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Abstract 
With the current pandemic situation caused by a novel coronavirus disease (COVID-19), there is 

an urgent call to develop a working therapeutic against it. Efficient computations can minimize the 

efforts by identifying a subset of drugs that can potentially bind to the COVID-19 main protease 

or target protein (MPRO). The results of computations are accompanied by an evaluation of their 

accuracy, which depends on the details described by the model used. Neural network models 

trained on millions of points and with unmatched accuracies are the best approach to employ in 

this process. In this work, I first identified and described the interaction sites of the MPRO protein 

using a geometric deep learning model. Second, I conducted virtual screening (at one of the sites 

identified) on FDA-approved drugs and selected 91 drugs with the highest binding affinities 

(below -8.0 kcal/mol). Then, I conducted 10 ns of molecular dynamics (MD) simulations using 

classical force fields and classified 37 drugs to be binding (including Lopinavir, Saquinavir, and 

Indinavir) based on the RMSD between MD-binding trajectories. To drastically improve the 

dynamics profile of the 37 selected drugs, I used the highly accurate neural network force field 

(ANI) method trained on coupled-cluster method (CCSD(T)/CBS) data points and performed 1 ns 

of binding dynamics for each drug with the protein. Using this approach, 19 drugs were qualified 

based on their RMSD cutoffs, and based on free energy (ANI/MM/PBSA) computations, 7 of the 

drugs were rejected. The final selection of 12 drugs was validated based on an MD trajectory 

clustering approach where 11 of the 12 drugs (Targretin, Eltrombopag, Rifaximin, Deflazacort, 

Ergotamine, Doxazosin, Lastacaft, Rifampicin, Victrelis, Trajenta, Toposar, and Indinavir) were 

confirmed to exhibit binding. Further investigations were performed to study their interactions 

with the protein and an accurate 2D-interaction map was generated. These findings and mappings 

of drug-protein interactions are highly accurate and may be potentially used to guide rational drug 

discovery against COVID-19. 

 

Keywords: COVID-19, molecular dynamics, neural network, CCSD(T)/CBS, ANI/MM/PBSA 

 



 
 

3 

Introduction 
The whole world is experiencing an adverse phase due to the pandemic caused by a viral 

respiratory infection, COVID-19, from the family of coronaviruses. This deadly infection is caused 

by the novel severe acute respiratory syndrome virus known as SARS-CoV-2.1 Since its inception 

in January 2019, more than 8.5 million cases have been reported with greater than 450,000 

fatalities (5.3%) (Source: Worldometer, June 18th, 2020). SARS-CoV-2, a coronavirus with crown-

like spikes on the surface, can affect mammals and can then easily mutate to enable transfer from 

animals to humans2. The contagious virus spreads mainly from human to human and is rapidly 

becoming the world’s leading cause of death.2 COVID-19 was declared a pandemic by the World 

Health Organization (WHO) in March 2020, and strict safety guidelines were enacted for the entire 

world. Currently, there are no targeted vaccines or treatments available for SARS-CoV-2, and 

there is an urgent need to develop them. The aim of the present study is to use conventional 

computational approaches combined with accurate methods to explore protein-drug interactions 

that can be useful in the fight against COVID-19.  

 

The structure of the novel SARS-CoV-2 virus is spherical and is reported to have mushroom-

shaped proteins on its surface (spikes) that resemble the shape of a crown. The main protease of 

SARS-CoV-2 was identified several weeks after the outbreak and was named the MPRO protease3. 

The crystal structure of the target protein (MPRO) was solved, and its coordinates were immediately 

deposited into a protein data bank (PDB ID: 6LU7, RCSB)3. Currently, there is a significant effort 

aimed at developing a drug that can inhibit MPRO. However, since the outbreak occurred, we still 

lack potent inhibitors/drugs to treat COVID-19, as the identification of drugs is a tedious process 

ranging from screenings to clinical trials and could take years4. When a new target protein to the 

disease is identified, the first step involves repurposing drugs that are FDA-approved and are 

readily available in the market. To repurpose the drugs, the basic tools involve computational 

characterization of the interaction sites of the main protease and drug interactions with the target 

protein. The concept of drug repurposing has proven to be successful in the past and is the most 

convenient method for screening new drugs for any novel diseases. Computations based on drug 

repurposing have identified the HIV antivirals Lopinavir and Ritonavir to be effective against 

