
 1 

Drug binding dynamics of the dimeric SARS-CoV-2 main 

protease, determined by molecular dynamics simulation 
 

Teruhisa S. Komatsu†*1, Noriaki Okimoto†1,2, Yohei M. Koyama1, 
Yoshinori Hirano1,2, Gentaro Morimoto1,2, Yousuke Ohno1, and Makoto Taiji*1,2 

 
1Laboratory for Computational Molecular Design 

2Drug Discovery Molecular Simulation Platform Unit 
RIKEN Center for Biosystems Dynamics Research (BDR) 

6-2-3 Furuedai, Suita, Osaka 565-0874, Japan 
 

†These authors contributed equally to the work. 
*To whom correspondence should be addressed. 

Teruhisa S. Komatsu and Makoto Taiji 
Laboratory for Computational Molecular Design, RIKEN BDR 
6-2-3 Furuedai, Suita, Osaka 565-0874, Japan. 
Tel. +81-6-6872-4850, Fax. +81-6-6872-4818 
E-mail: teruhisa.komatsu@riken.jp, taiji@riken.jp 

 

Abstract 
We performed molecular dynamics simulation of the dimeric SARS-CoV-2 

(severe acute respiratory syndrome corona virus 2) main protease (Mpro) to examine the 
binding dynamics of small molecular ligands. Seven HIV inhibitors, darunavir, indinavir, 
lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir, were used as the potential lead 
drugs to investigate access to the drug binding sites in Mpro. The frequently accessed sites 
on Mpro were classified based on contacts between the ligands and the protein, and the 
differences in site distributions of the encounter complex were observed among the 
ligands. All seven ligands showed binding to the active site at least twice in 28 simulations 
of 200 ns each. We further investigated the variations in the complex structure of the 
active site with the ligands, using microsecond order simulations. Results revealed a wide 
variation in the shapes of the binding sites and binding poses of the ligands. Additionally, 
the C-terminal region of the other chain often interacted with the ligands and the active 
site. Collectively, these findings indicate the importance of dynamic sampling of protein-
ligand complexes and suggest the possibilities of further drug optimisations. 
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Introduction 
 

The pandemic of the new corona virus disease, COVID-19, is an urgent global 
issue. Currently, many research groups are trying to find effective medicines by 
repurposing approved drugs, using clinical, experimental, and computational 
approaches[1,2]. However, till date, no therapeutic agent has been approved to be 
effective against COVID-19 (except remdesivir in Japan). Here, we report the drug 
binding process of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
main protease (Mpro, 3CL hydrolase), using large-scale molecular dynamics (MD) 
simulations. The Mpro protein is essential for processing the precursor polyprotein for 
replication of the virus. Owing to its crucial role, Mpro is one of the major targets for 
development of anti-SARS-CoV-2 drugs. The first X-ray crystal structure of Mpro was 
released on February 5, 2020[3]. Since then, the number of experimental structures has 
increased rapidly. These crystal structures enclose the structures of holo-Mpro (inhibitor 
covalently bound to Mpro [3–7] and inhibitor non-covalently bound to Mpro) and ligand-
free Mpro[4,8] are contained. Recently, Kneller et al.[8] identified the room temperature 
X-ray structure of the ligand-free Mpro and compared it with the low temperature one of 
ligand-free Mpro[4] and N3 inhibitor covalently bound to Mpro[3]. They found that the 
active site of Mpro had flexible conformation and the conformational change was induced 
by ligand binding. For drug repurposing for SARS-CoV-2 Mpro, protease inhibitors of 
human immunodeficiency virus (HIV) are expected to be effective since HIV protease 
shows similar function as SARS-CoV-2. Many HIV protease inhibitors have been 
developed and clinical trials of the repurposed HIV protease inhibitors for COVID-19 are 
currently ongoing (e.g. ChiCTR2000029603). Among these inhibitors, China’s National 
Health Commission has recommended the use of HIV-1 protease inhibitors, lopinavir and 
ritonavir, as an ad hoc treatment for pneumonia caused by SARS-CoV-2. However, the 
results from an urgent randomised clinical trial, evaluating the efficacy of lopinavir–
ritonavir in patients with COVID-19 in Wuhan, China, showed that no benefit was 
observed with lopinavir–ritonavir treatment beyond standard care for hospitalised adult 
patients[9]. Another HIV protease inhibitor, nelfinavir, is also one of the drug candidates 
against COVID-19. Nelfinavir showed suppression of growth of SARS-CoV in a cell-
based experiment[10]. Although the mechanisms that underlie the inhibitory action of 
nelfinavir on SARS-CoV remain to be identified, the high sequence similarity (about 
96%) between the Mpro of SARS-CoV-2 and that of SARS-CoV[11] led us to hypothesise 
that nelfinavir may have promising activity against SARS-CoV-2 Mpro. Furthermore, it 
has been recently reported that nelfinavir had anti-SARS-CoV-2 activity, as demonstrated 
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in a cell-based experimental assay[12,13]. In addition, other HIV protease inhibitors such 
as indinavir, darunavir, and saquinavir, have been proposed as drug candidates against 
SARS-CoV-2 Mpro, using computational studies[14–18]. These HIV protease inhibitors 
are repurposed drug candidates, some of which are already being tested in clinical trials. 
Recently it has been reported that the Mpro enzymatic activity could not be reduced by 
ritonavir, lopinavir, darunavir, and nelfinavir[6]. However, their efficacies against SARS-
CoV-2 Mpro are yet to be fully confirmed.  

