120 °C]. 

As previously mentioned, Jsc and PCE are highly correlated and this observation is corroborated 

by the similarity between the Jsc ML maps in Figure S10 and the PCE maps in Figure 3. Devices produced 

at a total concentration <8 mg/mL displayed relatively low PCE (Figure 3) and Jsc (Figure S10), 

independent of donor concentration and annealing temperature. Films spin-cast from solutions of lower 

concentrations would be expected to lead to thinner films and thus to lower short-circuit currents as fewer 

photons can be absorbed. 
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Figure 3. ML-generated PCE maps for the first round of optimization of the DRCN5T/ITIC BHJ devices. 
This set of maps shows the effect of all four processing parameters on PCE, with areas of higher PCE 
represented by yellow, and lower by blue. 

The most promising region of the parameter space for producing high efficiency devices in 

Figure 3 is found at total concentrations >10 mg/ml, donor concentrations of ~0.75–0.8, and an annealing 

temperature of ~140 °C. This information from the first round of optimization was then used to inform the 

new parameter ranges for the second round of optimization. 4 total concentrations of 8, 11, 14 and 17 

mg/mL, 3 donor fractions of 0.65, 0.75, and 0.85, 3 annealing temperatures of 130, 140 and 150 °C, and 3 

annealing times of 1.5, 4 and 6.5 min were selected for the second round of optimization. The number of 

experiments of a full factorial design of 108 was reduced to 20 by using the integer reduction method 

explained earlier and are enumerated in Figure S3, labelled ITIC Round 2. The corresponding maps for the 

second round of DRCN5T/ITIC BHJ mixtures are shown below in Figure 4. 
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Figure 4. ML-generated PCE maps for the second round of optimization of the devices based on a BHJ 
composed of DRCN5T/ITIC. These maps are acquired at a higher sampling resolution in a narrower range 
of parameter space than the first round of optimization, shown in Figure 3. 

 

From the plots in Figure 4, it is clear that the optimum donor fraction appears to be captured 

within the studied range, suggesting that a maximum PCE is achieved at value of ~0.76. The PCE is 

influenced dramatically by donor fraction in this round of optimization, and the effect of annealing 

temperature is small, as shown in Figure S7. The chosen range for the donor fraction in this round of 

optimization (0.65–0.85) may simply be wider than the other processing parameters. As an extreme 

example, if a range of annealing temperatures from 10–1000 °C had been chosen, the ANOVA would 

certainly have shown that temperature would have a much larger effect on PCE than donor fraction; here, 

such a narrow temperature range would be expected to be less significant. Devices manufactured with a 

donor fraction of 0.75 displayed the highest PCE and were accompanied by maximization of the Jsc, as 

shown in Figure S9m. PCE varies little across total concentration, annealing temperature, and annealing 

time, as shown in Figures S9 f,g,h, respectively. 

Lastly, it is important to note the sparsity of data points in certain individual maps. When 

reducing the number of experiments used to explore a parameter space, there is always an inherent trade-off 

between sampling resolution and number of devices fabricated. Comparing the champion device from the 

first and second rounds of optimization, the PCE increased from 3.5% to 4.3%, the Jsc from 9.2 mA/cm2 to 

10.2 mA/cm2, Voc from 0.89 V to 0.96 V, while the FF remained unchanged at 0.43. This increase in PCE 
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from round one to round two of optimization highlights the iterative power of this approach. It allows 

researchers to narrow ranges of processing parameters or to exclude certain parameters altogether in order 

to investigate more promising (higher PCE) areas identified in the first round of optimization. 

DRCN5T/IT-M-BASED BHJS 

The related derivative, IT-M, varies only by the addition of two methyl groups on the extreme ends of the 

ITIC molecule, and has similar HOMO/LUMO levels to that of the parent ITIC, as shown in Figure 1. As 

described earlier for the parent ITIC derivative, preliminary screens of DRCN5T/IT-M devices showed that 

thermal annealing is required to achieve a PCE greater than 0.5%. These tests also showed that at an 

annealing temperature of 140 °C and increasing annealing time from 8 min to 32 min had no effect on PCE. 

