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Chemists spend an inordinate amount of time performing low-level tasks based on visual observation. Camera-enabled laboratory 

equipment in conversation with computer vision algorithms can be used to automate many of these processes, thereby freeing up valuable 

time and resources. We developed a generalizable computer-vision based system capable of monitoring and controlling liquid-level across 

a variety of chemistry applications. This paper reports on the system’s motivation, architecture, and successful deployment in three 

experimental use cases which require continous stirring: continuous preferential crystallization (CPC), slurry filtration, and solvent swap 

distillation. 

 

 

Introduction 

Chemists spend an inordinate amount of time performing 

low-level tasks based on visual observation. One such task is 

liquid-level recognition. Monitoring and being able to control 

the location of a liquid-air or liquid-liquid interface is a crucial 

factor in a wide variety of common laboratory procedures.1,2 

Processes that involve the addition, extraction or transfer of 

liquid can fail or result in dangerous conditions if the total 

volume or phase-boundary extends beyond a specified 

tolerance zone. At the industrial-scale, maintenance of liquid-

level within this zone can be facilitated by sensors or large 

allowable margins of error,3–5 At the smaller-scale, such 

accommodations are infeasible. Detection and control of liquid-

level are often tasked to the researcher, who must visually 

monitor the experiment and make any adjustments they deem 

necessary. This is an easy task for a human researcher, but one 

that is often tedious and time consuming. 

As laboratories become increasingly smart and increasingly 

connected, so does our ability to automate discovery and 

experimentation. Computer vision can be used to assess and 

control experimental procedures that typically rely on visual 

feedback. Digital imagining technology in conversation with 

computer vision algorithms has been used to monitor sample 

quality, detect physical properties (e.g. color, crystal size, etc.), 

and perform in situ analysis.6–9 When combined with smart 

machinery and a clear set of instructions, computer vision can 

also be used to drive control decisions.  

Our group has focused on bringing together robotics and 

data-rich monitoring techniques to develop autonomous 

platforms that drive discovery and reaction optimization. 

Images provide yet another data-rich source that can be used 

to gather and analyze information. Recently, we encountered a 

situation in our lab that led us to develop HeinSight, an 

inexpensive and generalizable computer vision system for 

liquid-level monitoring and control (Figure 1). It consists of 

three main components: a pump, a webcam, and series of 

custom Python scripts. Compared with similar systems, which 

rely on the addition of a mechanical10,11 or density-based  

sensors,3,6,12–15 our system is minimally invasive and easy to use. 

Its modular design enables customization and it is easily 

integrated into a variety of existing experimental set-ups 

(Figure 1). The addition of a graphical user interface (GUI) and 

Slack integration greatly lower the barrier to use. The entire 

system can be set up, controlled, and remotely monitored 

without the manipulation of code. This paper reports on the 

system’s motivation, development, and successful deployment 

across three experimental use cases: continuous preferential 

crystallization (CPC), continuous filtration, and evaporative 

solvent swap. 

 

 
 

Figure 1.  Example illustration of HeinSight being used to monitor and control liquid-level 

in a dual-pump CPC experiment conducted in a Mettler Toledo EasyMax. The user 

interacts with the system through a GUI and Slack integration on the front end. Pump 

and webcam behaviour is controlled by custom python packages on the backend.  

 

 

Motivation 

Initial motivation for the system came from a recurrent problem 

encountered in our lab when trying to automate continuous 

preferential crystallization (CPC) experiments. CPC involves the 
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continuous transfer of liquid between two (or more) vessels in 

the presence of a seed to preferentially crystallize out a desired 

compound.7,8 This is a time-intensive physical process, often 

requiring runs of 48+ hours. Previous work in our lab had 

developed automation capabilities for liquid transfer between 

vessels, sampling, and reaction monitoring. However, the 

distribution of liquid in the system still required periodic 

checking and manipulation. If the liquid-level became too 

unbalanced between the two receptacles, the experiment 

would need to be reset or adjusted to account for current 

conditions. In extreme cases, too much liquid would transfer 

into a single vessel and the system would overflow. To avoid 

either of the above scenarios, researchers found themselves 

having to check-in on the system every few hours. The need to 

manually monitor and adjust a running experiment greatly 

hinders researchers’ productivity. It is especially challenging for 

experiments that require long run times, such as CPC. Even far 

simpler processes, such as filtering a large volume of solution 

through a small-volume apparatus, can drain researcher time 

and resources.  

