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In Mycobacterium tuberculosis (MTB), the cell wall synthesis flavoenzyme decaprenylphosphoryl-β-d-

ribose 2’-epimerase (DprE1) plays a crucial role in host pathogenesis, virulence, lethality and survival 

under stress. The emergence of different variants of drug resistant MTB are one of the major threats 

worldwide which essentially requires more effective new drug molecules with no major side effects. 

Here, we used structure based virtual screening of bioactive molecules from ChEMBL database targeting 

DprE1, having bioactive 78,713 molecules known for anti-tuberculosis activity. An extensive molecular 

docking, binding affinity and pharmacokinetics profile filtering results in the selection four compounds, 

C5 (ChEMBL2441313), C6 (ChEMBL2338605), C8 (ChEMBL441373) and C10 

(ChEMBL1607606) which may explore as potential drug candidates. The obtained results were 

validated with thirteen known DprE1 inhibitors. We further estimated the free-binding energy, solvation 

and entropy terms underlying the binding properties of DprE1-ligand interactions with the implication 

of MD simulation, MM-GBSA, MM-PBSA and MM-3D-RISM. Interestingly, we find that C6 shows 

highest ΔG values (-41.28±3.51, -22.36±3.17, -10.33±5.70 kcal mol-1) in MM-GBSA, MM-PBSA and 

MM-3D-RISM assay, respectively. Whereas, the minimum ΔG scores (-35.31±3.44, -13.67±2.65, -

3.40±4.06 kcal mol-1) observed for CT319, the inhibitor co-crystallized with DprE1. Collectively, the 

results demonstrated that hit-molecules C5, C6, C8 and C10 having better free binding energy and 

molecular affinity as compared to CT319. Thus, we proposed that selected compounds may be explored 

as lead molecules in MTB therapy.   

Keywords: Mycobacterium tuberculosis; DprE1; Virtual screening; Bioavailability; MM-PBSA/GBSA; 

3D-RISM. 
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1. Introduction 

 

Mycobacterium tuberculosis (MTB) is a slow growing and widely spread pathogen, survive in both, 

intra-cellular and extracellular systems of patients, and infection may result in chronic and complex 

disease state. During the treatment, it can go to latency which revert to exponential growth on the immune 

defiance conditions of hosts [1, 2]. In recent years, WHO reports suggested that around 10.0 million 

(range, 9.0–11.1 million) individuals infected and 1.3 million (range, 1.2–1.4 million) people died from 

tuberculosis (TB) [1]. Moreover, the infection of MTB is one of the major causes of death worldwide, 

possessing the global health crisis, especially for the immunocompromised and HIV patients [3]. 

Although, the specific treatment may cure MTB, however, it requires multiple drug therapy for a longer 

period [1, 3]. Furthermore, the development of multi- and extensively-drug-resistant (MDR-TB and 

XDR-TB) MTB strains are the big challenges to control TB infections [4, 5].  In several conditions, it 

may turn into totally drug-resistant (TDR) tuberculosis which may worsen the condition of patients and 

therapy [2, 6]. Thus, the potential drug candidates, having minimal or no side effects are highly sought 

in MTB therapy [1, 2].  

In recent years, several proteins involved in MTB survival and metabolism have been explored as 

potential drug targets and are progress in the drug development. During the evolution, mycobacteria have 

developed well-orchestrated and complex biosynthetic pathways to sustain a unique and thick cell wall 

which helps in maintaining the cellular integrity, survival under stress and dormancy, and eluding the 

host’s immune systems. In MTB, the cell wall consists of the polymers of mycolyl-arabinogalactan-

peptidoglycan, covalently connected with peptidoglycan and trehalose dimycolate that protects from 

stress, antibiotics and the hots immune systems [7]. The flavoenzyme decaprenylphosphoryl-β-d-ribose 

2’-epimerase (DprE1) involve in the biosynthesis of cell wall, plays critical role in formation of 

peptidoglycan-arbinogalactan-mycolic acid complex (PAM) and arabinogalactan and 

lipoarabinomannan (LAM) which are the essential building blocks and play crucial role in survival and 
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host pathogenesis, virulence, and lethality. DprE1 catalyses the first stage of epimerization reaction 

especially in the presence of FAD, it oxidizes C2’ hydroxyl site of DPR to produce the keto intermediary 

decaprenyl-2’-keto-D-arabinose(DPX) and then DPA is formed by using decaprenyl-phosphoryl-D-2-

keto-erythro-pentose reductase (DprE2) and reduced form of nicotinamide adenine dinucleotide (NADH) 

as a cofactor [8-10].  Thus, the catalytic activity of DprE1 is one of the potential drug targets in the 

development of tuberculosis therapy [2, 4, 7].  Recently, the benzothiazinones (BTZs) derivatives have 

shown higher potency for inhibition of DprE1, and efficacy against XDR and MDR mycobacterium 

clinical isolates.  

To improve the pharmacological properties of the compounds, chemical scaffold piperazine was added 

to BTZ. Further, the lead optimization of PBTZ derivatives results in the discovery of more potent 

compounds which are currently in clinical trials [5, 8, 11]. In this view, several structurally distinct 

chemical scaffolds are in drug screening as DprE1 inhibitors. Broadly, these inhibitors can be categorized 

as covalent or noncovalent, distinctly involved in interaction at the catalytic domain of DprE1 [8, 11]. 

To elucidate the action and interaction of BTZs compounds, Batt el al., solved the X-ray crystal structure 

of DPrE1 in both, ligand free and bound form. He found that the structure of DprE1 consists of two 

functional domains, FAD binding domain and substrate binding domain. The co-factor was buried deeply 

in highly conserved FAD domain. The substrate binding extended for FAD, decorated largely with 

antiparallel β-strands (β10-16) and included disordered loops at surface which govern the wide and open 

active site. The nitroaromatic inhibitors (e.g., BTZ, VI-9376, nitroimidazole 377790) possesses nitro 

moiety which involved in covalent interaction at C387, whereas, the noncovalent inhibitors (e.g., TCA1, 

1,4-azaindoles, pyrazolopyridones, 4-aminoquinolone piperidine amides, Ty38c) potentially inhibit the 

enzymatic function of DprE1 showed that hydrophobic, electrostatic, and van der Waals interactions are 

critical for the spatial stability of inhibitors at the active site of DprE1 [5, 11]. Thus, the exploration of 
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crystal structure of DprE1 has been largely facilitated the drug discovery efforts to tend the molecules 

effective against MDR and XDR strains [2, 5, 8, 11].  