In this study, we aimed to investigate the dynamics of the binding process of 
various HIV protease inhibitors to SARS-CoV-2 Mpro. We performed all-atom MD 
simulations of the systems with the dimeric Mpro and seven HIV protease inhibitors 
(darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir), solvated 
in saline solution. Large-scale simulations, starting from ligand unbound states (28 
simulations of 200 ns for each ligand), have been done using the massively parallel 
supercomputer. The results enabled a systematic investigation of the ligand access on the 
protein surface of Mpro, and the frequently accessed sites on Mpro were classified, based 
on the contact between the ligand and the protein. These potential drug binding sites could 
be useful for further drug development/repositioning. Furthermore, we performed 
microsecond-scale simulations for the 23 protein-ligand complexes using the special-
purpose computer MDGRAPE-4A[19], which is designed for long-term MD simulations, 
in addition to using conventional supercomputers. Results revealed that the active site has 
a high flexibility and allows various binding poses of these ligands.  
 
Results 
 
Identification of ligand binding sites 

First, the identification of the potential sites for drug binding was performed on 
the X-ray crystal structure[3] of dimeric Mpro, using the site finder module of Molecular 
Operating Environment (MOE)[20]. We found three representative drug binding sites on 
Mpro and named them as “sites 1-3” (Fig. 1). Site 1 was the orthosteric active site that had 
the catalytic residues, His41 and Cys145. Site 2, which was the largest site, was located 
near the interface of two domain III, and Site 3 was located at domain I. 

Next, we investigated the access of drugs to these binding sites, in addition to 
other sites, on the fluctuating surface of Mpro by observing the dynamical trajectories 
obtained by direct MD simulations of dimeric Mpro with seven HIV inhibitors, darunavir, 
indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir (Supplementary Fig. 
A1). When a drug accesses the Mpro surface, it is likely to form an encounter complex that 
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is not tightly bound to the protein. We hypothesised that the stability and frequency of 
formation of the encounter complex would reflect the likelihood of the binding process 
between the drug and the protein. Hence, we thoroughly investigated the formation of the 
encounter complex by 28 simulations of 200 ns for each ligand (Supplementary Fig. B1). 

To analyse the formation ratio of the encounter complex, we calculated the 
contact map of each ligand to the protein, as shown in Fig. 2. These were calculated using 
last 100 ns (500 time points at every 0.2 ns) of each 200 ns simulation, and the threshold 
of a contact pair was set to 0.35 nm. The contact events on both chains of the dimer were 
accumulated, and a contact frequency was calculated as the number of events divided by 
the total number of samples. The results showed that most of the contacts were located at 
the predicted binding sites, as shown in Fig. 1. The frequent contacts with the active site 
(site 1) were observed for indinavir, nelfinavir, ritonavir, and tipranavir (Figs. 2a-b). 
Adjacent to the active site, a frequently visited site existed at the border of the chains, 
indicated as “site 4” in Fig. 2. It was a new site that was not considered as a major binding 
site in Fig. 1. Frequent visits to site 4 were observed for all ligands, except lopinavir. The 