COVID-195,6. Wang and other groups have conducted drug repurposing computational analyses 

to identify inhibitors to the SARS-CoV-2 main protease6–8. 
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With the current advances in computational techniques in combination with physical chemistry 

methods that utilize data learning algorithms, we are witnessing numerous impressive predictions 

in the field of drug discovery. These computations are used for screening and prediction of binding 

affinities and to generate fingerprint interactions with the protein9. The protein-drug binding 

simulations reveal interaction fingerprints that can be used efficiently to design other potent 

drugs10. Computer-aided drug design (CADD) makes use of extensive docking and molecular 

dynamics (MD) simulations to generate these interaction fingerprints. The accuracy of MD code 

relies on the accuracy of the potentials (forcefields), which depends on how they are 

parametrized11. Several classical forcefields, such as CHARMM, AMBER and OPLS, have been 

optimized to model the biomolecular system, bulk water accurately and can provide 99% of the 

biochemical information. However, with most of the chemistry (electronic, nuclear interactions) 

providing 1% of the information, classical forcefields are not adequately trained to adjust to these 

phenomena and are lacking in their knowledge base. Quantum chemical forces, density functional 

theory (DFT), and coupled cluster (CCSD(T)/CBS) methods are known to approximate the 

Schrödinger equation accurately (solving electronic and nuclear interactions), but at the same time, 

they are too complex to be solvable. To bridge the gap, machine learning and neural networks have 

been applied, and with recent augmentations in data, these approaches have become powerful 

approaches to accurately approximate any model12,13. Recently, the Roitberg group developed an 

ANI forcefield method that uses neural network-based models that are publicly available as ANI-

1x and ANI-1ccx14,15. The ANI-1x model was trained on millions of small molecules with their 

DFT energies labeled, and the ANI-1ccx model was trained on highly accurate CCSD(T)/CBS 

data points. The accuracy of the ANI-1x model has been shown to be similar to DFT and found to 

be 106x faster than DFT calculations (a speed that matches classical force field methods). A similar 

case using ANI-1ccx that was trained on 500k CCSD(T)/CBS points was a billion times faster. 

While DFT is limited to 500 atoms and CCSD(T)/CBS to 10 atoms, ANI can utilize ~10,000 atoms 

with a speed comparable to classical forcefields14–16 

 

This work for the first time reports interaction maps of repurposed drugs with the MPRO protein 

using ANI potentials. This work also focuses on shortlisting the drugs by several levels of 

computations ranging from virtual screening (using docking) to the accurate methods. To bypass 
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the problem of parametrization associated with classical force fields with drugs, ANI-1ccx 

forcefields were used in combination with classical forcefields (CHARMM36) to simulate protein-

drug binding. The main focus of this work is to analyze the binding profile of ANI/MM MD 

simulations and to investigate the key interactions that can guide future drug discovery. MM/PBSA 

calculations performed on trajectories produced by ANI/MM MD (termed ANI/MM/PBSA) 

validates the binding and filters out the decoys. Using trajectory clustering, the relationship 

between the number of clusters and the binding affinity of the drug with protein was explored. 

With an overall workflow that combines accurate techniques 12 drugs were identified that may be 

potent inhibitors of the MPRO protein. The selected drugs were characterized to obtain a better 

understanding of the chemistry of target inhibition and to assist in the fight against COVID-19. 

 
Graphical Abstract 

Computational Methodologies: 
Identification of interaction sites. To identify the protein-protein interaction (PPI) sites in MPRO 

protein, I used MaSIF, which was developed by Gainza et al (2020)17. The MaSIF method makes 

use of geometric deep learning to explore patterns on the surface of proteins that are important for 

interactions with other proteins and a variety of drug molecules. Using this method, the protein 

surface can be defined as an array of geometrical and chemical features. A descriptor is then 

computed for each surface patch in the protein that contains information regarding all the features. 

Further, the descriptor is pushed to the layers of the deep learning model where they are classified 

based on the trained data. MaSIF was trained on data from more than 30,000 proteins. The docker 
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implementation of MaSIF was used in this work to generate the interaction sites of PDB ID 

(6LU7). 

