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Appearance for the first time from Wuhan, China, the SARS-CoV-2 rapidly outbreaks worldwide and causes a serious global 

health issue. The effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this work, we have tried to rapidly 

predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast 

pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both 

Autodock Vina and FPL calculations adopted good consistent results with the respective experiment with correlation 

coefficients of  𝑅Dock = 0.72 ± 0.14 and 𝑅W = −0.76 ± 0.10, respectively. The combined approaches were then utilized to 

predict possible inhibitors, which were selected from a ZINC15 sub-database, for SARS-CoV-2 Mpro. Twenty compounds 

were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V, penimocycline, 

cis-p-Coumaroylcorosolic acid, glycyrrhizin, and uralsaponin B. The obtained results probably lead to enhance COVID-19 

therapy.

Introduction 

The novel coronavirus, named SARS-CoV-2 or 2019-nCoV, causes 

COVID-19 disease which is an ongoing global pandemic. First cases of 

COVID-19 infection were reported in Wuhan, Hubei, China in 

December 2019.1-3 The virus was found to be able to transmit from 

human to human.4 Especially, It has been suggested that SARS-CoV-2 

can transmit through airborne/aerosol since the virus was found to 

remain viable and infectious in such environment for more than three 

hours.5 The novel coronavirus causes severe acute respiratory 

syndromes which have resulted in hundreds of thousands of deaths 

worldwide.6, 7 Moreover, the intermediate host is still undetected, 

although the original reservoir is indicated as the bat.8 Understanding 

the spread of the virus thus becomes more difficult. The current 

global health crisis caused by COVID-19 has called for urgent research 

and development of an efficient antiviral drug. 

SARS-CoV-2 and SARS-CoV share about 82% similarity in their RNA 

genomes. The genomes of coronaviruses ranges  from 26 to 32 kb in 

length. The viruses thus have the largest sequence among RNA virus.9, 

10 There are more than 20 different proteins encoded by the genomes 

of the SARS-CoV-2. In particular, the SARS-CoV-2 Mpro is known as 

one of the most critical viral proteins. It should be noted that the 

SARS-CoV-2 Mpro adopts more than 96% similarity to the SARS-CoV 

Mpro. During the viral translation, the SARS-CoV-2 Mpro cleaves 

eleven polyproteins to polypeptides, which are necessary for the 

transcription and replication of the virus.10 The SARS-CoV-2 Mpro is 

selected as one of the most potent drug targets for inhibiting the viral 

proliferations.11, 12 Thefore, numerous studies have been conducted 

using experimental and computational approaches in order to search 

for potential small-molecule inhibitors that can effectively block the 

activity of this protease.11-18 

 It should be noted that computer-aided drug design (CADD) can 

significantly reduce the time and cost for developing  a therapy.19, 20 

In the CADD approach, the ligand-binding free energy ∆𝐺 can be 

calculated through MD simulations. This metric is linked with the 

experiment through formula ∆𝐺bind = 𝑅𝑇𝑙𝑛(𝑘i), where 𝑘i is 

inhibition constant, 𝑇 is absolute temperature, and 𝑅 is gas constant. 

In some cases, IC50 is assumed to be equal to 𝑘i in order to estimate 

the experimental binding free energy ∆𝐺EXP.15, 21, 22 Because the 

metric reveals the binding mechanism between biomolecules,19 

accurate and precise investigation of the ligand-binding free energy 

is tremendously critical for searching potential inhibitors.23 In this 

work, the potential candidates from ZINC15 in man compounds,24 

which can bind to the SARS-CoV-2 Mpro, were screened using 

combined approaches of molecular docking and FPL simulations. It 

should be noted that this combined computational scheme was 

previously validated by testing on eleven available inhibitors whose 

computed binding free energies were in good agreement with 

respect to experiments.11-14 Our present study suggested that twenty 

compounds were able to bind with high affinity to SARS-CoV-2 Mpro. 

These compounds can become promising leads for developing drugs 

against the COVID-19 disease. 