 

Previous Work 

We began looking for solution to recognizing materials and 

phase-boundaries inside reaction vessels and quickly realized 

the need for a generalizable, easy-to-use, and inexpensive 

computer vision-based system. Eppel and Kachman have 

identified algorithms that are able to determine liquid-liquid or 

liquid-air interfaces in transparent vessels of varying shapes.1,2 

Recent expansion into the area of machine learning has shown 

improved accuracy, particularly when using neural nets.17–19 

Unfortunately, we did not have a database of images at our 

disposal and wanted to direct our efforts at our area of 

expertise – building a fully integrated autonomous monitoring 

and control system. Ley and co-workers have developed a series 

of continuous-flow liquid-liquid extraction systems that 

determine the location of the interface by monitoring an added 

green float.17,18 While ideal in certain scenarios, we were not 

able to adopt their approach. Our applications require 

continuous stirring and monitoring any additive object would be 

complicated by lateral or erratic shifting due to the presence of 

a vortex. Additionally, we wanted to design a system that did 

not require additional probes or equipment and could be used 

across a variety of experimental set-ups, regardless of chemical 

composition. The system should be as flexible as possible and 

capable of supporting variation in solution density and color as 

well as shape and volume of reaction container. 

Materials and Methods 

System Architecture 

HeinSight provides automated monitoring and control of liquid-

level within a user defined area across a variety of common 

continuously stirred tank reactor (CSTR) processes. The 

composite system comprised of a webcam, a series of custom-

developed Python packages, and peristaltic pump(s) (Figure 2) 

is designed to be modular and easily integrated into any 

benchtop setup at minimal cost. Currently supported 

experimental types include 1) single pump CPC, 2) dual pump 

CPC, 3) continuous filtration, and 4) evaporative solvent swap.  

By creating different Python modules for pump control, 

computer vision, and overall system control, we have left the 

option open for researchers to adapt our code to their preferred 

hardware and experimental workflow. We chose to use a 

Logitech C922x webcam (720p at 60fps) and New Era peristaltic 

pumps (NE-9000) as hardware as they are both readily available 

and the latter has well-documented serial protocols.3 In 

practice, any USB webcam and pump capable of receiving serial 

commands may be used. The packages rely on open-source 

libraries (Numpy, OpenCV, and PySerial) so that there is no 

financial barrier to usage or adaptations. For additional ease of 

use, we wrapped the code in a GUI and incorporated Slack bot 

user integration. The system can be fully customized and run 

from the GUI while integration with the Slack messaging service 

provides remote online monitoring and control. 
 

 

 

Figure 2.  Schematic view of system components and relations.   

 

 

Control Logic 

Automated control of liquid-level follows the same logic 

regardless of experimental type. Once triggered, the 

automation loop (Figure 3) proceeds through the following 

steps, where n and s are user-defined parameters set prior to 

each run.  

 

1. Start default pump behavior. 

2. Wait n seconds.  

3. Monitor liquid-level (capture images + apply liquid-

level finding algorithm). 

4. Determine if level is within tolerance. 

a. If yes, return to step 2. 

b. If no, determine if liquid needs to be 

withdrawn of dispensed and pump in 

appropriate for s seconds. Return to step 3. 

 

https://www.numpy.org/
https://opencv.org/
https://pypi.org/project/pyserial/
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Figure 3. HeinSight control loop. Steps are color-coded to match the component 

performing the action in correlation with Figure 2. 

 

 

The system will cycle through this process, starting, stopping, 

and adjusting pump parameters until instructed to stop or a 

critical error occurs. For example, if the liquid-level is 

determined to be too high, the system will trigger the pump to 

withdraw from the watched vessel for s seconds. The liquid-

level will be monitored and assessed again and the loop 

continues. While the control logic operates consistently across 

experimental types, the different processes require slightly 

different control parameters. For example, when performing 

CPC (or any other experiment that requires bi-directional liquid 

exchange), the location of liquid-level can drift in either of two 

directions, above or below a user-set reference line (see the 

following section). However, when performing a filtration or 

solvent swap experiment, the location of the liquid level almost 

always moves in a single direction. Once one of the pre-

programmed experimental types has been selected in the GUI, 

it guides the user through the necessary configuration.  

 

Selecting a ROI, Reference, and Tolerance Zones  

Setting up an experiment in the GUI also prompts the user 

to define a series of visual boundaries that the system will use 

to make control decisions. The first, selecting a region of 

interest (ROI), serves two purposes: 1) it specifies the area 

which the liquid-level finding algorithm will search, and 2) it 

allows the user to exclude any areas that the algorithm might 

find confusing (e.g. tubing, glare, etc.). The purpose of this 

exercise is the removal of uninformative or unwanted visual 

information, thereby increasing efficiency and the likelihood of 

an accurate reading.  