Device PCEs increased with annealing times up to 8 mins and plateaued. As a result, for the first round of 

optimization, a fixed annealing time of 8 min was chosen, thereby eliminating time as a variable to 

optimize. The processing parameters optimized in the first round included (i) BHJ solution total 

concentration, (ii) BHJ solution donor fraction, and (iii) annealing temperature at a fixed annealing time of 

8 min. Having reduced the number of processing parameters from 4 to 3, if each parameter has 3 levels, the 

full factorial design would have 27 distinct experimental conditions that can be reduced to just 9 

experiments using GSD sampling. The table of processing parameters levels for the first round of 

optimization as well as the experiment list can be found in the Supporting Information, in Figure S16. The 

resulting PCE maps from the first round of DRCN5T/IT-M optimization along with the corresponding 

ANOVA plots, are presented below in Figure 5. 

 

Figure 5. Maps of PCEs as generated via ML methods for the first round of optimization for the devices 
comprising a BHJ of composition of DRCN5T/IT-M. A fixed annealing time of 8 min reduces the 
dimensionality of this round of optimization to 3 processing parameters, reducing the parameter space and 
increasing data point density. 

The plots in Figures 5a,b,c show the effect of annealing at temperatures of 120, 140 and 160 °C, 

respectively. Scanning the plots from left to right reveals that devices annealed at higher temperatures 

exhibit higher PCEs. This observation is corroborated by the ANOVA for PCE in Figure S21, which 
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highlights the contribution that annealing temperature plays on the PCE. The linkage between temperature 

and PCE is the focus of the next round of optimization. Annealing devices at 160 °C increased the PCE 

primarily through an increase in the FF of Figure S26b. Given the shallower LUMO level of IT-M (-3.98 

eV),38 compared to ITIC (-3.83 eV),37 the observed decrease in Voc shown in Figure S27 is expected.78,79 As 

shown in Figure S20, the total concentration of the BHJ solutions influences PCE and Jsc very little and as 

such the range was extended substantially for the second round of optimization. 

 

Figure 6. Maps of PCEs as generated via ML methods for the second round of optimization of 
DRCN5T/IT-M-based devices. An optimal annealing temperature of 160 °C was identified, leaving two 
processing parameters to optimize, the donor fraction and total concentration. 

 

In the second round of optimization of the DRCN5T/IT-M combination, higher annealing 

temperatures of 160, 180 and 200 °C were chosen, as well as a narrower range of BHJ solution donor 

fractions of 0.6, 0.7 and 0.8. With 3 levels per parameters, this yields a full factorial design of 27 unique 

experimental conditions that were reduced to just 9 after GSD integer reduction. The table of processing 

parameters for the second round of optimization and corresponding list of experiments can be found in the 

Supporting Information, figure S16. Devices annealed at 200 °C had substantially lowered Vocs, dropping 

from roughly 0.9 V to values ranging from 0.7–0.2 V. Figure S18a shows the distribution of PCEs for 

devices made under each set of experimental conditions; experimental labels match those assigned in 

Figure S16 for round 2. Figure S18c displays the number of devices from each experimental condition to 

pass the data filter; it shows that devices that were annealed at 200 °C were all rejected by the data filter 

based on low Vocs (experiment #2, #6 and #8). While it is important to include data from devices with high 

and low PCEs, it seems that annealing at 200 °C is detrimental. In some instances, devices annealed at 180 

°C also showed drops in Voc of up to 0.3 V, and most devices annealed at 180 °C had lower PCEs than 

those annealed at 160 °C, as shown in Figure S23g. At this point, instead of continuing forward as planned, 

devices annealed at 180 and 200 °C were omitted from this analysis as focusing on devices annealed at 160 

°C seemed more fruitful, providing more consistent and reproducible results. 
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The experiments originally designated to be annealed at 180 or 200 °C, as per the generated list 

in Figure S16, were instead run at 160 °C. The resulting map can be found in the Supporting Information as 

Figure S28. This map contains some high PCE features that were deemed worthy of further exploring. As a 

result, specific devices were prepared in order to increase the density of data points in this promising 

parameter space. The map derived from this more granular data for the DRCN5T/IT-M BHJ composition is 

shown in Figure 6, and it shows a rather flat PCE landscape. In the range tested, the total solution 

concentration of BHJ components and the donor fraction had equal contributions on the resulting PCE, as 

shown in PCE ANOVA in Figure S21. PCE did not vary with a total concentration of 20-26 mg/mL and 

donor fractions of 0.65–0.70. After this second round of optimization, the champion device had a PCE of 

5.9%, Jsc = 12.2 mA/cm2, FF = 0.53 and a Voc = 0.93 V. This champion device shows little improvement 

from the first round of DRCN5T/IT-M optimization whose champion had a PCE of 5.7%. The fact that no 

further improvement in PCE was noted in generation two suggests that a maximum has been reached and 

that further optimization of these parameters will probably not be fruitful, which is useful information. 

