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Abstract 

During March, 2020, most European countries implemented lockdowns to restrict the 

transmission of SARS-CoV-2, the virus which causes COVID-19 through their 

populations. These restrictions had positive impacts for air quality due to a dramatic 

reduction of economic activity and emissions. In this work, a machine learning 

approach was designed and implemented to analyze local air quality improvements 

during the COVID-19 lockdown in Graz, Austria. The machine learning approach 

was used as a robust alternative to simple, historical measurement comparisons for 

various individual pollutants. Concentrations of NO2 (nitrogen dioxide), PM10, O3 

(ozone) and Ox (total oxidant) were selected from five measurement sites in Graz and 

were set as target variables for random forest regression models to predict their 

expected values during the city's lockdown period. The true vs. expected difference is 

presented here as an indicator of true pollution during the lockdown. The machine 

learning models showed a high level of generalization for predicting the 

concentrations. Therefore, the approach was suitable for analyzing reductions in 

pollution concentrations. Results on the validation set showed very good performance 

for Ox and NO2 when compared to PM10 and O3. The analysis indicated that the city’s 

average concentration reductions for the lockdown period were: -36.9 to -41.6%, and 

-6.6 to -14.2% for NO2 and PM10, respectively. However, an increase of 11.6 to 

33.8% for O3 was estimated. The reduction in pollutant concentration, especially NO2 

can be explained by significant drops in traffic-flows during the lockdown period (-

51.6 to -43.9%). The results presented give a real-world example of what pollutant 

concentration reductions can be achieved by reducing traffic-flows and other 

economic activities. 
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Introduction 

The COVID-19 pandemic has caused disastrous health and socio-economic crises across the 

globe [1], [2]. Questions have been raised whether atmospheric pollution is a co-factor in disease 

development causing a higher lethality rate, especially in highly populated and polluted areas 

such as those in Italy [3], [4]. A study from China suggests there is a statistically confirmed 

relationship between air pollution by means of elevated concentrations of PM2.5, PM10, CO, NO2 

and O3 and the COVID-19 infection rate [5]. An interplay of air quality and the pandemic seems 

obvious.  

On the other side, lockdowns have caused significant changes in air quality [6]. A study 

on 44 Chinese cities [7] showed a decrease in main air pollutants from 5.93-24.67% during the 

lockdown while megacities such as Sao Paulo showed even higher concentration drops (40-70%) 

for some pollutants [8]. A study on PM2.5 in capital cities showed concentration drops of 20-60% 

during the COVID-19 crisis [9]. It is suggested that the pollution drop was mainly driven by a 

reduction in traffic [10] and industrial activities [11]. Even if lockdowns hinder economic growth 

and might cause various negative effects in the long term, drops in pollution concentrations may 

act as another factor which slows disease transmission in tandem with limiting human contact. 

Lockdowns in Europe were instituted gradually by means of governmental interventions [12]. 

This massive intervention also poses a unique opportunity to study the change in various aspects 

of air quality, thus motivating our study. 

We discuss and explore that for complete understanding of the true factors influencing 

pollutant concentrations, pure statistical tests or single-day comparisons might be inadequate 

since weather conditions, particle persistence and seasonality affect concentrations by linear and 

non-linear processes [13]. We investigate the effects of the gradually introduced lockdown on air 

quality in an urbanized area in Graz, Styria, Austria. Due to the high degree of traffic influence, 

we have included traffic data into our analysis. Furthermore, we have investigated in detail which 

of the pollutants’ concentrations were more affected by the lockdown. We have employed 

machine learning to understand the true effects of the intervention measures and discern them 

from random and other factors [5], such as weather conditions. As such, the outcome of our study 

serves as a guide for future interventions and their expected associated change in the pollutants’ 

concentration changes. 
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Materials and methods  

Our study contains traditional exploratory statistical analysis, such as principal component 

analysis (PCA) to explore the key attributes. In addition, the main analysis is based on machine 

learning models build to capture the historical relationships between the attributes and compare 

the predictions after the interventions took place. In particular, we utilize historical data which 

matches the time frame of the lockdown for the preceding years. We further include traffic data 

and present the drop in mobility. First, we present the data sources and the data cleaning and 

preprocessing procedures. 