Materials and Methods 

Structure of Ligands and SARS-CoV-2 Mpro 
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The crystal structure of monomeric SARS-COV-2 Mpro was 

obtained from the Protein Data Bank with the identify of 6Y2F.11 It 

should be noted that computational investigations of promising 

inhibitors for SARS-CoV-2 Mpro are possible for the monomeric form, 
25, 26 because the SARS-CoV-2 Mpro dimer interface does not contain 

the substrate-binding cleft.11, 12 Ligand structures were taken from 

the ZINC15 in man only and the PubChem database.24, 27 

Molecular Docking Simulations 

The ligands were docked to the SARS-CoV-2 Mpro by using the 

Autodock Vina version 1.1 package.28 The parameter of the docking 

approach was preferred according to the previous study,15, 29 in which 

the parameter of exhaustiveness was set to the default value of 8. 

The best docking conformations were chosen as having the largest 

binding affinity. The grid center was designated as the center of mass 

of compound α-ketoamide 13b.11 The docking grid was chosen as 

2.6 × 2.6 × 2.6 nm according to the recent work.15 

Fast Pulling of Ligand (FPL) Simulations 

GROMACS version 5.1.530 was utilized to simulate unbinding 

process of a ligand pulled out of the binding site of the SARS-CoV-2 

Mpro. The protein and ions were parameterized via the Amber99SB-

ILDN force field.31 The TIP3P model was utilized for representing 

water molecules.32 The general Amber force field (GAFF)33 was used 

to represent the ligand via AmberTools18.34 The ACPYPE35 protocol 

was used to transform AMBER to GROMACS formats. In particular, 

the ligand atomic charges were fitted using the restrained 

electrostatic potential (RESP) method36 which is based on DFT 

calculations by with the B3LYP functional and 6-31G(d,p) basis set. It 

should be noted that the combination of the force fields was 

preferred since it is one of the most solution for free energy 

assessment.37, 38 

  The complex SARS-CoV-2 + ligand was initially introduced into a 

rectangular PBC (periodic boundary conditions) box with a size of 

9.83 × 5.92 × 8.70 nm (Figure 1), similarly to the recent work.15 The 

complex system thus consists of more than 50 000 atoms including 

the SARS-CoV-2 Mpro, inhibitor, water molecules, and 

counterbalanced ions Na+. The solvated SARS-CoV-2 Mpro + ligand 

system was firstly minimized via the steepest descent approach. The 

0.1 ns of NVT and 2.0 ns of NPT imitations were then followed to relax 

the complexed system, in which the SARS-CoV-2 Mpro 𝐶𝛼 atoms  

were positionally restrained using a slight harmonic force. Finally, the 

ligand was forced to move out of the SARS-CoV-2 Mpro binding 

pocket by applying an external harmonic force with a pulling speed 

of 𝑘 = 0.005 nm ps-1 and a spring constant of 𝑣 = 600 kJ mol-1 nm-2. 

The pulling speed and spring constant were chosen to be the same as 

in the previous works.15, 39, 40 During steered-MD simulations, the 

ligand displacement and the applied pulling force were recorded 

every 0.1 ps that would be used to estimate the ligand binding 

affinity.39 Totally, the FPL calculations were independently performed 

8 times to guarantee the sufficient sampling. 

 

Figure 1. Initial conformation of FPL simulations of the SARS-CoV-2 Mpro + periandrin 

V.  

Analyzed Tools 

 The ligand protonation state was predicted by using the 

Chemicalize tools (www.chemicalize.com), a website application of 

the ChemAxon. The error of computations was computed through 

1000 rounds of the bootstrapping method.41 The protein-ligand 

interaction illustration was prepared via LigPlot++ program.42 

Results and Discussion 

Molecular Docking Simulation 

 Molecular docking simulations are normally employed to probe 

the binding affinity between ligands and proteins. Autodock Vina28, 

an open-source docking protocol, is widely used for this purpose. The 

binding affinity between the ligands and the SARS-CoV-2 Mpro was 

efficiently estimated using Autodock Vina.28 The calculated binding 

affinity (Table 1) is consistent with the respect to experimental 

binding affinity with an estimated correlation coefficient of 𝑅Dock =

0.72 ± 0.14 (cf.   
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Table 1 and Figure 2).11-14 The obtained values are in good 