Recent studies on the development of DprE1 inhibitors suggested a major contribution of molecular 

modelling, high throughput screening, docking, functional genomics and proteomics in paradigm of 

identifying novel chemical scaffolds as potential molecules for TB chemotherapy [5, 8, 11]. Although, 

molecular docking programs provide the description of protein-ligand interactions. However, a better 

understanding of protein-ligands interactions requires an accurate description of the spatial orientation 

of ligands at the active site of protein, conformational dynamics of protein and active sites residues, 

interaction energy and molecular stability [12-14]. In this view, MD simulation is an efficient and well-

established computational method which mimics the flexible nature of bio-molecules, protein 

conformational changes, protein-ligand interactions, structural perturbation and provide more realistic 

picture with atomic details in reference to time [4, 15, 16]. Moreover, the free binding energy estimation, 

effect of solvation and thermodynamic integration is the central focus to understand the molecular 

interactions which can be well achieved by the implication of MM-GBSA, MM-PBSA and MM-3D-

RISM using the trajectories obtained from MD simulation [12, 17-19].   

 In this context, we employed the structure based virtual screening for identification of promising 

chemical entities as DprE1 inhibitors from the ChEMBL database. We find that 78,713 small molecules 

at ChEMBL database suggested for the anti-mycobacterial activity. The three steps molecular docking 

and binding affinity estimation process lead to the selection of 10 hit-molecules. Similar procedures were 

applied on the selected 13 DprE1 inhibitors for the comparison of results with hit-molecules. Multiple 

MD simulations were performed on the DprE1 complex with hit-molecules and inhibitor (CT319) and 

the spatial stability of ligand molecules at active site of protein was estimated in terms of binding free 

energy using MM/PBSA/GBSA, and MM-3D-RISM [15, 17, 18]. The extensive evaluation of 

pharmacokinetic profile and drug-likeness properties analyses suggested that four chemical entities, 
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compounds C5 (ChEMBL2441313), C6 (ChEMBL2338605), C8 (ChEMBL441373) and C10 

(ChEMBL1607606) may be explored as potential lead molecules for the development of promising 

DprE1 inhibitors in MTB therapy.   

 

2. Materials and Methods 

2.1.  Protein preparation  

The X-ray structure of DprE1 with inhibitor CT319 and cofactor FAD (PDB ID: 4FDO) was taken from 

the protein data bank (www.rcsb.org) [20]. The structure of DprE1 consist of two domains, the FAD 

binding domain comprised with α/β folds (residues 7–196, 413–461) and another domain, substrate 

binding includes extended conformation and antiparallel β-sheets (residues 197–412). In the crystal 

structure, the spatial orientation of FAD-binding domain and residues involved in interactions were 

highly conserved and critical, the cofactor is deeply buried, with the isoalloxazine at the interface to the 

substrate-binding domain [11]. And, the substrate-binding domain orientated towards the interface of 

flavin binding at centre. Thus, to prepare the protein files for molecular docking studies, the bound 

complex of protein with cofactor FAD was used. The other heteroatoms, co-crystallised inhibitor 

(CT319) and water molecules were removed.  The structural regions lacking for low electron density 

were prepared, using Chimera tools [21]. Protein preparation wizard of Glide was used to assign 

hydrogen atoms and examine the structural correctness [22].  Finally, the optimized coordinates of DprE1 

with FAD was used to carry out molecular docking and virtual screening against the selected 

antimycobacterial compounds from ChEMBL database.  

 2.2 Ligand preparation     

Here, we used the anti-tuberculosis compounds taken from the publicly available chemical compounds 

database, ChEMBL. It consists of 2,101,843 compounds, out of these 78,713 compounds were bioactive 

molecules, having anti-tuberculosis activity downloaded from the ChEMBL database [23]. After sorting 

http://www.rcsb.org/
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of compounds based on the repetitive entries, 30,789 ChEMBL compounds were found unique which 

were used for the ligand preparation. The SMILES (simplified molecular-input line-entry system) strings 

formats of compounds were converted to 3D SDF format, missing hydrogen atoms were added, and the 

structures were optimized using CORINA v2.64 software package [24]. The module, Ligprep of 

Schrodinger suite 2017-3 used to generate compounds with low energy 3D structures [25]. The 

ionization/ tautomeric states of the selected compounds were taken care of by Epik parameters. The 

compounds chirality was taken from the original state. All the conformations were minimized and 

produced at a maximum of 32 conformations per ligand using the OPLS-2005 force field at a pH 7+ 2 

[26-28]. 

2.3 Virtual Screening and Scoring 

The structure based virtual screening of compounds against DprE1 was performed using Glide, 

Schrodinger, LLC [29, 30].  The grid box define over the active site of DprE1, having outer box size X= 

30, Y= 30, Z= 30 with grid center, X=40.1971, Y= 16.829, and Z= 9.172 [11]. The high throughput 

virtual screening involved three step filtering processes (i) selection of top ten percent ligand molecules 

using standard precision, (ii) then, docking of molecules by the extra precision mode of Glide (Glide XP) 

which allow the flexibility of ligands and (iii) the best-docked compounds were chosen using a Glide 

Emodel energy, Glide energy and Glide score function. The Glide Emodel includes a combination of 

Coulombic and van der Waals interaction energy, Glide score and strain energy of ligands which were 

used to selected lowest energy docked complexes on which the post-docking analyses were performed. 

Further analysis involved the re-scoring of selected docked complex using X-score v1.2.1 [31] and the 

protein-ligand molecular interactions were examined using Ligplot [32] and Discovery Studio  Visualizer 

(Accelrys, San Diego, CA, USA). 

 

 2.4 ADME studies 
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The bioavailability of selected lead molecules, ADME (adsorption, distribution, metabolism and 

excretion) properties were calculated using module Qikprop v5.7 of Schrodinger 2018-3. ADME 

descriptors includes,  central nervous system (CNS), molecular weight (MW), prediction of octanol/water 

partition coefficient (QPlogPo/w), aqueous solubility (QPlogS), IC50 value for blockage of HERG K+ 

channels (QPlogHERG), gut blood barrier (QPPCaco), brain/blood partition coefficient (QPlogBB), 

binding to human serum albumin (QPlogKhsa), Lipinski’s rule of five (RO5) and percentage of human 

oral absorption (% of Human oral absorption).  

2.5 In-silico drug-likeness and toxicity prediction 

The molecular properties predictor tool, OSIRIS was used for the prediction of side effect risks of the 

hit-molecules, such as mutagenicity, tumorigenicity, irritant and reproductive effects. It also calculates 

the drug-relevant properties: cLogP, solubility (LogS), molecular weight (MW) and based on overall 

drug-score suggested the drug-likeness properties of molecules [33]. 