 

Data 

We collected environmental, pollution and weather data from publicly available sources provided 

by the Austrian government1. To have a realistic picture of air quality during the lockdown, we 

analyzed long term measurement data from January 2014 to May 2020 from five measurement 

sites in the Austria city of Graz (Süd (eng. South) - S, Nord (eng. North) - N, West (eng. West) - 

W, Don Bosco – D, Ost (eng. East) – O); Figure 1). The latter two sites are situated on arterial 

roads with high traffic volumes, especially during the morning and evening rush hours. The most 

polluted measurement site of Graz is Don Bosco that struggles to meet annual NO2 and PM10 

regulatory limits of the EU-Council directive 96/62/EC. This is primarily because of traffic 

related emissions, but also because of emissions from a nearby steel- and iron-mill [14]. Although 

Graz East is located at a heavily frequented commuter-arterial the situation is not that severe. 

Graz South is situated at a secondary road segment but also records higher pollutant 

concentrations due to an industrial complex nearby. Graz North and West are classed as urban 

background sites and are located near to minor roads with no specific emission contributors in 

immediate vicinity. A more detailed site description, photos of the sites and historical overview 

of the sites is given in Moser et al., 2019.  

To understand the potential effect of traffic, traffic flow was accessed for the city of Graz. 

The traffic flow data were mainly measured with inductive loop detectors where the detectors 

measure the change in field when objects pass over them. Once a vehicle drives over a loop 

sensor, the loop field changes which allows for the detection of the presence of an object (a 

vehicle). The “Traffic control and street lighting unit of the city of Graz” monitors and records 

the data at one-minute time frequency and provided data from January 2017 to May 2020 for two 

sites, namely Don Bosco and Ost. 

To determine the lockdown time frame we extracted data from a list of governmental 

decisions and intervention measures during the lockdown available from2 and published in [12]. 

It consists of country codes, dates and measures countries took to control the pandemic.  

 
1
 https://www.umwelt.steiermark.at/cms/ziel/2060750/DE/ 

2
 https://github.com/amel-github/covid19-interventionmeasures 

https://www.umwelt.steiermark.at/cms/ziel/2060750/DE/
https://github.com/amel-github/covid19-interventionmeasures
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Figure 1. A city map of Graz indicating the five measurement sites: Süd – 47.041692° N, 

15.433078° E; Nord – 47.09437° N, 15.415122° E; West - 47.069506° N, 15.403728° E; Don 

Bosco –  47.055617° N, 15.416539° E; Ost –  47.059530° N, 15.466634° E. 

 

Data processing 

Due to a very high correlation between PM2.5 and PM10 (up to 97% for Graz South), we did not 

take PM2.5 into account for this study. The variables in the accompanied dataset are abbreviated 

as follows: <site>_<pollutant>, i.e. S_NO2 would be NO2 measured on the Graz South 

measurement site. The measurements analyzed were daily means.  

Some data points were excluded from the analysis due to the presence of outliers. 

Observations between 1st and 3rd January each year were excluded due to high PM10 

concentrations caused by New Year firework shows. Additionally, PM10 observations between 

26th and 30th March, 2020 were excluded because of abnormally high values driven by a Saharan 

dust event (Federal Office: MeteoSwiss, 2020; Hansen, n.d.; also Supplementary Figure 1). Total 

oxidant (Ox; NO2 + O3) was calculated and included in the analysis as an additional pollutant 

[18]. Ox was included because it will indicate if the hypothesized changes in NO2 and O3 due to 

the lockdown measures were caused by a repartitioning of these two species which has 

consequences for air quality management.  
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Table 1. Site description for the air pollution measurement sites, data taken from [15] and 

http://app.luis.steiermark.at/luft2/suche.php. The number in brackets shows the amount of 

missing values in data, referring to 2324 values (full number of data entries). 