agreement with the docking results of these ligands to SARS-CoV-2 

Mpro dimer (PDB ID 6XBG)43 with a value of 𝑅Dock
Dimer = 0.74 (Figure 

S1 of the Supplementary (ESI) file). Details are shown in Table S1 and 

Figure S1 of the ESI file. The consistency reveals that the monomer 

SARS-CoV-2 Mpro can be used as a target for computer-aided drug 

design aiming prevent SARS-CoV-2 Mpro. Moreover, the root-mean-

square error (RMSE) with respect to experiment was estimated as 

𝑅𝑀𝑆𝐸 = 2.42 ± 0.22 kcal mol-1 (Figure 2).11-14 It should be noted 

that the obtained results are consistent with the recent work which 

reported the corresponding values of 𝑅Dock = 0.82 ± 0.08 and 

𝑅𝑀𝑆𝐸 = 2.28 ± 0.21 kcal mol-1.44 
  



Table 1. The obtained values of the docking simulations. 

N0 Name ∆𝐆𝐃𝐨𝐜𝐤a ∆𝐆𝐄𝐗𝐏b 

1 11r -6.5 -9.23 

2 13a -6.5 -7.70 

3 13b -6.3 -8.45 

4 11a -6.8 -9.96 

5 11b -7.0 -10.13 

6 Carmofur -5.7 -7.86 

7 Disulfiram -3.8 -6.89 

8 Ebselen -5.6 -8.45 

9 PX-12 -3.8 -6.39 

10 Shikonin -6.1 -6.58 

11 Tideglusib -6.6 -7.95 
aThe docking affinity was gained using the Autodock Vina package. 
bThe experimental binding free energy ∆𝐺EXP was roughly computed 

via the reported IC5011-14 with a supposition that the IC50 value is 

equal to the inhibition constant 𝑘i. The unit is in kcal mol-1. 

 
Figure 2. Correlation between molecular docking and experiment. The error of the 

correlation coefficient was determined via 1000 rounds of the bootstrapping method.41 

 The good docking performance for 11 ligands as shown above 

gives us the confidence to carry out docking calculations for 36090 

compounds in ZINC15 in man only compounds using Autodock Vina 

package.28 However, the compound ZINC000169876613 was skipped 

because it contains the element silicon for which the docking package 

has no parameters. The estimated binding free energies for 36089 

compounds ranges from -1.8 to -9.9 kcal mol-1 and have the median 

of -5.72 kcal mol-1 and the standard deviation of 1.20 kcal mol-1. We 

selected one hundred compounds with binding energy to the SARS-

CoV-2 Mpro lower than -8.9 kcal mol-1 (Figure 3) for from further 

investigations using MD simulations. However, thirty-nine of them 

were discarded from the set since they are just different in 

protonation states of the same molecules. Overall, sixty-one 

compounds with two-dimensional interaction diagrams with SARS-

CoV-2 Mpro (Table S2 of the ESI file) were investigated the unbinding 

progress via FPL simulations. 

 

 
Figure 3. Distribution of the docking energy between 36089 ZINC15 in man only 

compounds and the SARS-CoV-2 Mpro. The results were gained using Autodock Vina. 

Estimating Ligand Affinity using FPL Simulations 

Although, the docking protocol adopts appropriate results 

compared with experiments (Figure 2),11-13 lacking consideration of 

the receptor dynamics and limiting the number trial position of 

ligands may cause inaccurate prediction. A more accurate and precise 

method would be normally employed to refine the docking 

observation.22, 45 Moreover, because the FPL calculation commonly 

offers accurate and precise results with an reasonable CPU time 

consumption.46 Furthermore, it should be noted that FPL simulations 

were successfully used in the previous work15 to correctly rank the 

ligand-binding affinity of the α-ketoamide 11r, 13a, and 13b11 to the 

SARS-CoV-2 Mpro. The validated calculations were also performed 

over the additionally available inhibitors including 11a, 11b, 

carmofur, disulfiram, ebselen, PX-12, shikonin, and tideglusib.12-14 The 

obtained results were revealed in Table 2 and Figure S2 of the ESI file. 