 

2.6 Molecular dynamics (MD) simulation 

MD simulation was performed on the coordinates of DprE1 and DprE1-ligand complexes, using 

Amber16 biosimulation package. The force field ff14SB with TIP3P water model was used for the 

solvation of prepared systems.  The charges, parameters and force field for cofactor (FAD) and ligands 

were defined by AM1-BCC charges and force field GAFF, using Antechamber tool. Here, six 

independent MD runs were carried out for the prepared systems, DprE1-FAD, DprE1-FAD-CT319, 

DprE1-FAD-ChEMBL1607606, DprE1-FAD-ChEMBL2338605, DprE1-FAD-ChEMBL2441313 and 

DprE1-FAD-ChEMBL441373 complexes. And, the systems were prepared using tleap tool of Amber16 

with buffer distance (12 Å) in the octahedral simulation box. To neutralize the system 0.15 M counter 

ions (Na+ and Cl-) were added [34].  Bonds involving hydrogens were treated with SHAKE algorithm 

and the long-range electrostatic forces were handled using Particle mesh Ewald summation. During the 
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simulation, Berendson’s barostat and Langevin thermostat were used to maintain the Pressure and 

temperature, respectively. The energy minimization processes involved two phases. First phase included 

3000 minimization steps, which involved 2500 steps of steepest gradient and remaining 500 steps of 

conjugate gradient algorithm. The solute atoms were restrained (100 kcal mol
-1

Å
-2

) and the only 

movements of water molecules and counter ions were allowed.  The second phase of minimization 

included 5000 minimization steps (steepest gradient: 4500 steps and conjugate gradient: 500 used) 

without restraints on any atom. Minimization step followed by heating equilibration of system from 0 to 

298 K with a time step of 1fs for 30 ps and consecutive equilibration run of 100 ps using time step of 2 

fs with NPT ensemble. Using pmemd.cuda, the production run was performed on NPT ensemble for 

period of 100 ns and the time step was set to 2 fs. All files, trajectories, velocity and energy were saved 

at a gap of every 10 ps. The simulation trajectories were analysed using cpptraj tool available in 

Amber16. 

2.7 Binding free energy calculation 

Free energy change of a protein-ligand binding can be represented as follows: 

ΔG=⟨GRL⟩-⟨GR⟩-⟨GL⟩                                                             eq. (2) 

where, ΔG, GRL, GR and GL represent the binding free energy of protein-ligand system, free energy of 

protein complexed with ligand, free energy of protein and free energy of ligand, respectively. The angular 

brackets represent ensemble average. Neglecting the entropy change of protein and ligand as a result of 

binding, equation (eq.) 2 can approximately be written as: 

ΔG=ΔE+ΔGSOL                                                             eq. (3)  

where, ΔE is the interaction energy change (gas-phase) upon ligand binding.  ΔGSOLV is the solvation 

free energy change on ligand binding. Here, ΔE can be computed using molecular-mechanics force field 

and the second term, ΔGSOL can be estimated with the help of a proper solvation model. 
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Solvation models can be categorized in one of the two classes, implicit solvation model and explicit 

solvation model.  Implicit solvation models consider the solvent molecules and dissolved salt ions as a 

mean field dielectric continuum. In contrary to implicit solvation models, explicit solvation models 

define solvent species at atomistic detail. Generalized Born Surface Area (GBSA), Poisson-Boltzmann 

Surface area (PBSA) are the two most common implicit solvation models used for solvation free energy 

calculation. Whereas, using the first principles 3D-RISM-KH (three-dimensional reference interaction 

site model with Kovalenko–Hirata) provides a 3D maps of solvation structure, thermodynamics and, 

more accurately predicting the parameters accounts for the ligands binding interactions and affinities.  

 

2.7.1 Generalized Born Surface Area (GBSA) 

In GBSA approach, the solvation free energy of a solute molecule, GSOL  is calculated in two parts: polar 

or electrostatics (GSOL−GB) and nonpolar or non-electrostatics (GSURF) (GSOL  =  GSOL−GB + GSURF).  

GSOL−GB is estimated using the following generalized Born expression: 

GSOL−GB  =  −
1

2
 ∑

qi qj

fGB(rij,Ri,Rj)ij (1 − 
exp(−κ fGB)

ϵ
)                                           (eq. 4) 

where qi, qj represent charges on solute atoms i, j respectively and rijis the distance between them, Ri 

represents effective Born radii (estimated using van der Waals radius and burial of atom), 

fGB =  √rij
2 + RiRj exp(−rij

2/4RiRj) 

and the summation runs over all pairs of atoms in the solute molecule. The screening effect produced by 

the monovalent salt ions is incorporated in eq. 4 through the Debye-Huckel screening parameter κ. The 

nonpolar or non-electrostatics contribution to solvation free energy (also known as cavitation 

term),GSURFis determined on the basis of solvent accessible surface area (SASA) of molecules. 
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2.7.2 Poisson Boltzmann Surface Area (PBSA)  

In PBSA model, the solute is represented in atomic detail with molecular mechanics force field and the 

solvent molecules along with dissolved electrolytes is represented as a dielectric continuum. This 

approach considers the solute molecule as a dielectric object whose shape is determined by the atomic 

coordinates and their radii. Electric charges present on atoms of solute molecule produce electric field 

and in response the solvent also produce a reaction field. The electrostatic potentialϕ(r)at a point satisfies 

the Poisson-Boltzmann (PB) equation and can be computed by solving it: 

∇. [ϵ(r) ∇ϕ(r)] = −4πρ(r) −  4π ∑ zi ci exp(−ziϕ(r)/kT)i                                            (eq. 5) 

Where, ε(r) is the dielectric constant, ϕ(r) is the electrostatic potential, ρ(r) is the solute charge density 

at position r, zi is the charge on ion i, ci is the bulk number density of ion i, k is the Boltzmann constant, 

and T is the absolute temperature; the summation is over all different ion types. when the solute does not 

carry a high charge, the second term in eq. 5 can be linearized and it results into linearized PB equation. 

In Amber PB equation is solved numerically for solutes of arbitrary shape which gives electrostatic 

potentialϕ(r)at each point of the system. Once we know the electrostatic potential ϕ(r) at each point, 

we can calculate the polar solvation free energy (GSOL−PB) of the solute by multiplying each solute charge 

qi by electrostatic potential ϕ(ri) at that point. Here, the nonpolar part of solvation free energy GNPOL is 

also calculated through SASA of solute, as described in GBSA analyses. 

 

2.7.3 Three-dimensional reference interaction site model with KH closure (3D-RISM-KH) 

3DRISM is a semi analytical theory based on statistical mechanical Ornstein-Zernike (OZ) equation 

which is a contrary to MM/GBSA and MM/PBSA, considers molecular structure of solvent and salt ions. 

OZ equation splits the total correlation between two molecules into direct correlation between them and 

indirect correlation, which comes from other particles present in the system. In this theory, the molecular 

interactions are converted to sum of site-site interactions where atomic centres are taken as sites. The 
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three-dimensional solvent distribution functions are obtained from the solution of following 3DRISM 

integral equation: 

hγ(𝐫) =  ∑ ∫ dr′ cα(r − r′)χαγ(r′)α                                         (eq. 6) 

Where,  hγ(𝐫) = gγ(r − 1) and cγ(𝐫) are the total and direct correlations of solvent in 3D and summation 

is taken over all interaction sites of all solvent species. The susceptibility function χαγ(r′)for solvent was 

calculated using dielectrically consistent reference interaction site model (DRISM) theory and used as 

input to 3DRISM calculation. As eq. 6 involves two variables; hand c, therefore, we need another closure 

relation to solve it. Here, we have used Kovalenko-Hirata (KH) closure which is as following: 

g(𝐫) = exp(−βuγ(r) + hγ(r) − cγ(r)) for gγ(r) ≤ 1 

and g(𝐫) = 1 − βuγ(r) + hγ(r) − cγ(r) for gγ(r) > 1           (eq. 7) 

The one-dimensional site-site solvent susceptibility of solvent is defined in two parts as follows: 

χαγ(r) = ωαγ(r) + ραhαγ(r) 

Where, the intramolecular correlation function ωαγ(r) incorporates the molecular geometry of solvent 

and hαγ(r) is the total correlation between solvent sitesαand γ. 