Measurement Don Bosco (D) Nord (N) Ost (O) Süd (S) West (W) 

O3 [µg/m³]  x (23)  x (39)  

PM10 [µg/m³] x (13) x (14) x (15) x (31) x (30) 

NO2 [µg/m³] x (3) x (8) x (10) x (12) x (30) 

%RH x (0) x (12) x (1244) x (21) x (8) 

Air temperature [°C] x (0) x (12) x (1239) x (45) x (0) 

Precipitation [l/m2]  x (12)    

Wind speed [m/s]  x (12) x (1239) x (4) x (0) 

Wind direction [Deg]  x (12) x (1239) x (4) x (0) 

Air pressure [mbar]  x (12) x (1239)   

 

Inspired by Grange et al., 2018a; Šimić et al., 2020, we created binary encoded temporal 

variables for season, month, weekday, and day of year. The other predictive variables were 

relative humidity, air pressure, air temperature and precipitation, wind direction and wind speed. 

Variables with 1000+ missing values were removed, variables with rare missing values were 

imputed by backfilling. The number of missing value points is provided in Table 1. The 

processed data consists of 2324 days and 60 variables in total and is provided in table format 

within a persistent data repository [20]. The traffic data were aggregated to a day frequency and 

stored as a time series for the two sites (O, D). The processed traffic data ranges from January 

2017 to May 2020. 

 

Exploratory analysis and machine learning methods 

The data was analyzed by means of explorative analysis and regression models. Data exploration 

was conducted by means of swarm plots (showing distribution of median concentrations in the 

HLD time frame over the years) and principal component analysis (PCA). For a comprehensive 

discussion of PCA, readers are advised to consult Abdi and Williams, 2010. We used PCA to 

inspect any cluster formation among the measurement sites and pollutants. Machine learning was 

employed to model the expected concentrations (as if no lockdown happened). For machine 

http://app.luis.steiermark.at/luft2/suche.php
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learning one needs a set of predictive variables and a target variable. The methodology follows 

closely the procedures described previously in [13]. The target variables in the models are the 

various pollutant concentrations. The predictive variables (X) are weather and environmental 

conditions as well as temporal variables accompanied by their respective lag-values (values from 

the previous two days). These predictive variables allow the machine learning model to capture 

seasonal behavior including activities like industrial production, and traffic (surrogate variables). 

The machine learning algorithm used was random forest regression (RF) [22] which has 

been utilized in a number of previous air pollution models and air quality data analysis studies 

[13], [19]. The differences between past work and this analysis include: the exclusion of lag-

values of the respective (predicted) pollutant and exclusion of other pollutant concentrations in 

the respective models. Data processing and model training was conducted with Python. The 

functions, scripts and libraries are presented in prior work [13], [23].  

 

 

Schema 1: Overview of the study methodology in order to detection changes in the 

relationships between the (dependent and independent) variables. Table 2 conveys more 

details on the methodology. 

 

The proposed investigation of the lockdown pollution consists of training RF models for 

each of the pollutants’ concentration (as the target) and observing the difference of predicted to 

the true values, a concept presented in [24] and depicted in Schema 1. That is, any increase in 

residuals can be mainly attributed to changes directly or indirectly associated with the lockdown. 

To achieve models with good generalization we used Bayesian optimization and feature selection 

by means of permutation importance [23]. The hyperparameter optimization of the RF models 

was conducted with a 10-fold cross-validation. The period of model training was between 3rd 

January 2014 and 31st December 2019. The data from 2020 was separated as an external 

validation set, VS (3rd January 2020 – 10th March 2020), a lockdown set, LD (10th March 2020 – 

2nd May 2020) and a hard lockdown set, HLD (20th March 2020 – 14th April 2020) being the time 
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frame of interest in this work. The trained models were then used to predict on the VS and the 

HLD. An overview of the dataset splits together with our expectation is given in Table 2.  

Table 2. An overview of the dataset splits and their utilization in this study.   