The second visual boundary the user is asked to define is a 

reference line, which marks the desired height of the meniscus. 

The only requirement is that it must be within the ROI. 

However, the system will perform better if the reference line is 

set in a way that avoids occlusions such as tubing or markings 

on the reaction container. 

The third visual boundary defines a tolerance zone that the 

liquid-level must remain within. This is the zone in which the 

liquid-level location is programmed to remain. If the level drifts 

outside these bounds, self-correction be triggered. Different 

experimental types require differing methods of defining 

tolerance due to the direction in which the liquid-level is likely 

drift. For CPC experiments, the level can drift up or down. The 

user is thus prompted to select both upper and lower tolerance 

bounds. Solvent swap and filtration experiments generally 

result in the liquid-level drifting in a single direction (usually 

down), and the user is only asked to select one tolerance bound. 

For CPC runs, there is an additional option to set fail-safe 

tolerance levels. Should the liquid-level move outside the 

specified fail-safe zone, pumping will cease, and the Heinsight-

controlled components of the system will suspend operation.  

Once set, the system uses the selected boundaries to make 

control decisions given the context of the selected experiment. 

We have implemented an intuitive way for the researcher to 

monitor what the code interprets as the run progresses. Each 

time an experiment is run using HeinSight, the system creates 

three folders of saved images:  

 

1. raw_images: all images captured by the webcam 

2. all_drawn_images: images overlaid with user-set 

boundaries 

3. slack_images: images sent through the Slack messenger 

 

Figure 4 shows an example image saved to the 

‘all_drawn_images’ folder  during a dual-pump CPC run. All 

boundaries defined by the user are shown along with location 

of the current liquid-level as determined by the liquid-level 

finding algorithm.  

 
 

Figure 4.  A ‘drawn image’ from a dual-pump CPC experiment. Color-coded lines are 

drawn at user defined locations (red = reference, green = current liquid-level, blue = 

tolerance bounds, pink = fail-safe tolerance bounds). 
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Reviewing the ‘all_drawn_images’ folder allows the researcher 

to visually monitor how the liquid-level fluctuates in relation to 

defined boundaries in near real time. Images are saved as soon 

as current liquid-level location is determined and can also be 

combined to produce a video of the experiment once the run 

has completed (the Heinsight Python package includes a script 

which creates such a video). Review of the video by the 

researcher can be particularly helpful should the run require 

repetition or adjustment and offers the additional benefit of a 

record of visual changes in physical characteristics (e.g. crystal 

aggregation, turbidity, etc.).  

 

Monitoring Liquid-level  

The liquid-level detection algorithm we developed can 

locate the height of a liquid-air or liquid-liquid interface relative 

to the pixel height of an image. The computer-vision approach 

we have taken to accomplish to this is to find the strongest 

horizontal line, where strength is defined by contrast to 

surrounding vertical pixels. Following initial pre-processing 

(Figure 5a), the image is passed through a Canny edge detection 

algorithm, which outputs a binary image where strong edges 

are shown as white contours.20 Additional processing removes 

noise and vertical contours (Figure 5b). The algorithm assumes 

that any interface boundary will be read as a relatively long 

horizontal line (ROI selection is critically important here as 

additional horizontal lines confound the algorithm). The 

algorithm then divides the resulting image into horizontal slices 

4 pixels high. Each slice is assigned a score based relative 

fraction of white pixels. The slice with the highest score within 

the user-defined ROI are identified as containing the liquid-

level, and the average vertical height the of pixels in the slice 

relative to the entire image is recorded as the current liquid-

level location (Figure 5c). All values output by the algorithm are 

saved to a JSON file for future analysis and review. Additional 

details and a step-by-step explanation of the algorithm are 

available in the Supporting Information.  

Computer vision has a tendency to be finicky, and obtaining 

an accurate location measurement depends on a variety of 

environmental factors, most importantly lighting. Tubing, glare, 

residue stuck to the side of the reaction vessel or any external 

markings among other factors have the potential to confuse the 

algorithm. While we were able to optimize the visual 

environment across experimental set-ups to the best of our 

ability, errors still occasionally arose.  