In Amber, eqs. (6) and (7) are solved numerically to obtain three-dimensional solvent distribution 

functions around a fixed solute geometry and solvation free energy of the solute is calculated using the 

following equation which is an extension of Singer-Chandler formula: 

GSOL =  ∑
ρi 

β
∫ dr [−ci(r) −

1

2
hi(r)ci(r) +

1

2
{hi(r)2Θ(−hi(r))}]

∞

0i                 eq. (8) 

Where, Θ is the heaviside function and the summation runs over all the solvent sites i. The nonpolar part 

of GSOL-NPOL is calculated by assigning all solute charges zero. Further, the solvation free energy GSOL 

can also be decomposed into energetic and entropic components (∆GSOL-E and -∆GSOL-TS) using 

temperature derivatives.  
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3. Results and Discussion 

The drug development process involves several expansive steps and complex strategies. Recent 

advancement in the computational modelling techniques, molecular docking, high-throughput virtual 

screening, pharmacokinetic profile (ADME), toxicity and bioavailability analyses of the molecules have 

been perceived as well-established techniques to accelerate the drug development processes [13, 31, 35-

37]. Further, the integration of MD simulation and estimation of free-binding energy provide an accuracy 

on the spatial fitting, interaction stability and binding affinity of ligands at the active site of protein [15, 

17-19, 38]. Herein, we systematically utilized the structure based virtual screening of compounds from 

ChEMBL database, having bioactive 78,713 molecules known for anti-tuberculosis activity (Figure 1). 

The initial sorting of molecules leads to selection of 30,789 molecules which were subjected for 

molecular docking against the protein DprE1, the oxidoreductase enzyme involved in cell wall synthesis 

of MTB. The extensive ADME, toxicity and pharmacokinetic profile analyses were performed on hit-

molecules which results in the selection of four ChEMBL compounds as potential lead molecules for 

DprE1 inhibitors. To improvise the molecular docking results, multiple MD simulations carried out on 

DprE1, DprE1-CT319 and DprE1- -hit molecules (C5, C6, C8, C10) complexes. Typically, MD 

simulation deciphers the structural stability of protein-ligand interaction, conformational orientation, 

stability and molecular interactions of ligands at active site [11, 22, 39]. Moreover, the obtained MD 

trajectories utilized to calculate MM/PBSA, MM/GBSA and 3D-RISM-KH, which provide a robust 

estimation of free-binding energy, contacts and effect of solvent underlying the binding affinity of ligand 

molecules [12, 17, 18].   

3.1 Virtual screening and docking analysis against DprE1 

The structure based virtual screening was performed on 30,789 small molecules taken from ChEMBL 

database, having anti-tuberculosis biological activity. Glide based molecular docking involves various 

filtering steps for the high throughput virtual screening (HTVS) [29].  During the initial step, docking 
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leads to the selection of 3,078 compounds, top scored 10 % compounds. These top scored 10 % 

compounds are subjected for standard precision (SP) docking which results in the selection of 307 

compounds. The extra precision (XP) filtering is applied on another top scored 10 % (307 molecules) 

hit-molecules. Finally, the best scored top 10 hit-molecules are selected for the comparative studies with 

known DprE1 inhibitors and drug molecules taken from the recent literatures [5, 8, 11]. The 2D 

interactions of top 10 hit-molecules and 13 inhibitors are shown in Supplementary information S1A 

and S1B.   The same procedures, SP followed by XP were applied for molecular docking of DprE1 

inhibitors and X-score re-scoring method was applied to measure the binding affinity of molecules with 

DprE1 [31]. Glide docking scores and binding affinity (X-score) of top 10 hit-molecules and DprE1 

inhibitors are summarized in Table 1 and 2, respectively.  

The DprE1 inhibitor, CT319 shows highest docking score -5.48 kcal mol-1, whereas, BTZ-N3 shows the 

lowest docking score -1.82 kcal mol-1. However, the X-score results show highest binding affinity of 

BTz043 (-9.62 kcal mol-1) with DprE1, whereas, the lowest binding affinity found with TBA-7371 (-

7.87 kcal mol-1). Among the compounds taken from ChEMBL database, compound ChEMBL2323138 

(C1) shows highest docking score of (-10.198 kcal mol-1) with DprE1and the minimum docking score -

8.795 kcal mol-1 is obtained for ChEMBL1607606 (C10). Whereas, the X-score results show highest 

binding affinity -10.74 kcal mol-1 with ChEMBL2338605 (C6) and lowest affinity -8.60 kcal mol-1 for 

ChEMBL1607606 (C10).  

3.2 ADME property analysis against DprE1 receptor 

Another filtering method involves the pharmacokinetic properties (ADME) analysis of hit-molecules 

[35, 40, 41]. Predicting the bioavailability, toxicity and safety of compounds is an important and integral 

component of drug designing process [13, 35]. We employed QikProp v5.7 available with Schrodinger 

2018-3 to analyse the ADME properties of compounds and compared with DprE1 inhibitors. Results 

show that compounds, C5, C6, C8 and C10 having the CNS activity with the potential range of drug 
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molecules -1 to 0 (Table 3). All hit-molecules having molecular weight <500. The optimal range value 

recommended for the lipophilicity (QPlogPo/w) of compound is between -2.0 ‒ 6.5. Result shows that 

all 10 molecules having QPlogPo/w <6.5, however, the lowest value (0.199) is observed for C4. Whereas, 

the higher QPlogPo/w value 5.108 is obtained for C5. The QPlogS (potential range –6.5 ‒ 0.5) defines 

the aqueous solubility of compounds which are observed within the favourable range for all 10 

compounds. The recommended range for predicting IC50 value for blockage of hERG K+ channel is 

QPlogHERG <-5 which is well satisfied by all compounds. The compounds having the predicted 

apparent Caco-2 cell permeability test (QPlogCaco) > 500 is recommended. Out of 10 molecules, only 

four compounds, C5, C6, C8 and C10 having a value range > 500.  The recommended range for 

QPlogBB is -3.0 ‒ 1.2 which is observed favourable for all molecules. Similarly, it is observed that all 

hit-molecules obeyed the drug likeness properties RO5 (Lipinski’s rule of five) and found within the 

recommended range for human oral absorption (PHOA).  The ADME analysis of DprE1 inhibitors shows 

that all 13 compounds are lying within the recommended ranges for predicted ADME descriptors (Table 

4).  