Figure 1. Structural information of dimeric Mpro. The respective protomers of dimeric 
Mpro are shown in magenta and blue cartoon representations. The catalytic dyad, His41 
and Cys145, are represented by the space-filling model. The three possible ligand 
binding sites were predicted. (a) side view, (b) bottom view, (c) top view, (d) the view 
from the arrow of (a), and (e) the three domains of protomer (monomer) structure. Each 
protomer was composed of three domains: domains I, II, and III are residues 8-101 
(red), 102-184 (blue), and 201-303 (green), respectively[3]. The lipophilic and 
hydrophilic regions in each site are depicted with green and orange. 
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contact frequency to site 2 (Fig. 2c) was high for lopinavir, ritonavir and saquinavir, 
modest for darunavir, indinavir and nelfinavir, and weak for tipranavir. In domain III (Fig. 
1e), another shallow site “site 5” was observed for lopinavir, nelfinavir, and tipranavir 
(Fig. 2b-c). The contact frequency to site 3 was generally low, except for lopinavir (Fig. 
2d). These absolute values of contact strength should be interpreted carefully since we 
could observe only a few unbinding events and they did not accurately reflect the 
quantified values in equilibrium.  

To classify the frequently accessed sites, we performed clustering analysis of the 
contact maps for whole trajectories of 200 ns (1,000 time points at every 0.2 ns). First, 
we performed hierarchical clustering analysis and chose nine clusters classification. Next, 
we performed k-means clustering analysis with k = 9, using the results of the hierarchical 
clustering analysis as the initial cluster centres for k-means clustering (Supplementary 
information C and D). Based on the obtained classification of the sites, the number of 
transition events in the trajectories and the binding free energies (estimated by the 
molecular mechanics generalized-Born surface area (MM-GB/SA) method[21,22]) are 
summarised in Table 1. The time course of transitions among the classified sites and the 
binding free energies for each trajectory of the seven ligands are shown in Supplementary 

Figure 2. Heat maps of the contact frequencies for the seven ligands. Row (a): front view, 
(b): side view (rotate 30° around z axis), (c): bottom view (from -z axis), (d): top view 
(from +z axis). Frequent contacts at the active site were observed in indinavir, nelfinavir, 
ritonavir, and tipranavir. The major contacts at site 2 were lopinavir, ritonavir, and 
saquinavir, while site 3 was frequently visited only by lopinavir. 
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   Active 

Site Site 2 Site 3 Site 4 Site 5 Others 

Darunavir 

On/Off 7/5 4/0 1/0 5/2 8/7 14[9]/25 

∆G Ave -28.4 
(4.2) 

-24.2 
(4.2) 

-17.2 
(2.0) 

-26.6 
(6.9) 

-18.8 
(3.6) 

-22.3 
(5.2) 

Min -32.7 -32.6 -17.9 -38.6 -21.2 -30.3 

Indinavir 

On/Off 13/4 2/0 6/6 10/5 2/2 15[5]/31 

∆G Ave -33.2 
(7.5) 

-33.7 
(6.6) 

-22.0 
(5.7) 

-28.4 
(5.9) 

-24.6* 
(6.6) 

-26.5 
(5.8) 

Min -56.1 -42.8 -28.8 -43.5 -26.5 -41.1 

Lopinavir 

On/Off 4/1 8/4 9/3 3/2 7/3 12[8]/30 

∆G Ave -23.0 
(4.0) 

-29.4 
(6.2) 

-28.5 
(5.3) 

-20.8 
(5.3) 

-25.6 
(5.8) 

-34.5 
(6.6) 

Min -32.7 -39.1 -34.6 -31.3 -30.4 -50 

Nelfinavir 

On/Off 6/1 4/1 1/1 8/1 4/1 3[9]/21 

∆G Ave -31.2 
(8.9) 

-24.2 
(3.6) - -26.6 

(5.8) 
-33.3 
(3.9) 

-25.6 
(4.4) 

Min -51.5 -30.3 - -40.6 -37.6 -36.7 

Ritonavir 

On/Off 9/3 5/0 3/2 10/4 7/5 14[5]/34 

∆G Ave -40.0 
(6.4) 

-38.2 
(7.9) 

-27.6* 
(2.9) 

-45.3 
(11.0) - -42.1 

(4.5) 
Min -51.5 -53.6 -25.8 -63.9 - -50.5 

Saquinavir 

On/Off 6/2 9/3 3/3 6/0 3/1 8[8]/26 

∆G Ave -32.6 
(4.8) 