Name From To Usage Description Expectation 

Training 3rd 

January 

2014 

31st 

December 

2019 

ML model 

training 

Training data for the ML 

models 

Training data is sufficient to build a 

good predictive model 

HLD 

2014-

2019 

20th 

March 

20xx  

14th April 

20xx  

Comparison Subset of the training data, 

for the relevant time frame 

in the years up to 2019 

Long term comparison with HDL 

2020, expect a pronounced drop in 

pollutant concentration 

HLD 

2019 

20th 

March 

2019 

14th 

April 

2019 

Comparison Subset of the training data, 

for the hard lockdown 

time frame the year prior 

to lockdown 

Short term comparison with HDL 

2020, expected drop in pollutant 

concentration (but closer match 

than long term) 

VS 3rd 

January 

2020 

10th 

March 

2020 

Validation Validation data set, prior 

to the lockdown 

Good prediction quality, i.e., 

unchanged relationships between 

the variables w.r.t. to the training 

time frame 

LD 10th 

March 

2020 

2nd May 

2020 

Prediction Entire lockdown phase, 

including early measures 

and the initial easing phase 

Loose fit between model and 

observations, due to exogenous 

factors, e.g., change in behavior 

HLD 20th 

March 

2020 

14th April 

2020 

Prediction Phase of enforced tight 

lockdown 

Residuals expected to be 

contributed to lockdown measures 

 

Concept validation and method comparison 

The obtained machine learning results, that is, the predicted (expected) pollutant concentrations 

were compared to the measured (true) values. Our machine learning approach was then evaluated 

against historical changes in the data (short and long term). To understand the potential causes we 

evaluated the drop in pollutant concentration against the drop in traffic density. Furthermore, the 

concentration drops were aggregated to understand the city average concentration drops as an 

indicator for overall air pollution. 
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Results and Discussion 

Explorative analysis 

To gain a better understanding of the relationship between the pollutants we first conducted a 

principal component analysis (PCA) on the pollutants’ concentration data from 2014 to 2020 

(Figure 2). The PCA loadings plots show that the distinct measured pollutants group based on 

their chemical composition, i.e. the same pollutants group together independent of the 

measurement site. Despite PM10 have a wide range of sources, this pollutant was similar to NO2, 

indicating that the PM10 concentrations in Graz were primarily sourced from traffic processes 

during the analysis period. One can observe that in the two groups (PM10 and NO2), the northern 

site N has lower PC2 loadings. Furthermore, for NO2 and PM10, N is closer to W, which could be 

explained by both sites being less burdened by traffic emissions. On the contrary for the Don 

Bosco site (D), NO2 and PM10 are close in the plot, which might be explained by a rather 

common source, being traffic since it is site with dense traffic. O3 showed distinctly different 

patterns because O3 is generated by secondary processes and not directly emitted. It can be 

inferred that the PC2 is more weighted by traffic.  

 

 

Figure 2. A PCA loadings plot calculated from pollutant concentrations (PM10, NO2, Ox, O3) 

from five sites in (D, N, O, S, W) Graz, Austria, described in Figure 1. The pollutants form 

groups by means of chemical composition. 

 

To understand the changes during the lockdown, we compared the HLD data in the time 

frame (20th March --14th April 2020) to the same time frames during 2014-2019. The swarm plots 

of the pollutants’ concentrations are presented in Figure 3. It can be seen that in the given time 

frames, particularly for NO2, the concentrations were lower in 2020 as compared to the years 

2014 to 2019. PM10 and Ox do not show clear patterns, whereas O3 appears to have higher 

average concentration compared to data from the 6 years before. Therefore, a general trend is 
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present, traffic-sourced pollutants show concentration drops, while PM10 shows a drop at Don 

Bosco, which is a traffic-burdened site. 

 

Figure 3. Swarm plots of pollutant concentrations at the five sites during the hard lockdown 

(HLD) time frame (20th March – 14th April) through years 2014 to 2020. The 2020 value is 

colored according to whether it is true or predicted by machine learning (see Machine 

Learning results section). 