 

3.3 In silico drug-likeness and toxicity predictions  

The physiochemical properties, toxicity, tumorigenicity and mutagenesis risk of the compounds are 

investigated by OSIRIS Property Explorer [33] and compared with the DprE1 inhibitors (Table 5 and 

6). Results show that out of 10 hit-molecules, 9 compounds are estimated as no risk for mutagenicity 

(MUT and tumorigenicity (TUMO), whereas, C2 shows higher risk for both MUT and TUMO test 

(Table 5). All 10 compounds show no risk for irritation (IR), however, reproductive development (REP) 

toxicity result shows high risk for C6, whereas, C9 shows medium risk for REP. The drug score (DS) is 

representing the combined score value of compounds solubility, polar surface area, toxicity, drug-

likeness and CLogP which define the overall sensitivity of drug molecules. Result shows highest DS 
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value 0.79 for the hit-molecule, C4 and the least observed DS score (0.14) for C2.  The four compounds, 

C5, C6, C8 and C10 which successfully cross the ADME test, show moderate DS score ranges 0.26 ‒ 

0.42. The compound C8 shows higher DS score 0.42, C5, C8 and C10 predicted as no risk for toxicity 

parameters. Whereas, C6 predicted as high toxic risk for reproductive effect (REP), as the chemical 

scaffold contains ketone moiety. Table 6 shows the toxicity and drug-likeness parameters index of DprE1 

inhibitors. The inhibitors, Ty38c and 4AQs predicted as higher risk for mutagenesis, whereas, VI-9376 

shows medium risk and other inhibitors observed as no risk. All selected inhibitors having no risk for 

TUMO. Only, two inhibitors show medium risk for IR and all are predicted as no risk for REP. The 

predicted DS score of inhibitors ranges 0.22 ‒ 0.88.  The inhibitor CT319, co-crystallized with DprE1 

X-ray structure shows moderate range of DS score 0.37, however, no risk is observed for toxicity 

parameters.   

 

3.4. Molecular Interactions  

The crystal structure of DprE1 consists of well separated, conversed FAD-domain and the substrate 

binding domain. The deeply buried FAD-domain is composed of an α/β fold, formed by the residues 

belonging to N-terminus (residues 7-196) and C-terminus (413-461). The substrate binding domain is 

extended from flavin at centre to surface, orchestrated by anti-parallel β-sheets (β10-16) and helices (α5, 

9 and 10). The wide-open active site of DprE1 is governed by two loops at surface which facilitate the 

accessibility and flexibility of ligand binding.  We find that the top 10 hit-molecules (C1-C10) taken 

from ChEMBL shared a common interaction with active site residues which is summarized in Table 1. 

The 2D molecular interaction of hit-molecules C1-C10 and inhibitors at the active site of DprE1 are 

shown in Supplementary Figure S2 and S3. The active site amino acid residues involved in interactions 

with DprE1 inhibitors are tabulated in Table 2. 
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The co-crystallized structure of DprE1-CT319 shows that the inhibitor at the active site is largely 

stabilized by the hydrophobic interactions. Trifluoromethyl moiety of CT319 involved in hydrophobic 

interaction with Lys134 and Tyr314 and the nitro-benzene is stabilized with Lys317 and Val365. The 

nitro (NO2)-group shows H-bond with His312 and Lys418, and the phenylethyl moiety forms 

hydrophobic interaction with Tyr60, Trp230, Phe320, Leu363, Val365 and FAD present in the vicinity 

of catalytic domain. Furthermore, the structural studies of BTZs derivative inhibitors demonstrated that 

the hydrophobic amino acid residues at the active site, Trp60, Gly117, His132, Gly133, Lys134, Ser228, 

Phe231, Tyr314, Leu317, Phe320, Gln321, Trp323, Asn324, Gln334, Q336, Leu363, Val365, Phe366, 

Lys367, Phe369, Asn385, Ile386, Cys387, Asp389 and Lys418 are critical for the ligand recognition. 

And, some inhibitors are covalently linked with C387.  Molecular docking result shows that at the active 

site of DprE1, CT319 forms H-bind with Gln336, Asn385, Lys418, alkyl interactions with Tyr314, 𝜋-

alkyl interaction with Leu317, Leu363, Cys387 and the 𝜋-Sigma bond with Val365 (Figure 2). The 

trifluoromethyl moiety of CT319 interacting with Pro116, Gly133, Lys134 and Tyr314, whereas, the 

both benzene rings are stabilized with hydrophobic and van der Waals interaction interacted with 

residues: Tyr60, Gly117, His132, Lys134, Ser228, Phe320, Gly321, Lys367, Asp389 which is observed 

consistent with the co-crystal structure [8, 11].   

The top ranked docking score compound C6 (7-[3-(2-chloroanilino)-2-hydroxy-

propoxyl]spiro[chromane-2,1’-cyclopentane]-4-one) shows that the active site residues Tyr60, Cys387, 

Lys418, Asn385 are involve in H-bonding which interplay a critical role to stabilize the ligand.  Whereas, 

hydrophobic residue, Val365 formed 𝜋-Sigma interaction and, Lys134, Tyr314, Leu317 and Leu363 are 

involved in 𝜋-alkyl interactions. And, amino acid residues Leu115, Pro116, Gly133, Ser228, Phe320, 

Gly321, Trp323, Asn324, Gln336, Lys367, Phe369, Asp389 are effectively engaged in van deer Waals 

interactions with C6 (Figure 3).  
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The conventional hydrogen bonding interactions are observed consistent with C5 (1-[(4-

benzyloxyphenyl)-cyclopropyl-methyl] imidazole) showing H-bond interaction with Asn324, carbon-

hydrogen bond with Tyr60 and alkyl interaction with Leu363, Trp230. The residues Leu317, Lys367 

show 𝜋-alkyl interaction, Cys387 engaged in 𝜋-sulfur interaction and Lys418 and Val365 are involved 

in 𝜋-cation and 𝜋-Sigma interactions, respectively. And, the hydrophobic and van der Waals interactions 

of Gly117, His132, Gly133, Lys134, Ser228, Phe320, Gly321, Gln334, Gln336, Phe369, Asn385, 

Asp389 provided the additional stability to C5 at the active site of DprE1 (Supplementary Figure 4). 

The molecular binding of C8 (1-cyclohexyl-5-oxo-N-(3-phenylphenyl)pyrrolidine-3-carboxamide) at 

the active site of shows H-bond interaction with Lys418, 𝜋-donor H-bonding with Tyr60, the alkyl and  

𝜋-alkyl interactions with  Lys134, Lys367 and Leu317, Leu363, Val365, respectively. And, the 

hydrophobic and van der Waals interactions with Pro116, Gly117, His132, Gly133, Ser228, Tyr314, 

Phe231, Phe320, Gly321, Trp323, Asn324, Gln334, Gln336, Phe366, Phe369, Asn385, Ile386, Asp389 

at the active of DprE1 (Supplementary Figure 5).  