-35.3 
(9.8) 

-25.8* 
(4.3) 

-32.3 
(6.8) - -20.8 

(3.3) 
Min -39.1 -47.8 -30.3 -44.4 - -29.4 

Tipranavir 

On/Off 10/3 0/0 3/2 7/3 7/3 11[8]/27 

∆G Ave -25.9 
(7.6) - -21.4 

(3.1) 
-23.8 
(6.6) 

-24.0 
(7.5) 

-24.4 
(5.3) 

Min -42.6 - -34.2 -36.9 -34.1 -36.9 

Table 1. The number of events and the binding free energies estimated by the 
MM-GB/SA method in 28 trajectories of 200 ns for each ligand.  

The classification was based on the clustering analysis described in Supplementary information 
C. The events were counted after smoothing by taking majority for 71 data points, sampled every 
0.2 ns. The number in square brackets in the others column indicates the number of trajectories 
that stayed on it during whole simulation period. The sites printed in bold type had the largest 
fraction at final states (the largest number of “on” events minus “off” events), except for the others 
category, the sites printed in italic type had the smallest ratio of off/on events, and the sites printed 
in bold and italic type satisfied both the conditions. The rows “∆G” indicates the average (with 
the standard deviation in parenthesis) and minimum binding free energy in a unit of kcal/mol. The 
energies were omitted when the solvent-accessible surface area (SASA) of each ligand was above 
50% of the SASA of the solvated ligand (Supplementary Information E). The lowest energies 
among sites 1-5 are printed in bold type. The average energies were calculated from the last 100 
ns, except for values marked by asterisk, which were taken from the full trajectories. The minimum 
energies were taken from the averaged energies over 15 continuous points, every 0.2 ns of the 
whole 200 ns trajectory. 
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Figs. E1-7. As shown in Fig. 2, site 3 was only frequently visited by lopinavir. Site 5 
experienced a comparable number of on and off events, which was attributed to its relative 
shallowness compared to the other sites. The active site (site 1), site 2, and site 4 were 
rather stable for most of the ligands. Among the seven ligands, indinavir, nelfinavir, 
ritonavir, and tipranavir had similar profiles, with rather high counts of contact events to 
the active site and site 4. Ritonavir also bound to site 2 frequently, and a few unbinding 
events from the active site were observed. In addition, darunavir, lopinavir, ritonavir, and 
saquinavir had visited the active site, but the number of events and the free energies were 
competitive with the other sites: site 2, 3 (lopinavir only), and 4. Since it is difficult to 
compare the binding energies of the different ligands by MM-GB/SA energies, the 
selection of the best candidate was not possible. However, by comparing ∆G of the active 
site with respect to the other sites for each ligand (Table 1), indinavir, nelfinavir, and 
tipranavir could be considered as possible candidates for further drug optimisation. 

Figure 3 shows the time course of the occupation ratio in the active site. The ratio 
averaged over the seven ligands increased with time compared to the other sites shown in 
Supplementary Fig. F1. This suggested that the active site in fact could be a potential drug 
binding site. It required a minimum simulation duration of 100 ns to observe these 
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Figure 3. Time course of occupation ratio at the active site. The figure shows mean 
occupation ratio averaged in a time span of every 10 ns over 28 trajectories for each 
ligand. The average over seven ligands is also shown with thicker line (standard error 
with shaded area). Standard error for final 10 ns of each ligand is shown at the right 
side of the graph (see Supplementary F for the estimation of errors). Inset shows the 
active site residues (see Supplementary Fig. D1). Occupation ratios for the other sites 
are shown in Supplementary Fig. F1. 
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tendencies, for e.g. tipranavir reached the active site after 100 ns. After reaching the active 
site, the ligands still exhibited equilibration dynamics, which should be investigated with 
a further longer simulation. Although the number of samples for each ligand in this study 
did not allow a detailed comparison of the binding affinities to the active site among the 
ligands, we anticipated that the tendency of binding (Fig. 3) reflects the likelihood to form 
encounter complexes at the active site, i.e. tipranavir and indinavir were more likely to 
bind to the active site of Mpro compared to lopinavir and darunavir. Additionally, as a 
negative control experiment, similar MD simulation was performed using lamivudine 
triphosphate, which is also an approved drug but has different molecular structure from 
that of HIV drugs. It clearly exhibited infrequent access to the active site (Supplementary 
information G). 