 

Machine learning results 

For understanding the true change in pollution, we trained RF models with pollutants’ 

concentrations as target variables. The optimal/best models (results in Supplementary Table 1) 

obtained were re-trained on the complete training data sets between 2014 and 2019 and 

subsequently fitted to data from 2020 (VS, HLD, LD). The results of the RF modelling by means 

of the coefficient of determination (R2), the root mean square error (RMSE) and the normalized 

RMSE (NRMSE%) [13] are given in Table 3. Time series plots (as 7-day moving averages) for 

the predictions (in 2020) and their respective true values for the six pollutants are shown in 

Figure 4.   
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Table 3. R2, RMSE and %NRMSE value for the external validation and lockdown sets from 

the best model. 
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Figure 4. Time series plots for four pollutants’ concentrations measured at Graz Nord (N). 

Orange line (measured) is compared to their predicted values (blue). The plots present a 7-

day moving average (for better visibility) for the data in 2020. Prior to the green line is the 

validation set (3rd January 2020 – 10th March 2020). The green dashed lines show the LD 

time frame (10th March 2020 – 2nd May 2020) and red dashed lines show the HLD time frame 

(20th March 2020-03-20 – 14th April 2020). Top left is Ox, top right is NO2, bottom left is 

PM10 and bottom right O3. Additional plots are provided in Supplementary Figure 2. 

 

Results from Table 3 and Figures 4 show that for the validation period (VS), the models’ 

prediction quality by means of %NRMSE declines on average in following order Ox < NO2 < O3 

< PM10, while for the R2 score the prediction declines as follows Ox < NO2 < O3 <  PM10. A 

number of additional processes such as long-range transport and secondary generation generally 

drives PM concentrations and these processes are not as relevant to the other gaseous pollutants 

analyzed here [25], [26]. This increased complication is likely the reason for decreased model 

performance for the PM10 pollutant. 

NO2 and O3 have reasonable prediction performance (validation set), i.e., O3 has R2 scores 

0.84 (N) and 0.87 (S), while NO2 has R2 scores as high as 0.81 (W) and 0.76 (N) with lower 

scores for the traffic-loaded sites (S – 0.45, O – 0.50, D – 0.55). A similar pattern appears with 

PM10 where the lower R2 scores are related to traffic-loaded sites (O – 0.42, D – 0.61). Better 

scores were achieved at less traffic-loaded sites (W – 0.66, N - 0.72) and S -0.71. These results 

overall suggest that the concept of using ML models can support understanding the true pollution.  

For the PM10 and NO2 pollutants, the models show concentration reductions (Figure 4 and 

Supplementary Figure 2) where the observed concentrations were lower than those which were 

predicted by the RF models. O3 showed the opposite behavior where observed concentrations 
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were higher than those predicted. The increases in O3 concentrations can be explained by a 

reduction of the NO-O3 titration cycle when NOx emissions (and concentrations) were low during 

the lockdown period. 

When comparing the ratios of %NMRSE VS to %NMRSE HLD (our proposed indicator 

for true pollution difference), one can see the largest ratios with NO2 across the sites (2.77-3.98) 

meaning that they show the largest error in predicted (expected) vs true (measured) 

concentrations during the lockdown. The ratio is on average lower with O3 (0.41 – 0.56). The 

inverse results are due to a concentration rise instead of a concentration drop. Ox shows a less 

clear pattern; underprediction for North and overprediction for South (Supplementary Figure 2). 

With PM10 the ML models suggest that the HLD and VS errors (0.95-1.36) do not deviate largely 

from each other, pointing to PM10 not being largely affected by the lockdown. Also, there is a 

period of unexpected high PM10 at the end of HLD which we attribute to lockdown fatigue. 

Regarding the sites, one can see the largest ratios across pollutants (%NMRSE VS to HLD) are at 

the East (O) and Don Bosco (D) sites which are more traffic-loaded than others.  

 

Reduction in pollution/Method comparison 

To support the contribution of machine learning in understanding the pollution we present here a 

method comparison. Pollution during HLD (median 2020) was compared to the respective 

medians of 2019 and 2014-2019 (i.e. historical comparison) as well as the median of the 

predicted HLD 2020. The comparison is presented in Figure 5. 
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Figure 5. Calculated pollution reduction [%] from the median HLD values in the time frame 

(20th March - 14th April). The concentration drops i.e. their medians (HLD 2020 to 2019, i.e. 

short-term) are compared per pollutant to concentration drops (HLD 2020 to 2014-2019, i.e. 

long-term) and the concentration drops calculated from the predicted values (Data for the plot 

is provided in Supplementary Table 3). 