Consistency in the location measurement was improved 

allowing the user to specify whether the algorithm looks for the 

top or bottom edge of the meniscus. To account for the 

occasional error or incorrect identification due to unforeseen 

circumstances (e.g. a researcher walking in front of the camera), 

the system calculates an average relative liquid-level location 

across consecutive images. The number of images to be 

included in each average as well as the interval between checks 

are set by the user prior to the start of the experiment. For 

example, the user may instruct the system to take 5 consecutive 

images every 45 seconds. The system will determine the current 

liquid-level location in each of the 5 images and discard extreme 

outliers. Outliers are determined by applying a threshold to the 

modified z-score calculated for the liquid-level in each of the 5 

images. Any level that deviates too far from the median is 

assumed to be invalid. The final number used to make the 

control decision as to whether the liquid-level is within 

tolerance is the average of the retained set.  
 

 

a)  

b)  

c)  

 

Figure 5a.  Image after conversion to grayscale and CLAHE histogram normalization; 5b. 

Binary image with vertical contours removed; 5c. Original image with green line at 

current liquid-level location.  

 

 

Graphical User Interface  

The HeinSight system is designed to be generally applicable 

and easily incorporated into any laboratory. We are conscious 

of the fact that many existing automated systems are 

prohibitively expensive or require expert use. To make the 

system more accessible, we developed a graphical user 

interface. Users can adjust parameters and execute 
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experiments entirely within the GUI without having to interface 

with any code.  

The GUI was designed using PyQt5 and is configured to walk 

the user through specifying variables and performing necessary 

steps specific to the designated experimental type. Figure 6 

shows the introductory screen upon launching the application. 

By default, the ‘Set-Up’ tab is active. The user is asked to select 

the experiment type and specify certain parameters related to 

configuration and control such as pump rate, the amount of 

time to wait between liquid-level monitoring and duration of 

self-correction. It is also possible to load parameters from a 

previously saved experiment and provide details for Slack 

integration. Only those variables relevant to the selected 

experimental type can be modified by users. For example, the 

option to enter a value for ‘Pump 2 port’ is disabled in Figure 6 

because ‘Single pump CPC’ only uses one pump. 
 

 

 

Figure 6.  Screen shot of the ‘Set-up’ tab. Parameters can be entered by the user 

and saved to a .json file, which can be loaded to automatically populate fields in 

subsequent experiments.  
 

 

The ‘Run’ tab (Figure 7) guides users through any pre-steps 

necessary for the application to accurately and dynamically 

control liquid-level given the previously set parameters.  There 

are also options to preview the webcam livestream and initiate 

pumping to adjust the liquid-level prior to running the 

experiment. These steps help ensure that the liquid-level 

algorithm will perform adequately in the current physical 

environment. Automation begins when the user presses the 

‘Start experiment’ button, prompting pop-up windows for ROI 

and tolerance zone selection. Once started, the system will run 

indefinitely until terminated by the researcher or encountering 

fail-safe conditions.  

 

Figure 7.  Screen shot showing the top half of the ‘Run’ tab. The Pre-Steps section walks 

the user through the actions that must be completed prior to starting a run of the 

selected experimental type. 
 

Remote Monitoring and Control 

Automation often comes with the corollary desire for 

remote monitoring and control. Researchers want to check-in 

on an experiment and know when key decisions are made. 

Given unsafe conditions, it is important that the experiment can 

be changed or shut down. We enabled communication between 

the user and the system during an active experiment using 

Slack, a popular online messaging platform. During set-up, the 

user is given the option to specify an existing Slack bot and 

channel to be used by the system. The specified bot will then 

send regular updates to the channel once an experiment has 

been started. We found it immensely helpful to know when the 

liquid-level moved outside tolerance bounds or if the system 

could not find a liquid-level. Figure 8 is a screenshot of the 

message the user received when the systems detects a need for 

self-correction.  

 

 
 
Figure 8.  Slack messages sent by our bot, gronkle, during a dual-pump CPC 

experiment. The message shown here is sent when the system detects a need for 

self-correction and includes the image and measurements that resulted in this 

decision. Information is also provided about how the system will proceed.  
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The Slack bot we created during development will also 

translate commands for action to the appropriate component 

of the HeinSight system. Users can remotely control an 

experiment by messaging a pre-programmed command: Hello, 

pause experiment, resume experiment, end experiment, current 

image, dispense, withdraw, liquid level graph [sec || min || 

hour]), and ABORT. See the SI for further details on supported 

commands.  

Discussion and Results 

We tested and demonstrated the prototype system by 

conducting experiments in our lab in accordance with current 

projects and research. Emphasis was placed on proof of 

concept rather than novel chemistry. Successful applications of 

each of the pre-programmed experimental types are 

summarized below.  