While MD-based free energy calculation is necessary to provide precise 
selections of drug candidates, it requires proper complex structures. We extended the 
duration of simulations up to a microsecond (µs) for 23 trajectories, arbitrarily selected 
from the trajectories in which the ligands attached to the active site at 200 ns. In 20 of 23 
trajectories, the ligands remained bound to the active site during 1 µs. For these 20 
trajectories of 1 µs long, the binding free energies were estimated by MM-GB/SA method 
(Supplementary information H). By comparing Table 1 and Supplementary Table H1, the 
minimum and average binding free energies decreased for all ligands (except for the slight 
increases in the minimum energy of nelfinavir and in the average one of saquinavir). This 
observation indicated that the current simulation time of 200 ns was insufficient for the 
equilibrium analysis. In the next section, we analysed the active site structures and ligand 
binding poses to understand the key factors involved in binding and their dynamical 
properties. 
 
Conformational variations upon ligand binding 

To explore the conformational variations in the Mpro active site, a principal 
component analysis of Cα atoms of 37 amino acid residues (residue 24-27, 41-54, 140-
145, 163-168, 172, and 187-192) contained in the active site (see Supplementary 
information J) was performed for 20 ligand-bound MD trajectories together with another 
MD trajectory of Mpro without ligand (apo-Mpro). The projection of the first two principal 
components (PC1 and PC2) characterised the conformational diversity of the active site 
(Fig. 4). In the apo-Mpro system, while the MD trajectory of the active site of A-chain 
widely distributed along the PC1, that of B-chain distributed near the crystal structure. In 
contrast, the MD trajectories of the active sites of the ligand-bound systems distributed 
wider along PC1 and PC2, as compared with those of apo-Mpro system. Especially, since 
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the second eigenvector was related to the opening motion of the two loop regions (residue 
41-54 and 187-192; Supplementary Fig. J2), it was considered that the conformations of 
the active site with large PC2 value (>10) were induced particularly by the interactions of 
the ligands (see Fig. 4c and Supplementary Fig. J2). Furthermore, the conformations of 
the active site (obtained from the MD simulations) largely changed from that of the crystal 
structure, and various conformations emerged in the ligand-bound systems as well as apo-
Mpro system. Although it was difficult to systematically classify the active site 
conformations after the binding of the different ligands, its characteristic conformations 
could be visualised (examples shown in Fig. 4a and c, lopinavir-bound Mpro and indinavir-
bound Mpro systems). 

Next, we investigated how each ligand interacted with the active site residues in 
the MD simulations. To detect the important protein-ligand interactions, we analysed the 

Figure 4. Conformational diversity of the Mpro active site. The projection of the first 
two principal components (PC1 and PC2) is shown. The contribution ratios of first two 
principal components (PC1 and PC2) were 36.1% and 12.9%, respectively. The 
conformations of the active site, corresponding to the cross mark and (a)-(c) in the 
projection, are shown: the cross mark and (a)-(c) are the crystal structure (PDB ID: 
6lu7) and simulation structures of indinavir-bound Mpro, saquinavir-bound Mpro, and 
lopinavir-bound Mpro systems, respectively. The five regions of the active site, (1) 
residues 24-27, (2) 41-54, (3) 140-145, (4) 163-168 and 172, and (5) 187-192, are 
coloured in red, blue, yellow, green, and magenta, respectively. The representative 
conformations for the active site of apo-Mpro system are shown in Supplementary Fig. 
J3. The Apo chain A and Apo chain B correspond to the trajectories of the active sites 
of the chain A and the chain B of the apo-Mpro system, respectively. 
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interaction fingerprint which could enable the identification of the existence of the ionic 
and the hydrogen bonds between the protein and the ligand for each snapshot in MD 
trajectories. Observing the representative appearance rate of the interaction fingerprints 
(RAIF) in Supplementary Table K1, the seven key active site residues were found to have 
comparatively large contribution (residues 44, 143, 166, 187-190 with RAIF >20%) and 
were speculated to play an important role in the ligand binding. In addition, by performing 
clustering analysis of the fingerprints, we picked three representative binding poses for 
each ligand from top three classified clusters. Figure 5 shows the typical binding poses 
with the seven key residues, as highlighted (Supplementary Figs. K1-7 show full set of 
binding poses). Based on the observation of the binding poses, we found that the various 
binding poses were contained in MD simulations of each ligand-bound Mpro system, and 
the variety of binding poses resulted from not only the initial conformation of the 
encounter complex but also from the conformational refinement and/or equilibrium 
dynamics within each 1 μs MD simulation. In addition, it was clear that the conformations 
of the active site (obtained from MD simulations) were markedly different from that of 
the crystal structure that was covalently bound with the inhibitors, with respect to the 
positions of the key residues. This suggested that the shapes of the subsites observed in 
the crystal structure[3] changed significantly in MD simulations (see Fig. 5a). 