 

The results show an overall good agreement for change in pollution of HLD 2020 referred 

to 2019 (short-term, in blue) and referred to 2014-2019 (long-term, in orange). Notable 

exceptions are: N_PM10 which shows an increase of 10.5% short-term and a 0.2% reduction 

long-term and W_NO2 showing a larger concentration drop in the short-term (30.6%) when 

compared to long-term (21.4%). One can also observe generally good agreement when 

comparing changes referred to 2019 and to the predictions of HLD 2020. Pollutants, where the 

results disagree (short-term vs predicted) the most are N_PM10, N_Ox, N_O3, S_O3, S_NO2 

and W_NO2. For NO2 and O3, where good prediction results were achieved, one can assume that 

the true pollution change is lower than estimated by comparing it to values from previous years. 

The agreement between the methods validates the machine learning approach as an alternative for 

analyzing the pollution drop as no ground truth data are available during the lockdown. 

For the pollutants where five measurement sites are available, the median concentration 

drops were averaged across all measurement sites (D, N, O, S, W) to a “city average 

concentration drop”. When comparing the city average concentration drops for 2020 to the short-

term (vs HLD 2019), long-term (vs HLD 2014-2019) and prediction (i.e. predicted HLD 2020) 

one can see that for PM10 the ML models show a larger concentration drop whereas for NO2 we 

see a smaller concentration drop with the ML models (Table 4).  
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Table 4. The median pollution reductions averaged across sites (D, N, O, S, W) in 2020 when 

comparing the HLD median to 2019, to HLD median 2014-2019 and to HLD predicted 2020 

in percentage. (Data is provided in Supplementary Table 3) 

 City average 

conc. drop  

vs 2019 

City average 

conc. drop  

vs 2014-2019 

City average 

conc. drop  

vs predicted 

NO2 -41.6% -38.1% -36.9% 

PM10 -6.6% -11.0% -14.2% 

 

From the available traffic data, we calculated a reduction in median traffic during HLD 

2020 against the same median time frame in 2019 and in 2017-2019 for the measurement sites D 

and O that are mainly traffic relevant. The traffic measured at the detector loops at these 

measurement sites showed a reduction of 45.6% at O and 51.6% respectively 43.9% at D, see 

Table 5. This reduction of traffic can be correlated with the massive reduction of NO2 at 

measurement site D and O, see Figure 5, as traffic is especially one of the main sources of these 

compounds. In contrast the reduction of PM10 is not as pronounced. This demonstrates that traffic 

is just one part of the air quality problems concerning PM10. Since also the industry was 

significantly curtailed in and around Graz, it was expected that PM10 should decrease more 

strongly. This indicates a wider range of influences on PM10 concentrations, and/or a high lag in 

the relationships involved in the PM10 related variables, i.e., the duration of the intervention was 

too short to lead to a significant concentration drop in pollutant. 

Table 5. Calculated traffic reduction in 2020 when comparing the HLD median to 2019 and 

to the 2017-2019 HLD median in percentage. 

Year Drop in 

traffic 

density (D) 

Drop in 

traffic 

density (O) 

Median 2019 -51.6% -45.6% 

Median 2017-2019 -43.9% -45.6% 
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Conclusions 

In this work we have examined air pollution concentrations during the COVID-19 lockdown for 

the city of Graz, Austria to gain better insights into the relative influences of the observed 

variables on a wide range of pollutants a historic event in human behavior. Besides using 

explorative methods, we employed random forest regression to differentiate between predicted 

(expected) values depending on environmental data (not affected by the lockdown) and the 

lockdown affected (true) pollution levels.  