 

Case 1: Continuous Filtration 

In the first use case, the system was deployed to orchestrate 

a filtration of a large volume of slurry through a filter with 

limited volumetric capacity. When faced with this issue, a 

researcher must typically spend an exorbitant amount of time 

progressively filling and refilling the filter as the slurry is 

gradually processed. If the slurry has particularly poor filtration 

properties (filter occlusion due to fine particles) this process can 

take days, as the researcher will typically only return 

intermittently to tend to the apparatus. In addition, this 

situation is particularly difficult to automate, as the rate of 

filtration will vary as the filter cake compresses over time, 

making a timed addition of the slurry inappropriate.  
 

Figure 9.  Experimental set-up for a continuous filtration run.  
 

Successful deployment of the filtration application was 

demonstrated by passing a slurry of 0.995 g Celite and ~250 mL 

MeOH through a gravity filtration set-up. The camera was 

positioned to watch the material as it passed into a funnel 

packed with glass wool (Figure 9). We found that a solid-colored 

background enabled the algorithm to “see” better by 

distinguishing the filtration set-up from the surrounding bench-

top environment (see Figure S5b in “Continuous Filtration” 

section of the SI). HeinSight automatically replenished the slurry 

every time the meniscus dropped below the user-set level, 

thereby enabling continuous filtration. Data from the run is 

shown in Figure 10.  
 

 

 

Figure 10.  Relative liquid-level height over time during continuous filtration of Celite 

and MeOH slurry; grey dotted lines correspond to run specific tolerance level.  

 

Eliminating the need for a human to monitor and dispense 

additional solution is most beneficial when dealing with large 

working volumes or substances that are particularly slow to 

filter. In theory, the HeinSight system can be used to automate 

the filtration of any volume using any method. To stress test the 

system, we set up an ‘infinite’ loop in which the slurry reservoir 

was also the collecting container. The system ran for 3 hours 

under these conditions.  

 

Case 2: Solvent Swap/Distillation  

When executing a synthetic chemical sequence, one 

reaction mixture may be held in the vessel while the solvent is 

distilled off and a new solvent is continuously added.21,22 This 

process, known as a solvent exchange distillation or a “solvent 

swap”, allows multiple sequential chemical transformations to 

be executed on a reaction mixture, where very different solvent 

properties are required for each transformation. While this 

process is commonly executed on large scale, careful 

calculations must be completed to ensure the rate of fresh 

solvent addition and effluent distillation are balanced. The 

process is made more challenging, as physical properties of the 

solvent mix, such as the boiling point, will constantly change 

throughout the operation. The process could be made far 

simpler by instructing the pump to maintain a set liquid level 

while the distillation proceeds. 

To demonstrate HeinSight’s solvent swapping application, 

we used the system to automate the exchange of ethanol for 

toluene. The camera was positioned to watch the reaction 
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vessel in a benchtop-scale distillation set-up (Figure 11). For 

ease of use, we placed the vessel in an EasyMax to ensure 

continuous stirring and temperature regulation. Approximately 

250 mL of a 4:1 EtOH:toluene starting solution was heated to 

just above the boiling point of ethanol (82°C), in this case the 

solvent with the lower boiling point. As ethanol was distilled 

out, an equivalent volume of Toluene was pumped in. The 

system ran successfully across multiple trials and was also used 

to automate the replenishment of starting solution in the 

purifications of DCM. Data from the EtOH:toluene swap is 

shown in Figure 12. 

 

 
Figure 11.  Experimental set-up for an evaporative solvent swap run. 
 

 
Figure 12.  Relative liquid-level height over time during evaporative solvent swap 

of EtOH for toluene; every 10th measurement shown. Grey dotted lines 

correspond run specific tolerance level.  
 

Interestingly, the algorithm was able locate the meniscus 

even when monitoring the clear, uniform-color solution (see 

Figure S10 in “Evaporative Solvent Swap” section of  the SI). The 

backlight of the EasyMax was switched off so that only ambient 

lighting was used and automation continued unaffected even 

under conditions that would have been difficult for a human to 

monitor.  

 

Case 3: Continuous Preferential Crystallization 

Preferential crystallization (PC) is the general process by 

which a single enantiomer is isolated from a racemic 

mixture.23,24 This technique is can be accomplished when a 

metastable homogenous racemic mixture is seeded with 

crystals of the desired pure enantiomer, allowing selective 

crystallization via secondary nucleation. However, preferential 

crystallization may only be successful over limited timeframes, 

as the unseeded counter enantiomer remains supersaturated 

during the process and may undergo uncontrolled primary 

nucleation. One method of reducing the risk of uncontrolled 

nucleation is to limit the degree of supersaturation and 

maintain a near equilibrium solid/solution condition, but this 

will also limit the amount of material that can be isolated via 

typical batch crystallization.  