The two key residues, Glu166 and Gln189, were especially noted because they 
commonly formed effective interactions (RAIF > 20%) with multiple ligands. Glu166 
formed effective interactions with five ligands (darunavir, indinavir, lopinavir, nelfinavir, 
and tipranavir) (Supplementary Table K1). The interaction was influenced mainly by 
conformational change of Glu166 side chain. Gln189 also formed effective interactions 
with three ligands (darunavir, ritonavir, and saquinavir), and had comparable interactions 
with indinavir (RAIF = 19.1%) and nelfinavir (RAIF = 18.8%). Thus, Gln189 could be 
utilised as a key residue for a broad range of ligands. Gln189, which is known to be quite 
flexible in the Mpro of SARS-CoV[23], belongs to the loop region (residue 187-192) that 
is closely related to the PC1-2 eigenvectors (Supplementary Fig. J2). Gln189 could 
maintain effective interactions with a variety of ligands by utilising the flexibilities in its 
side chain and the backbone of the loop. Each of the other five key residues formed 
effective interactions with only one of the seven ligands. The three residues: Asp187, 
Arg188, and Thr190 (present in the same loop as Gln189) might have relatively less 
chance to form effective interactions because of their location within the loop and the 
preferred orientation of their side chains. The remaining two residues: Cys44 and Gly143, 
formed effective interactions with darunavir (Supplementary Table K1), which suggested 
potential utilisation of these key residues for a specific class of drugs. Besides the seven 
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key active site residues noted above, Met49 in the loop region (residue 41-54) formed 
moderate interactions (RAIF of 5.0-16.5%) with the seven ligands. As Met49 is known 
to play an important role in accommodating a substrate peptide for the Mpro of SARS-
CoV[24], it might largely contribute to the molecular recognition for drug development 
against Mpro. In addition to these commonly utilised interactions, we also found some of 
the interactions formed uniquely to a ligand (Supplementary Fig. K8) which implied a 
broad possibility of conformational variation in the active site specifically induced by the 

Figure 5. Key active site residues for ligand binding. (a) The key amino acids were 
determined with the representative appearance rate of the interaction fingerprints (RAIF) 
and are highlighted with space-filling models in red (Glu166), blue (Gln189), yellow (Cys44, 
Gly143, Asp187, Arg188, and Thr190), and grey (Met49). First two residues, Glu166 and 
Gln189, were commonly utilised for multiple ligands, while others for single ligand (see 
main text and Supplementary Table K1). This figure is depicted on the crystal structure of 
Mpro-N3 inhibitor complex (PDB ID: 6lu7). The P1’, P1, P2, P3, P4, and P5 residues of N3 
inhibitor is shown with ball and stick models in red (P1’), blue (P1), yellow (P2), green (P3), 
magenta (P4), and grey (P5), and the S1’, S1, S2, S3, S4, and S5 indicate the subsites 
corresponding to P1’-P5 sites of N3 inhibitor[3]. (b) The representative binding pose of 
darunavir-bound Mpro system is shown. The ligand interacted with Ser46, Met49, Glu166, 
Val186, Gln189, and Thr190. (c) The representative binding pose of ritonavir bound Mpro 
system is shown. The ligand interacted with Cys44, Cys145, Met165, Asp187, Arg188, and 
Gln189. (d) The representative binding pose of indinavir-bound Mpro system is shown. The 
ligand interacted with His41, Gly143, Glu166, and Gln189. In (b)-(d) structures, the detected 
hydrogen bonds (Supplementary information K) are shown with green dotted lines. The 
ligands are shown with ball and stick models. 
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ligands. These results indicated that there were diverse interaction patterns of the 
respective ligands in the flexible active site of Mpro. 
 