DRCN5T/IT-4F-BASED BHJS 

The IT-4F derivative has two pairs of fluorines on the extreme ends of the ITIC molecule, further lowering 

the HOMO and LUMO levels compared to the two acceptors described thus far. Preliminary devices 

demonstrated the need to optimize all 4 processing parameters. Three levels were chosen for every 

parameter except for annealing temperature where two levels were chosen. This yields 81 possible 

combinations that were reduced using GSD sampling to a list of 13 experiments, that can be found in 

figure S32. Based upon the results with ITIC and IT-M, narrower windows of BHJ solution donor fraction 

(0.6–0.8) and annealing temperatures (150 and 170 °C) were chosen. Figure 7 below displays the results 

from the first round of optimization. 
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Figure 7. Maps of PCEs as generated via ML methods for the first round of optimization of the devices 
with BHJs comprising DRCN5T/IT-4F. This set of maps shows the effect of all 4 processing parameters on 
PCE, with higher areas of PCE represented by yellow, and lower by blue. 

Comparing the columns of subplots in Figure 7, devices annealed at 150 °C exhibit substantially 

higher PCEs than devices annealed at 170 °C. This finding is corroborated by the pair plots in Figure S37. 

The maps in Figure S39 display similar topologies, suggesting that an increased Jsc for devices annealed at 
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150 °C is the main driver of increased PCE. Figure S33a shows that annealing temperature most heavily 

influences PCE within this range. 

Devices prepared with lower total concentrations (representing the bottom half of each map in 

Figure 7) exhibited higher PCEs. Figured S37 f,h demonstrate that lower total concentrations and longer 

annealing times result in devices with higher PCE. The device with the highest PCE (experiment #11 

figure S32) had a BHJ solution concentration and donor fraction of 16 mg/mL and 0.7, respectively, and 

was annealed at 150 °C for 12 min. The distribution of PCEs varies little with different donor fractions 

(figure S37e) and as a result, a fixed donor fraction of 0.7 was chosen for all devices in the second round of 

optimization. 

 

Figure 8. ML-generated PCE maps for the second round of optimization of devices with BHJs comprising 
DRCN5T/IT-4F BHJ. This set of maps shows the effect of all 4 processing parameters on PCE with higher 
PCE areas represented by yellow and lower PCE by blue. 

 

For the second round of optimization, annealing temperatures of 130 and 150 °C, total 

concentrations of the BHJ solutions of 13, 16 and 19 mg/mL, and longer annealing times of 12, 20 and 28 

min, were chosen. GSD sampling enabled a reduction of experimental conditions to a list of 6 experiments, 

which are outlined in Figure S32, titled Round 2. The resulting PCE maps are presented in Figure 8. Since 

the BHJ solution donor fraction was not optimized in this round, the axes for these maps are different from 

the earlier maps. The x- and y-axes of each plot correspond to annealing temperature and total 

concentration of the BHJ precursor solution, respectively. The plots differ in their annealing times, as 

indicated on each panel. Comparing the two plots in Figure 8, it is clear that annealing devices at 150 °C 

resulted in higher efficiency devices than annealing at 130 °C. The ANOVA in Figure S34 labelled PCE 

shows that annealing temperature indeed has the largest effect on the PCEs, followed by annealing time, 

and finally by the total concentration of the BHJ solution. Figures S3 8e,g show that both annealing time 
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and total concentration had little effect on the PCE over the ranges tested. Interestingly, an annealing 

temperature of 150 °C seems required in order to achieve a high shunt resistance in these parameter ranges 

(Figure S34 Rsh). A similar effect was found for non-optimal donor fractions in the first round of ITIC 

device optimization (Figure S6Rsh). The second round of IT-4F optimization yielded the best performing 

device in this study with a PCE = 7.5%, Jsc = 15.2 mA/cm2, FF = 0.62 and a Voc = 0.80 V. 

WHAT WAS LEARNED ABOUT OPTIMIZATION OF OPVS 
COMPRISING THESE 3 ITIC DERIVATIVES? 