The spatial orientation of C10 (3-(3-hydroxypropyl)-7-(2-thiophen-3-ylethynyl)isochromen-1-one) 

shows H-bond interaction with Asn324, Cys387, the carbon hydrogen bond with Phe230 and 𝜋-alkyl 

interaction with Leu317, Leu363, Lys367. The thiophen moiety of C10 involve in 𝜋-sulfur interactions 

with His132, Phe369, whereas, Val365 and Lys418 show 𝜋-sigma interaction and 𝜋-cation interaction. 

And, the ligand is stabilized by the hydrophobic and van der Waals interactions of residues: Tyr60, 

Trp66, Gly117, Gly133, Lys134, Gly321, Glu322, Trp323, Arg325, Gln336, Asn385, Val388, Asn389 

which is shown in Supplementary Figure 6. These molecular docking results suggested that apart from 

the conventional H-bonding at the active site of DprE1, several other interactions, 𝜋-alkyl (Leu317, 

Lys367),  𝜋-sulfur (Cys387), 𝜋-Sigma and  the van der Waals interactions of amino residues His132, 

Gly133, Lys134 and Asn385  are critically involved in interactions with lead-molecules which observed 

consist with the co-crystalized structure of DprE1-CT319. Thus, the molecular docking results, binding 
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affinity scores and pharmacokinetic analysis of hit-molecules suggested that compounds, C5 (docking 

score -9.248 kcal/mol, X-score -9.66 kcal/mol), C6 (-9.211 kcal/mol, X-score -10.74 kcal/mol), C8 (-

9.106 kcal/mol, X-score -10.64 kcal/mol) and C10 (docking score -8.795 kcal/mol, X-score -8.60 

kcal/mol) may be explored as promising candidates for  further lead optimization as DprE1 inhibitors.   

 

3.5 Conformational dynamics and stability of protein-ligand complex  

The solvent environment around the protein influences the molecular interaction. Thus, the various 

interactions observed during the molecular docking may or may not exist during the simulation [15, 42]. 

To examine the conformational stability, dynamics and structural integrity of DprE1 complex with novel 

hit-molecules, multiple MD simulations were performed in aqueous environment for the period of 100 

ns, at 300 K. The conformational dynamics of DprE1 and DprE1-CT319 during the MD simulation used 

as a control to elucidate the structural stability of DprE1 complexed with ChEMBL compounds. 

Trajectories obtained from the simulation were further used for the binding free energy estimation of 

molecules, using MM/GBSA, MM/PBSA and MM/3DRISM [15, 17, 19, 43].  

To determine the conformational stability of DprE1 with hit-molecules, we measured all atom Cα-RMSD 

of protein-ligand complexes and compared the results in reference of DprE1-CT319 complex (Figure 

4).  Results show that the structure of DprE1 remains stable with an average change in RMSD value 

3.57±0.49 Å. The trajectory of DprE1 archives equilibrium at ~25 ns and a continuous stable equilibrium 

can be seen up to 100 ns of simulation. RMSD plot of DprE1 complex with inhibitor CT319 shows that 

trajectory achieves equilibrium at ~15 ns and the complex structure remains stable for the remaining 

period of simulation with change in RMSD 2.80±0.26 Å. The RMSD plot of DprE1-C5 shows a 

continuous increase in trajectory during initial 0-35 ns. The complex structure remains stable for the 

period of 35-55 ns and a small drift of 0.5 Å is observed at 60 ns. The RMSD trajectory during 60-100 

ns suggested a stabilized structure of DprE1-C5 complex for the last 40 ns of simulation. The trajectory 



20 

 

of DprE1-C6 achieves equilibrium in 0-15 ns and remains stable till the simulation finished at 100 ns. 

We observed a consistent and overlapped RMSD plot of DprE1-C6 with DprE1-CT319 complex. The 

RMSD plot of DprE1-C8 shows initial perturbation in structure during 0-25 ns, however, reaches to 

equilibrium at ~30 ns, after that the conformational dynamics remains stable around RMSD 3.66±0.37 

Å. Although the structure of DprE1-C10 achieves equilibrium earlier at ~10 ns and remains stable up to 

70 ns, however, we observed structural adjustment with the drift of ~1 Å at 75 ns and the structural 

dynamics remains stable with an average change of RMSD value 3.18±0.47 Å.  

To understand the spatial stability of ligand molecules at active site of DprE1, we also calculated the 

time evolution plot of distance of hit-molecules and inhibitor CT319 from the centre of binding pocket, 

as shown in Figure 5. We observed that the average distance of CT319, C6 and C8 remains quite stable 

suggesting that ligand is spatially well occupied at active site and stabilized with molecular interaction, 

during the simulation. The compound C5 shows continuous drop down in distance during 0-40 ns and it 

stabilized at distance ~4 Å which is seen up to 100 ns. The distance plot of C10 shows fluctuating 

behaviour which suggested the spatial adjustment at the binding pocket, thus, we observed a small drift 

of 1 Å in RMSD plot of DprE1-C10 complex. 

The conformational order parameter, radius of gyration (Rg) represents structural compactness and 

integrity of a protein structure [44]. The Rg plot shows that all five complexes are stabilized around 

average Rg value ~21-23 Å, suggesting that all the ligand molecules were well occupied at the binding 

pocket of DprE1 during the simulation (Figure 6). Similar to RMSD results, we observed slightly higher 

Rg value 22.02±0.13 Å for the ligand unbound structure of DprE1. The complex of DprE1-C6 shows 

lowest Rg value 21.75±0.06 Å and highest 22.28±0.17 Å for DprE1-C5, whereas, the structure of DprE1-

CT319 is stabilized around Rg score 22.10±0.07 Å. The marginal differences in Rg value of DprE, ligand 

bound, and unbound structures suggested the stable interaction of novel hits molecules at the active site 

of protein. These results provide a clear evidence that the selected ligands are well accommodated in 
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binding pocket, having consistent interactions with active site residues as observed during the molecular 

docking.  

We further investigated the conformational fluctuations and local dynamics through the calculation of 

average fluctuation of each amino acid residue of DprE1. The RMSF plot of all Cα-atoms of DprE1 and 

docked complexes with ligands are shown in Figure 7. In this Figure 7, we can see the comparative 

results of DprE1, and each ligand bind complex with DprE1.  Results show that the average fluctuation 

of residues are reduced on binding of ligands at the binding pocket of DprE1 which is suggesting a 

favourable molecular interaction. We observed that average fluctuation of C-terminal residues is 

increased on binding of CT319 and C5. The RMSF plots show higher mobility for residues 150-200, 

belonging to β8-10, which can be seen in CT319, C5 and C6. Whereas, DprE1-C8 and DprE1-C10 show 

lower average fluctuation in compared to FAD bound DprE1. However, the secondary structure analysis 

plots using DSSP suggested that no significant conformational changes are observed in the secondary 

structure, upon the binding of ligands during simulation which provide an elegance evidence of stable 

molecular interactions of ligands with DprE1 (Supplementary Figure 7).    