In particular, the mean pulling work 𝑊 of eleven inhibitors falls in the 

range from 16.5 ± 1.7 to 94.6 ± 5.0 kcal mol-1, giving a median of 47.2 

± 8.6 kcal mol-1. Besides that, the average of the rupture forces forms 

in the range from 321.2 ± 26.5 to -884.2 ± 36.5 pN, giving an average 

value of 530.2 ± 62.6 pN. The calculated metrics are in good 

agreement with the respective experiments,11-14 because the 

correlation coefficient between the mean pulling work and 

experimental values is of  𝑅W = −0.76 ± 0.10 (Figure 4). The 

calculated error was computed through 1000 rounds of the 

bootstrapping method.41 Furthermore, the sign of the correlation 

coefficient 𝑅W implied that the ligand with a stronger binding affinity 

requires a larger pulling work to dissociate from the SARS-CoV-2 

Mpro. Therefore, from linear regression we could estimate the 

relation between binding free energy ∆𝐺FPL
Pre  and the pulling work as  

 

     ∆𝐺FPL
Pre = −0.056 ∗ 𝑊 − 5.512                        (1) 

The precision of the FPL estimation was evaluated by the RMSE 

with linear regression, giving 𝑅𝑀𝑆𝐸W = 1.03 ± 0.14 kcal mol-1. The 

small value of RMSE imply that the FPL simulations can discriminate 

ligands revealing similar binding free energies. The error was 

estimated by the standard deviation of 1000 bootstrap samples.41 In 

addition, the measured values 𝑊 is highly correlated (𝑅 = 0.79) with 

the number of residues forming SC contacts with the respective 

ligand (cf. Table S1 of the ESI). The observed agreement implied that 

the van der Waals interaction probably dominates the binding 

process of a ligand to SARS-CoV-2 Mpro. It is in good agreement with 

the results obtained by the other methods.26, 44 Overall, the FPL 

calculations are effective protocol to appraise the ligand-binding 



 

affinity of the SARS-CoV-2 Mpro with the suitable accuracy and 

precision. 

Table 2. The obtained values of the FPL calculations. 

N0 Name 𝑭𝐌𝐚𝐱a 𝑾b ∆𝐆𝐄𝐗𝐏c 

1 11r 857.5 ± 38.7d 94.6 ± 5.0e -9.23 

2 13a 496.0± 32.5d 43.3 ± 3.9e -7.70 

3 13b 884.2 ± 36.5d 91.9 ± 3.6e -8.45 

4 11a 701.3 ± 54.1 70.7 ± 5.9 -9.96 

5 11b 718.7 ± 46.8 74.3 ± 4.4 -10.13 

6 Carmofur 421.5 ± 23.9 32.6 ± 1.8 -7.86 

7 Disulfiram 371.3 ± 20.3 24.5 ± 1.9 -6.89 

8 Ebselen 381.0 ± 34.0 23.5 ± 2.5 -8.45 

9 PX-12 321.3 ± 26.5 16.5 ± 1.7 -6.39 

10 Shikonin 327.9 ± 24.4 21.2 ± 2.1 -6.58 

11 Tideglusib 351.8 ± 32.4 26.3 ± 2.4 -7.95 

aThe obtained value of the mean rupture force 𝑭𝐌𝐚𝐱 and bthe 

recorded metric of the pulling work 𝑾. cThe experimental binding 

free energy ∆𝐺EXP was coarsely estimated via the reported IC5011-13 

with a supposition that the IC50 value is equal to the inhibition 

constant 𝑘i. deThe values were reported in the previous work.15 The 

calculated error was the standard error of the average. The unit is in 

kcal mol-1. 