All three of the ITIC derivative-based BHJs exhibited the highest observed performance with a donor-rich 

BHJ, in the range of 0.7–0.8. It is possible that without a systematic screening process that allows for the 

exploration of such large parameter spaces, the compositions of BHJs might have been too narrow to have 

found the islands of higher PCEs greater than a few percent. It has been reported that the donor molecule 

DRCN5T readily crystallizes upon annealing at 120 °C, which is thought to promote phase segregation and 

the formation of percolated pathways.36 ITIC, on the other hand, requires higher temperatures to induce 

crystallization,80 and thus higher ideal annealing temperatures, in the range of 160 °C, are considered 

essential for optimum performance (Table S1).81 A compromise would be needed when combining these 

two components, and thus the optimal annealing conditions would be difficult to predict. The identification 

of different conditions to arrive at optimal performance of these three combinations of BHJs highlights the 

lack of generality when one embarks upon the optimization of a new BHJ, even when the molecules are 

structurally related. 

Table 2. Photovoltaic metrics of champion devices after 2 rounds of optimization. Average PCE 
values and standard deviation in brackets. Averages based on 10, 43 and 35 devices for ITIC, IT-M 
and IT-4F, respectively. 

Acceptor 
Molecule PCE (%) Jsc (mA/cm2) FF Voc (V) 
ITIC 4.3 (3.9 ± 

0.39) 
10.3 (9.9 ± 0.48) 0.43 (0.42 ± 

0.022) 
0.96 (0.94 ± 

0.012) 
IT-M 5.9 (5.4 ± 

0.69) 
12.2 (11.5 ± 

0.77) 
0.53 (0.50 ± 

0.043) 
0.93 (0.92 ± 

0.024) 
IT-4F 7.5 (6.2 ± 

0.85) 
15.2 (13.5 ± 

0.78) 
0.62 (0.58 ± 

0.049) 
0.80 (0.78 ± 

0.016) 
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Figure 9. JV curves of the champion devices for all 3 small-molecule donors that were investigated in this 
work, ITIC, IT-M, and IT-4F, with the donor DRCN5T. The experimental conditions used to fabricate 
these champion devices were identified after two rounds of the DOE and ML optimization for each 
composition. 

As expected from their previously measured LUMO levels,37–39 the Voc values of champion 

devices decrease in the order of ITIC (~0.98 V) > IT-M (~ 0.93 V) > IT-4F (~0.80 V). This admittedly 

small dataset seems to suggest a trade-off between Voc and  Jsc and FF; similar trade-offs have been 

previously identified with other small-molecule acceptors by Cheyns et al.79 Additionally, Ma et al. found 

that matching the crystallinity of the donor and acceptor polymers improved device efficiency,82 and the 

same phenomenon is likely to hold for small-molecule OPVs as well. 

Given that we have very little in the way of mechanistic rationale to link processing parameters 

with device properties, it is very difficult to know a priori what ranges of parameters could lead to the 

highest device parameters, especially since there is often a non-linear output from a set of multi-

dimensional input parameters that have varying degrees of correlation. Moreover, despite small changes in 

the donor molecular structure, the range of optimal processing conditions changes in unpredictable ways 

given that these factors are so intertwined and convoluted. These conclusions highlight one of the strengths 

of this approach to device optimization: while traditional methods typically sample only a handful of 

parameters over smaller ranges and test these parameters independently, the DOE-based analyses enable 

investigation of a broad swath of variables, enabling rational exploration of novel systems with only scant 

prior knowledge. 

CONCLUSIONS 

A combination of Design of Experiments- and machine learning-based approaches was used to optimize 

all-small-molecule devices with the donor DRCN5T and one of the 3 non-fullerene acceptors, ITIC, IT-M, 

and IT-4F. The effects of donor fraction, BHJ solution concentration, thermal annealing time, and 

temperature on device performance were elucidated. DOE+ML enabled the investigation of large parameter 
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spaces while manufacturing significantly fewer devices than a traditional one-variable-at-a-time 

optimization procedure. As a result, multiple processing parameters were optimized simultaneously, 

producing a multi-variable dataset that was analyzed by a ML algorithm. The relationship of each 

processing parameter to PCE was elucidated and topographical maps were produced to visualize the 

relationships to PCE. No prior information of these novel donor/acceptor mixtures was available and thus 

preliminary devices proved crucial for identifying processing parameters and their ranges. A data filter was 

required to handle non-representative data from devices exhibiting physical defects that led to electrical 

shorts. Two rounds of optimization were conducted for each mixture which allowed for the identification 

and subsequent exclusion of processing parameters that contributed little to PCE. Additionally in the 

second round of optimization for each mixture, parameter ranges were narrowed which constricts the 

parameter space and increases data point density in the regions containing the highest PCE devices. 
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