Discussion 
 

We investigated the access to the drug binding sites in SARS-CoV-2 Mpro, using 
seven HIV inhibitors as potential lead drugs. The frequently accessed sites on the Mpro 
were classified based on the contact between the ligand and the protein. Although the 
limited length of the simulations may give statistics only for encounter complexes, it can 
provide a list of potential drug binding sites which can be employed for further drug 
development/repositioning. The microsecond-scale simulations of the active site 
complexes of Mpro and ligands revealed a wide variation in the shapes of the active site 
and also in the binding poses of the ligands. This suggested that the surface of the Mpro is 
rather flexible, and conformational change due to induced fit between the ligand and the 
protein was a dominant factor affecting the binding processes. Thus, MD simulation could 
be an effective tool to investigate the ligand binding on the current Mpro system. 

Molecular docking is a practical computational method for drug discovery. The 
conventional molecular-docking approach involves rigid receptor-flexible ligand docking 
and uses a single protein structure, such as the X-ray crystallographic structure. However, 
it could be difficult to adopt this approach for a target like the Mpro active site, which has 
high flexibility. Here, we performed preliminary conventional molecular dockings using 
the representative MD simulation structures as well as the crystal structure and the drug-
like compound library (Supplementary information L). Supplementary Table L1 showed 
that the distinctive set of promising inhibitor candidates was obtained by molecular 
dockings based on each employed protein structure. This suggested that the molecular 
docking using a single protein structure was not sufficient for drug discovery. Hence, the 
protein structural information obtained from our MD simulations could be utilised for 
structure-based drug design strategies, including the ensemble docking. For a detailed 
comparison of the binding affinity among ligands, an estimation of the precise protein-
ligand complex structure is crucial and can be achieved by MD simulations with longer 
duration. Recently, several studies on promising inhibitors of Mpro system, using 
molecular docking and MD simulations, have been reported [14–18,25,26]. These studies 
proposed several HIV-1 protease inhibitors as promising inhibitor candidates of Mpro. The 
results varied depending on the computational conditions, such as the used Mpro structure 
and the docking program. In particular, the influence of molecular docking on the Mpro 
structure was also supported by the results of our preliminary molecular dockings 
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(Supplementary information L). However, since our current work mainly focused on the 
analysis of the dynamical access of drug molecules to the surface of the Mpro , a direct 
comparison of our current work with these studies is not feasible. Moreover, our results 
suggested that the non-specific binding to sites other than the active site should be 
considered while designing drugs. 
 To explore longer temporal behaviour of ligand binding at the active site of the 
Mpro, three pilot simulations for indinavir, nelfinavir, and tipranavir were performed by 
extending three trajectories to reach 6 µs (Fig. 6 and Supplementary Fig. M1). It was 
observed that the ligands stayed at the active site for µs scale. However, it was also 
observed that the ligands exhibited flipping of the binding pose a few times in 6 µs. These 
observations suggest that these binding states might be rather loose, and such loose 
binding states may be a typical or essential class of the small-molecule ligand binding 
state to the Mpro active site. There is a possibility to develop a more effective drug that 
can bind tightly to the Mpro active site with high enthalpy difference. We hope systematic 
investigation of longer temporal behaviour in future researches will give us a perspective 
view of the drug binding dynamics. 

Another noteworthy finding was the interaction between the ligands and the C-
terminal residues of the other chain of the dimer, observed for all ligands. Figure 7 shows 
the typical snapshot of such interactions in the case of indinavir. In the extended 
simulations of 1 µs, the C-terminal residue, Gln306, stayed within a minimum distance 
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of 0.35 nm to the ligand for 8% of the time duration (from 200 ns to 1,000 ns, averaged 
over 20 simulations) (Supplementary Table N1). In addition, in several cases, the region 
entered the active site (Supplementary Fig. N1). Similar observations were noted in the 
clustering analysis of protein-ligand contacts and interactions. Since Mpro is known to 
autoprocess the N- and C-terminals of the precursor protein of itself[27,28], it is 
reasonable to observe the interaction of the C-terminal region and the active site. This 
fact also suggested that the observed C-terminal interaction might stabilise the substrate 
or drug interactions. The observed dynamic interaction, revealed by the MD simulations, 
would be another important factor to be considered in drug design. 