Our prediction models performed well for a series of pollutants indicating the selection of 

independent variables (predictors) is sufficient to explain changes in the observations as good 

generalization was observed for some of the pollutants. For PM10 and NO2, the predicted values 

were found to be above the measured concentrations during the lockdown. O3 was underpredicted 

during the lockdown time frame which is expected due to relationship with NOx concentrations 

which were reduced during the lockdown because of much lower traffic volumes and therefore 

emissions. Our findings show that machine learning is a suitable tool to analyze pollution 

changes during events such as COVID-19 lockdowns. Although, the expected to true differences 

in pollutant concentration based on machine learning models showed similar results with regard 

to the historical comparisons, it was an important technique to employ because it enabled for far 

more robust comparisons with the observed time series.  

Still, additional studies are needed with a wider scope (in terms of different geographical 

regions, additional possible influencing factors, as well as temporal analysis) to improve model 

generalization in order to obtain more better estimates of event-based air pollution reductions. 
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Supplementary material 

Supplementary Figure 1. A time series plot with an observation of a “Saharan dust” event. 

The plot shows two PM10 sites (Graz South and West) related to a change in wind direction 

observed at Graz South. 
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Supplementary Table 1. Hyperparameter optimization results from Random Forest training. 

The table shows the cross-validation error by means of CV-RMSE, whether the model used 

feature selection or not and how many features were included in the best model. 

Pollutant CV-RMSE Features Feature 

selection 

D_NO2 7.82 66 True 

D_PM10 10.24 66 False 

N_NO2 5.55 66 False 

N_O3 9.52 60 True 

N_ Ox 8.92 66 False 

N_PM10 8.98 66 False 

O_NO2 6.29 64 True 

O_PM10 10.29 66 False 

S_NO2 7.00 60 True 

S_O3 8.96 58 True 

S_ Ox 9.25 66 False 

S_PM10 10.44 60 True 

W_NO2 6.36 66 False 

W_PM10 9.63 66 True 
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Supplementary Table 2. Median values for each pollutant throughout years 2014 - 2020 

during the hard lockdown timeframe (20th March – 14th April). The lowest value per pollutant 

is marked in bold with an asterisk 
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Supplementary Figure 2. Time series plots of exemplary pollutants’ concentrations measured 

at all Graz sites which are not covered by Figure 4 in the Manuscript. Orange line (measured) 

compared to their predicted values (blue). The plots present a 7-day moving average for the 

data in 2020. Prior to the green line is the validation set (3rd January 2020 – 10th March 2020). 

The green dashed lines show the total lockdown time frame (10th March 2020 – 2nd May 

2020) and red dashed lines show the hard lockdown time window (20th March 2020 – 14th 

April 2020).  
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Supplementary Figure 3. Time series plots vs traffic on the two traffic-loaded sites Graz, Don 

Bosco (top plot) and Graz, Ost (bottom plot). The values are monthly resampled to show a 

long-term pattern. All values were scaled to a 0-1 (MinMax) scale. 
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Supplementary Table 3. Calculated pollution reduction in % as a concentration drop in the 

median value based on the hard lockdown time frame (20th March – 14th April). The median 

of the HLD in 2020 is compared here to median of the same time frame in 2019, 2014-2019 

and the predicted values in 2020. 

 drop/median 

2019 

drop/median 

2014-2019 

drop/median 

predicted 

D_NO2 -41.5% -37.4% -39.7% 

D_PM10 -13.4% -21.6% -23.6% 

N_NO2 -35.7% -35.7% -33.8% 

N_Ox 7.7% 14.9% 5.5% 

N_O3 25.7% 36.3% 14.1% 

N_PM10 10.5% -0.2% -4.9% 

O_NO2 -55.3% -58.4% -55.3% 

O_PM10 -17.2% -16.2% -16.4% 

S_NO2 -44.9% -37.4% -34.2% 

S_Ox -0.8% 2.3% -4.7% 

S_O3 31.3% 31.3% 9.1% 

S_PM10 -10.4% -12.6% -15.2% 

W_NO2 -30.6% -21.4% -21.7% 

W_PM10 -2.3% -4.6% -10.9% 
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