 

3.6 Hydrogen bond analysis 

The structure of protein is largely stabilized with the network of H-bond which plays critical role in the 

conformational adaptability, mobility and interaction with biomolecules. Apart from the structural 

stability, H-bond interactions are crucial in molecular recognition and protein-ligand interactions. Thus, 

we analysed H-bond interactions between protein and ligands, using cpptraj module of Amber with 

distance cut off 3.5 Å and angle cut off 135°. Results show that average two to four H-bond interactions 

are involved in DprE1 interactions with ligands (Figure 8). However, DprE1-C6 shows highest six H-

bond interactions, on an average four H-bond interactions are involved with CT319 and the least H-bond 

interactions are observed with C8.  For the reference inhibitor CT319, we find H-bond interactions 



22 

 

between one O atom and H atoms at zeta position of Lys418 remains stable throughout the simulation 

(Figure 8A). The H-bonds between two O atoms and H atoms at delta position of Asn385 also remain 

intact and N atom shows H-bond with H atom at delta position of Asn385, however, the H-bond observed 

in molecular docking with Gln336 and O atoms lost during the MD simulation. The compound C6 shows 

H-bond between H atoms at zeta position of Lys418 and O atom observed intact during the simulation, 

whereas, the double bonded O atom which is involved in H-bond interaction with H atom at delta position 

of Asn385 is observed to form additional H-bonds with H atoms at epsilon position of Gln336 and His132 

(Figure 8C). In C5, the H-bond formed between N atom and Asn324 is broken and new H-bonds are 

formed between this N-atom and H atoms at zeta position of Lys418 during the simulation (Figure 8B). 

The O atom present in C5 was also found to form H-bonds with H atoms at epsilon position of His132, 

Gln336 and at delta position of Asn385. During simulation we find that the H-bond between O atom 

lying at the end of the alkyl chain of C10 and H atom at delta position of Asn324 remains consistent 

during the simulation (Figure 8E), However,  H-bond formed between double bonded O atom 

(connected to O containing ring) and Cys387 is lost during the simulation but this double bonded O 

atom forms new H-bonds with H atom at zeta position of Lys418 and H atom at epsilon position of 

His132. Figure 8D shows that the H-bond between O atom (present between two rings) of compound 

C8 and H atoms present at zeta position of Lys418 remains stable during the simulation. While the 

simulation, we observed the formation of an additional H-bond with H atom at delta position of Asn385.   

3.7 Essential Dynamics 

We further performed essential dynamics (ED) analysis to understand the dynamics of protein-ligand 

complexes. ED analysis involves representation of collective motion of the most variable region of 

protein in terms of two principal components PC1 and PC2. The projection of each protein-ligand 

complex trajectory along with native protein onto two principal components PC1 and PC2 is shown in 

Figure 9. From figure 9, we can see that two features are very apparent. Firstly, the protein, DprE1 alone 
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explores a wide range of conformations in water.  Secondly, except hit-molecules, C5 and C8, DprE1 

complexed with CT319, C6 and C10 covers a smaller region on the plot particularly along PC1 plane. 

These observations thus support the idea of decrease in flexibility in the presence of DprE1 inhibitor, 

CT319 and compounds, C6 and C10. In the presence of CT319, DprE1 is restricted to small excursions 

slightly away from its initial conformation. The finding of a strong restriction in the size of the explored 

conformational space with only a minor reduction in RMSF which can be seen in Figure 7, indicates that 

local fluctuations take place but that collective motions have been compromised or more likely slowed 

down in the presence of CT319, C6 and C10 (Figure 9A, 9C and 9E) as compared to DprE1 complex 

with C5 and C8 (Figure 9B and 9D). Thus, the ED results along with H-bond interactions suggested 

that protein-ligands interactions remain consistent during the simulation, however, the most stable 

conformational dynamics is observed for CT319, C6 and C10.  

3.8 Binding free energy analysis 

The quantitative assessment of molecular binding interaction of DprE1 inhibitor CT319 and lead 

molecules C5, C6, C8 and C10 are estimated using three different methods for the molecular theory of 

solvation, MM/GBSA, MM/PBSA and MM/3DRISM-KH. MM/GBSA and MM/PBSA calculations are 

performed on the 5000 frames taken from the last 50 ns of the MD simulation [12, 18, 43]. Considering 

the large   computational cost, 100 equally spaced frames taken from the last 50 ns of simulation are used 

for MM/3DRISM-KH analysis. The result of these three calculations are given in Table 7, 8 and 9, 

respectively. All three methods show that van der Waals (∆EMM-VDW) and electrostatic (∆EMM-EEL) 

components of molecular mechanics (MM) force field energy always favour the protein-ligand binding 

for all five compounds. And, the polar part of solvation free energy (∆GSOL-GB/∆GSOL-PB/∆GSOL-

POL) estimated by all three methods suggested the lesser contribution for dynamic stability of DprE1 

interactions with selected compounds and inhibitor. It is noted that ∆EMM-EEL values estimated by 

MM/PBSA method are nearly four times smaller as compared to corresponding MM/GBSA and 
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MM/3DRISM-KH values because MM/PBSA calculations were done with solute dielectric constant 4. 

Furthermore, MM/3DRISM method also gives the energetic and entropic component of the solvation 

free energy (Table 9) which shows that it is the entropic part of solvation free energy not energetic, 

which favours the protein-ligand binding for all the ligands. Thus, the all three methods do not give the 

same order of binding free energy for the protein-ligands, but the comparison of predicted binding free 

energies provide an important clue to evaluate the relative stabilities and flexibilities of compounds at 

the active site of DprE1.  In the table 7, results of MM-GBSA analyses show the higher value of 

combined ΔG (-41.28±3.51 kcal mol-1) for compound C6, whereas, lowest estimated ΔG for CT319 (-

35.31±3.44 kcal mol-1). The compound C5 and C10 shared the almost similar binding free energies (ΔG 

~36 kcal mol-1) and the slightly better binding energy predicted for C8 (-40.75±3.86 kcal mol-1). 

Moreover, the binding energies estimated by MM-PBSA (Table 8) also suggested the major contribution 

of non-polar solvation energies in the molecular interaction of compounds at the active site of DprE1. 