The analysis on ligand access to the surface of the Mpro provided several drug 
binding sites, in addition to the orthosteric active site. Among these sites, sites 2 or 3, 
(located at the interface of the dimeric Mpro) were relative frequently accessed by 
lopinavir, ritonavir, and saquinavir and may be worth exploring. While the ligand binding 
to these two sites may not directly inhibit the enzymatic reaction, there is a possibility to 
influence the dimerisation and structural stabilisation of the dimeric Mpro. It would be 
interesting to elucidate the roles of these sites by simulating the binding of the other drug 
molecules and the substrate peptides. Further, a study on the detailed mechanism to 
recognise the specific amino acid sequences in the active site is an interesting target of 
MD simulations in drug designing, including allosteric inhibitors. Our next goal is to 
propose an atomic level drug design strategy against the Mpro by integrating the dynamical 
information of various binding process. 

Figure 7. C-terminal region interacting with indinavir at the active site. Similar interactions 
were observed for the other ligands. The chain in orange corresponds to the chain that has 
the active site occupied by indinavir, and the one in red (C-terminal) corresponds to another 
chain of the dimer. This snapshot was taken at 2.4 µs from the trajectory shown in Fig. 6. 
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Methods 

To simulate the binding process of seven HIV protease inhibitors (darunavir, 
indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir) to the SARS-CoV-2 
Mpro, the initial structures were built based on the X-ray crystal structure of the holo 
SARS-CoV-2 Mpro (Protein Data Bank[29] entry: 6LU7[3]). Since the crystal structure 
was the Mpro with the covalently bound inhibitor, the structure of the inhibitor-unbound 
Mpro (apo-Mpro) was prepared by removing the covalently bound inhibitors. In addition, 
each HIV protease inhibitor was initially placed at least 1.5 nm apart from the active sites 
of SARS-CoV-2 Mpro (see Supplementary Fig. B1). The initial structure of the Mpro with 
an HIV inhibitor was then solvated in a cubic box of TIP3P water molecules. In addition, 
chlorine and sodium ions (0.154 M) were added to neutralise the system. The system of 
apo-Mpro, without covalently bound ligand, was also prepared in a similar manner. Amber 
FF14SB[30] was used for the Mpro protein, and general amber force field (GAFF)[31] 
was used for seven HIV protease inhibitors. The partial charges for the ligands were 
calculated at the RHF/6-31G(d) level with Gaussian16[32] and the restrained electrostatic 
potential method[33,34]. ParmEd[35] was used to convert Amber topologies to 
GROMACS[36] formats. VMD[37] and PyMOL[38] were used for visualisation. 

All MD simulations were performed on the massively parallel supercomputer 
HOKUSAI Big Waterfall (BW) system at RIKEN ICS, or the special-purpose, specialised 
for faster calculation of MD, computer MDGRAPE-4A[19] (the advanced version of 
MDGRAPE-4[39]) at RIKEN BDR. All hydrogen bonds and TIP3P waters were 
constrained with the methods summarised in Supplementary Table Y1. The periodic 
boundary conditions were applied to the system, and the long-range Coulomb interactions 
were treated with the method described in Supplementary information Y and Z, with a 
direct space cutoff distance of 1.3 nm. After the energy minimisation of each solvated 
system, the system was heated to 300 K for 1ps with the integration time step of 0.5 fs, 
without constraints. Then, 100 ps MD simulations, with a time step of 2 fs, under NPT 
ensemble (P = 1 bar and T = 310 K), were performed to adjust the size of the simulation 
box. For each HIV inhibitor, the above relaxation protocol was applied for 4-fold variation 
in the initial location of the inhibitor (Supplementary information B), and 7-fold variation 
produced by randomising velocities with different random seeds. As a result, totally 28 
initial conditions were prepared for the 200 ns production runs on HOKUSAI-BW (with 
a time step of 2.5 fs) under NVT ensemble (T = 310K). The trajectories of each system 
were saved for every 100 ps (2000 conformations in each MD trajectory), and most of the 
analysis were done on snapshots every 200 ps. In addition, 23 trajectories were picked 
for extended simulation of 1 µs duration (11 on MDGRAPE-4A and 12 on HOKUSAI-
BW), and 3 trajectories in these trajectories were extended further to 6 µs duration on 
MDGRAPE-4A. The simulation of 1.8 µs trajectory for apo-Mpro and pilot runs in the 
early stage of this study were also performed on MDGRAPE-4A. Additional simulation 
to search negative control was partly performed on HOKUSAI Sailing Ship (SS) system. 
 
Data availability 

Raw trajectory data analysed in this paper and movie examples are available at the zenodo 
repository[40]. 
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