 
Figure 4. Association between the average of the pulling work 𝑊 and the binding free 

energy ∆𝐺𝐸𝑋𝑃 of the respective experiments. Computed values were obtained via the 

FPL simulations. Experimental metrics were roughly estimated via the reported IC5011-13 

with a hypothesis that the IC50 value is equal to the inhibition constant 𝑘𝑖  in the recent 

publications.11-13 The linear regression between pulling work and the experiment is 𝑊 =

−17.993 ∗ ∆𝐺𝐸𝑋𝑃 − 98.852. 

  The FPL calculations were thus applied to evaluate the binding 

free energy of docking-top-lead compounds to the SARS-CoV-2 Mpro, 

which consists of  sixty-one compounds listing in Table 3 and Table 

S3 of the ESI file. The mean rupture forces and mean pulling works 

were found to be diffused in the range from 389.5 ± 20.9 to 822.4 ± 

40.0 pN and 32.9 ± 2.6 to 94.1 ± 4.7 kcal mol-1
, respectively. 

Particularly, the median of the corresponding metrics are of 574.5 pN 

and 57.9 kcal mol-1, respectively. Moreover, the predicted binding 

free energies between ligands and the SARS-CoV-2 Mpro were 

calculate by using Eq. (1). The value ∆𝐺FPL
Pre  was thus obtained and 

shown in Table 3 and Table S3 of the ESI file. It may be argued that a 

ligand with estimated bining free energy, ∆𝐺FPL
Pre , less than -9.00 kcal 

mol-1 may be able to inhibit the activity of the SARS-CoV-2 Mpro, 

which would adopt the inhibition constant 𝑘𝑖 in the sub-micromolar 

range or smaller.47 Therefore, we expect that twenty such 

compounds to be probable inhibitors for SARS-CoV-2 Mpro activity 

(Table 3) because of their strong binding affinity. In addition, it may 

argue that the other compounds, described in in Table S3 of the ESI 

file, probably adopt less effects on the structure of SARS-CoV-2 Mpro.

Table 3. The obtained values of the docking and FPL simulations. 