We find that the ΔG values for lead compounds ranges -16.08 ‒ -22.36 kcal mol-1, whereas, the estimated 

ΔG -13.67±2.65 kcal mol-1 for CT319. In another analysis, the molecular theory solvation, MM-RISM-

KH which yields the broader picture of molecular interactions on solvation structure and implication of 

thermodynamics from the first principles, accounts for solvent and biomolecules to describe the relative 

binding affinities [17]. Table 9 shows that binding interaction of compounds stayed stable as perceived 

from the molecular docking, however, results again reveal the highest ΔG value -10.33±5.70 kcal mol-1 

for C6 and lowest for CT319 (ΔG value -3.40±4.06 kcal mol-1). Furthermore, the binding free energy 

approximation by all three methods suggested the larger contribution of van der Waals energies for 

ligands interactions and stability at the active site of DprE1. Collectively, the results demonstrated that 

all four hit-molecules C5, C6, C8 and C10 have better binding affinity with DprE1 as compared to 

inhibitor CT319 (Figure 10). Thus, the lead optimization of selected four compounds from ChEMBL 
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chemical database may provide a new endeavour for the development of DprE1 inhibitors in MTB 

therapy.  

 

4. Conclusion 

In conclusion, we have explored structure based virtual screening for the identification of promising 

chemical entities as DprE1 inhibitors from ChEMBL database. Initial sorting of compounds results in 

the selection of 30,789 small molecules which are suggested for the anti-mycobacterial activity. The 

three steps molecular docking and binding affinity estimation processes lead to the selection of bioactive 

10 hit-molecules. Similar procedures were applied on the selected 13 DprE1-inhibitors which were used 

to compare the results with hit-molecules. The extensive evaluation of pharmacokinetic profile and drug-

likeness properties analyses using ADME, toxicity and OSIRIS properties explorer suggested that four 

chemical entities, C5 (ChEMBL2441313), C6 (ChEMBL2338605), C8 (ChEMBL441373) and C10 

(ChEMBL1607606) may be explored as potential candidates for the lead optimization as DprE1 

inhibitors.  To determine the conformational stability of hit-molecules at the active site of DprE1 in 

aqueous environment, multiple MD simulation were performed on the complex of DprE1 with lead 

molecules and inhibitor CT319. The binding free energy estimation using MM/PBSA, MM/GBSA and 

3D-RISM-KH revealed that compounds C5, C6, C8 and C10 show better binding affinity as compared 

to DprE1 inhibitors. Thus, our comparative studies suggested that the selected compounds (C5, C6, C8 

and C10) could be further investigated as novel lead molecules for the rational drug designing of DprE1-

inhibitors in MTB therapy. 
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Figures: 

 

Figure 1: Flowchart outlined the virtual screening of anti-tuberculosis molecules as DprE1 inhibitor 

from the chemical compounds database ChEMBL.  

 

Figure 2. Docked complex of DprE1 with inhibitor CT319. DprE1 is shown in cartoon and the inhibitor 

is represented as stick model. The 2D representation of molecular interaction at the active site of DprE1 

using Discovery Studio is shown right panel. Left panel shows the active site residues involved in 

interactions with CT319, obtained from LigPlot. 
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Figure 3. Cartoon view of DprE1 docked with best hit compound ChEMBL2338605 (C6).  Right panel 

shows the Discovery Studio view of molecular interaction of C6 at the active site of DprE1 and the left 

panel representing the protein-ligand interactions using LigPlot. The dashed and colored lines 

representing the different interactions as shown in panel below.  

 

Figure 4. The time evolution changes in Cα RMSD of (A) DprE1 (blue), and protein-ligand complexes, 

(B) DprE1-CT319 (black) (C) DprE1-C5 (yellow), (D) DprE1-C6 (green), (E) DprE1-C8 (magenta) and 

(F) DprE1-C10 (red) in water at 300 K, during the simulation period of 100 ns.  
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Figure 5. The time evolution plot of average distance of (A) inhibitor CT319 (black) and hit-molecules, 

(B) C5 (yellow), (C) C6 (green), (D) C8 (magenta) and (E) C10 (red), from the active site center of 

DprE1.  

 

 

Figure 6. Radius of gyration (Rg) plot of (A) DprE1, and protein-ligand complexes, (B) DprE1-CT319 

(C) DprE1-C5, (D) DprE1-C6, (E) DprE1-C8 and (F) DprE1-C10, during the simulation in water at 300 

K.  
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Figure 7. RMSF (Root mean square fluctuation) plot of all Cα-atoms of (A) DprE1 and the docked 

complexes with (B) inhibitor CT319 and hit-molecules, (C-F) C5, C6, C8 and C10, respectively.  

 

Figure 8. Hydrogen bond (H-bond) plot representing, the average H-bond counts observed between the 

DprE1 and ligands, involve in stabilization of molecules at the active site, during the simulation period.  
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Figure 9. Principal component analysis (PCA) of DprE1 (blue) and docked complexes with CT319 

(black) and hit molecules C5 (yellow), (C) C6 (green), (D) C8 (magenta) and (E) C10 (red).  Plots 

representing the collective motion of protein and docked complexes, using the projections of two 

principal components PC1 and PC2 calculated from the MD trajectories.  

 

Figure 10. Binding free energy (ΔG) estimation  of the DprE1 complexes with CT319 and hit-

molecules (C5, C6, C8 and C10) using theory of solvation, MM/GBSA, MM/PBSA and MM/3DRISM-

KH from the MD trajectories. 
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Supplementary Information 

 

 

   
CHEMBL2323138    CHEMBL479650    CHEMBL1393315          CHEMBL433772 

            
CHEMBL2441313            CHEMBL2338605           CHEMBL3126094    CHEMBL441373 

 

       
CHEMBL1528618               CHEMBL1607606 

Supplementary Figures 1 (A). 2D-structure of top ten hit-molecules obtained from the ChEMBL 

database.  
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377790 
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VI-9376 
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TBA-7371                                        

PBTZ169 

  



37 

 

 

 

 

 

 

              BTZ-N3 

Supplementary Figures 1 (B). 2D-structure of DprE1 inhibitors  

 

  

 
        ChEMBL2323138 (C1)                                      ChEMBL479650 (C2) 

   
             ChEMBL1393315 (C3)                                          ChEMBL433772 (C4) 
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                      ChEMBL2441313 (C5)                                      ChEMBL2338605 (C6) 

   
                      ChEMBL3126094 (C7)                                              ChEMBL441373 (C8) 

    
                             ChEMBL1528618 (C9)                                     ChEMBL1607606 (C10) 

 

Supplementary Figure S2. 2D molecular interaction representation of the best 10 compounds (C1-

C10) at the active site of DprE1.  
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                             BTZ-N3 

Supplementary Figure S3. 2D molecular interaction representation of DprE1 inhibitors at the active 

site of DprE1. 

 

 

 
Supplementary Figure S4. Molecular interaction of compound C5 at the active site of DprE1. 
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Supplementary Figure S5. Molecular interaction of compound C8 at the active site of DprE1. 

 

 

 

 

 

 
Supplementary Figure S6. Molecular interaction of compound C10 at the active site of DprE1. 
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Supplementary Figure S7. The time change in secondary structure of (A) DprE1 (B) DprE1-CT319 

(C) DprE1-C5 (D) DprE1-C6 (E) DprE1-C8 (F) DprE1-C10 during the simulation period of 0-100 ns 

at temperature 300 K, using DSSP. 

 

 