In order to obtain high mass-throughput as well as limit 

unwanted crystallization the process can be executed via two 

coupled flasks which are held at different temperatures. The 

crude slurry is placed in one flask (dissolver) while the crystal- 

free solution phase is circulated between the two. The second 

flask (crystallizer) is seeded and held at a lower temperature 

than the dissolver, creating a mild supersaturation and allowing 

selective crystallization of the desired enantiomer.16,25 While 

similar processes have been adopted for numerous chemical 

manufacturing and large-scale applications, reducing to smaller 

bench-top applications with low working volumes is less 

common The primary challenge is again one of liquid level 

control; to operate at peak efficiency the crystal-free solution 

phase must be continuously circulated between dissolver and 

crystallizer via in line filters. As the process evolves, crystal 

growth and dissolution in each environment will alter the 

pumping efficiency, leading to sample overflow or interruption 

in the fluid circulation. To maintain control, the system must 

continually adapt, modifying and updating the pumping to 

maintain a balanced liquid level between the two flasks. 

As we are manipulating a metastable fluid, approaches 

which use pulsed gas or level control by limited uptake can 

promote unwanted nucleation, resulting in batch failure. 

Furthermore, adding components, such a float or internally 

sensors can compromise the delicate balance required to 

maintain control preferential crystallization.  

 



 

 
8 

 

Scheme 1.  Resolution of a 2-fluorophenylglycine derivative (1) used to synthesize 

(R)-Prasugrel. 
 

 

As a simple proof of concept, racemic 2-flourophenylglycine 

derivative 1 was selected. This molecule is a well-behaved 

conglomerate, making it amenable to preferential 

crystallization. In addition, it provides facile access to the 

enantiopure amino acid required to synthesize (R)-Prasugrel, a 

compound used for treatment of acute coronary syndrome 

(Scheme 1). A racemic mixture of 1 was suspended in MeCN 

recrystallized in a dissolver/crystallizer apparatus using 

HeinSight to dynamically control the liquid transfer between 

two 100 mL reactors. Temperature and stirring were regulated 

using an EasyMax 102. Chemically resistant tubing was routed 

through the peristaltic pumps and capped with 9mm filter. In 

this experiment, the webcam was positioned to watch the 

dissolver (Figure 13 reactor R1). The dissolver was charged with 

3.9685 g of 1 and 80 mL MeCN (0.148 M), then stirred at 

500 rpm. The system was set to a flow rate of 1 mL/min and 

allowed to circulate at 21°C for 1.25 hours to ensure equilibrium 

had been reached. Seeds of crystalline 1 (0.1 g) were added to 

the crystallizer (R2) and the temperature was decreased to 

15° C. The temperature of the dissolver (R1) was maintained at 

21° C. After 7 hours, the solution in the dissolver was 

transparent indicating that crystallization had reached 

completion (see Figure S13 in the “CPC” section of the SI). Data 

from the experimental run is shown in Figure 14. 

 

 
Figure 13.  Experimental set-up for a single-pump CPC run. 

 

 
Figure 14.   Relative liquid-level height over time during successful CPC of 1 in 

MeCN. Every 8th measurement shown. The red line indicates the reference level; 

grey dotted lines correspond run specific upper and lower tolerance levels. 
 

Conclusions 

We have developed a generalizable and inexpensive 

computer-vision based system for liquid-level monitoring and 

control. It facilitates the autonomation of several common 

laboratory procedures that typically rely on a human 

researcher’s visual observation. The system can be fully set-up 

and customized from a GUI and is easily integrated into existing 

experimental set-ups that require continuous stirring. We have 

showcased the successful deployment of HeinSight for single 

and dual-pump CPC, slurry filtration, and evaporative solvent 

swap experiments.  

These applications demonstrate that computer-vision can 

be used as part of an autonomous platform to monitor 

experimental factors and make control decisions. More 

importantly, this study demonstrates how a simple control 

point, such as maintaining the solvent level in a reactor, can 

enable multiple, diverse workflows including crystallization, 

distillation and filtration. Our ability to easily measure and 

respond to dynamic situational changes are key to enabling and 

deploying flexible automation workflows.  
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