N0 ZINC ID Name ∆𝐆𝐃𝐨𝐜𝐤a 𝑭𝐌𝐚𝐱b 𝑾c ∆𝑮𝐅𝐏𝐋
𝐏𝐫𝐞 d 

1 ZINC000256110404 Periandrin V -9.1 782.7 ± 39.0 94.1 ± 4.7 -10.76 

2 ZINC000085537131 Penimocycline -9.0 798.3 ± 51.2 92.8 ± 7.0 -10.69 

3 ZINC000100783644 cis-p-Coumaroylcorosolic acid -8.9 822.4 ± 40.0 89.5 ± 4.1 -10.51 

4 ZINC000253527863 Glycyrrhizin -9.3 598.4 ± 43.2 86.2 ± 8.2 -10.32 

5 ZINC000256105139 Uralsaponin B -9.7 690.6 ± 33.7 83.6 ± 3.0 -10.17 

6 ZINC000100783815 3-trans-Caffeoyltormentic acid -8.9 731.8 ± 53.0 77.5 ± 4.1 -9.83 

7 ZINC000004214527 Triamcinolone Benetonide -8.9 664.0 ± 21.6 74.8 ± 2.3 -9.68 

8 ZINC000028642721 Sennidin A -9.5 779.7 ± 58.8 74 ± 5.2 -9.64 

9 ZINC000100783890 23-trans-p-Coumaroyloxytormentic acid -9.2 566.7 ± 15.1 72.9 ± 3.4 -9.58 

10 ZINC000098052857 Evans Blue -8.9 670.2 ± 56.1 72.7 ± 6.8 -9.56 

11 ZINC000100783691 Sanguisorbin B -8.9 616.9 ± 32.9 71.6 ± 3.2 -9.51 

12 ZINC000095619992 Licoricesaponin C2 -8.9 616.3 ± 44.2 69.9 ± 7.0 -9.41 



13 ZINC000118937488 Withangulatin A -9.0 703.5 ± 31.5 68.5 ± 3.7 -9.33 

14 ZINC000100783660 trans-3-Feruloylcorosolic acid -9.2 654.9 ± 23.3 67.3 ± 2.5 -9.26 

15 ZINC000100777487 Physalin D -8.9 682.3 ± 32.9 65.8 ± 2.8 -9.18 

16 ZINC000004879678 Guamecycline -9.6 565.2 ± 24.8 64.7 ± 4.8 -9.12 

17 ZINC000150354128 
Bis(4-methoxybenzoyl)-3a,29-dihydroxy-8-

multifloren-7-one 
-8.9 564.8 ± 39.4 63.8 ± 3.1 -9.07 

18 ZINC000004215464 Cortisuzol -9.2 579.3 ± 38.9 63.5 ± 4.2 -9.05 

19 ZINC000100774273 Rubroskyrin -8.9 696.1 ± 51.3 62.9 ± 5.1 -9.02 

20 ZINC000073224787 Tirilazad Mesylate -9.1 573.8 ± 46.7 62.7 ± 3.4 -9.01 

aThe docking affinity was calculated using the Autodock Vina package. bThe obtained value of the mean rupture force 𝑭𝐌𝐚𝐱 and cthe recorded 

metric of the pulling work 𝑾. dThe predicted binding free energy ∆𝐺FPL
Pre  was attained using Eq. (1). The computed error was the standard 

error of the average. The unit of energy and force are in kcal mol-1 and pN, respectively. 

CPU Time Consumption 

 Each SARS-CoV-2 Mpro + ligand complex was simulated over 8 

independent FPL simulations, which started from same initial 

conformation but different random velocity. One FPL trajectory 

includes 0.1 ns of NVT, 2.0 ns of NPT, and 0.5 ns of SMD simulations. 

20.8 ns of MD simulations was thus performed to appraise the ligand-

binding affinity of the SARS-CoV-2 Mpro with 8 various FPL 

trajectories. It should be noted that one personal computer with 

AMD Ryzen 9 3950X CPU and RTX 2060 Super acceleration can 

perform ca. 80 ns of MD simulation per day for the SARS-CoV-2 Mpro 

+ inhibitor system. Therefore, the binding affinity of a ligand to the 

SARS-CoV-2 Mpro is able to compute 8 times during ca. 6.24 hours. 

The low CPU requirement permits us to rapidly calculate the binding 

affinity of many ligands to the SARS-CoV-2 Mpro without any 

professional computing system. 

Conclusions 

 We have demonstrated that a combination of molecular docking 

using Autodock Vina and FPL simulations is able to efficiently 

estimate the binding affinity of a ligand to the SARS-CoV-2 Mpro. In 

particular, over eleven available inhibitors for preventing the activity 

of the SARS-CoV-2 Mpro, Autodock Vina formed a good consistent 

with the respective experiments.11-13 The correlation coefficient and 

RMSE are measured as 𝑅Dock = 0.72 ± 0.14 and 𝑅𝑀𝑆𝐸 = 2.42 ±

0.22 kcal mol-1, respectively. Moreover, the FPL simulations also 

adopted results that is in good agreement with these experiments.11-

13 The correlation coefficient and RMSE with linear regression are 

𝑅W = −0.76 ± 0.10 and 𝑅𝑀𝑆𝐸W = 1.03 ± 0.14 kcal mol-1, 

respectively.  

 The combination of two approaches is thus employed to predict 

probable inhibitors for the SARS-CoV-2 Mpro. A shortlist consisting of 

sixty-one compounds was found after 36089 compounds were 

docked to the binding pocket of the SARS-CoV-2 Mpro. The obtained 

results were then refined by utilizing the FPL calculations. Twenty 

compounds were finally suggested that they are able to prevent the 

activity of the SARS-CoV-2 Mpro because they have low ∆𝐺FPL
Pre, which 

is smaller than -9.00 kcal mol-1. Further investigation using in vitro 

and/or in vivo studies should be carried out to validate the obtained 

results. 

 In addition, as discussed above, the requirement of CPU time is 

quite low. The combination of the Autodock Vina and FPL simulations 

are efficient way to rapid screening a large number of trial ligand for 

the SARS-CoV-2 Mpro. Especially, the computations can be carried 

out at home using an affordable PC with AMD CPU and Nvidia RTX 

GPU card acceleration. 
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