 

Molecular Docking. First, the crystal structure of MPRO (PDB ID:6LU7), which was deposited by 

Jin et al, 3 was obtained from the RCSB PDB databank. To prepare the MPRO protein for docking, 

I used AutoDock Tools (ADT) to assign Kollman charges and atom/bond types18. For drug 

repurposing I chose the database of drugs that are FDA approved and readily available in the 

market. I obtained FDA-approved docking ready drugs from ZINC15 and extensively used open 

babel codes to perform the conversion between SDF and PDBQT file formats2. Screening against 

MPRO was performed using Autodock Vina code, which defined a grid box to sufficiently cover 

the active site of proteins 19. The box size was defined as 28 × 28 × 28 Å3 with the center at (x = 

6.194, y = 1.944 and z = 24.778) using ADT. Using docking methods, I obtained the positions of 

inhibitors in the binding site of the protein, which was used as an initial pose for validation of the 

dynamics. 

 

Classical Molecular Dynamics Simulations. All molecular dynamics (MD) simulations were 

conducted using NAMD20. I used CHARMM-GUI webserver to generate the CHARMM36m 

parameters and topology files for the protein and the SwissParam server to generate topology and 

parameters for the drugs (small molecules)21,22. All complexes were enclosed in triclinic boxes. 

The TIP3P water model was used to solvate all complexes. Ions (Na+ and Cl−) were added at a 

concentration of 0.15 M to neutralize the systems. After neutralization, the systems were submitted 

to 5000 steps of steepest descent minimization. Minimized systems were further equilibrated under 

both NVT and NPT conditions for 1 and 2 ns, respectively. During equilibration, position restraints 

were applied to both protein and drug molecules. Temperature (303 K) and pressure (1 atm) were 

controlled by the Langevin piston method. The particle mesh Ewald (PME) method was used to 

calculate long-range interactions23. The equilibrated systems were finally submitted to a 10 ns NPT 

production run without position restraints. To compute the time-dependent RMSD for the drug 

molecule with respect to the initial pose (drug and protein’s secondary structure aligned), 800 

snapshots from 2 to 10ns were averaged.  
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ANI Potential and Dynamics. In this work, I combined accurate ANI forcefields for drugs with 

CHARMM36m forcefields for proteins and ions along with TIP3 for water to run the drug binding 

dynamics with MPRO (Figure 1). I performed ANI/MM calculations per the hybrid model 

previously combined by the Rowley group24. In hybrid ANI/MM calculations, the total potential 

energy (𝜈) of the system was defined as the sum of the	𝜈 of the ANI region (i.e., the intramolecular 

interactions of the drug molecule), the	𝜈 of the surroundings (protein, water, and ions), and the 𝜈 

of the interactions between the drug and its surrounding (Equation (1))24. 

 
where r represents coordinates of all the atoms, 𝑟!! is the coordinates of the atoms surrounding 

the drug molecule, and r is the coordinates of the drug molecule. The MM region is described by 

the CHARMM36m force field. For noncovalent protein–drug binding, the 𝜈"#$/!! term is the 

conventional MM nonbonded interactions between the protein and the drug, which is simply the 

sum of Lennard-Jones and pairwise coulombic interactions between the ANI atoms and MM atoms 

(Equation (2))24.  
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Figure 1. Initial system for MD simulation. The initial system consists of a docking 

pose conformation for a drug (in red surface) combined with rigid protein conformation 
(cartoon representation) used for docking. The drug-protein complex is solvated with 

TIP3 water molecules in a box shown with line representation. Neutralizing ions Na+ and 
Cl- (0.15 M) are represented by green and brown mesh bubbles.  
 

ANI/MM/PBSA free energy calculations. To compute the ANI/MM/PBSA free energy of 

protein-drug binding, I used CaFe (open source code for calculation of free energy), which was 

developed by Liu et al. (2016)25. CaFe is an automated tool for predicting binding free energies 

using endpoint methods such as the molecular mechanics Poisson-Boltzmann surface area 

(MM/PBSA) method. This tool is specially designed to incorporate CHARMM/NAMD file 

formats (such as PSF, DCD, etc.)25. In this work, I used trajectory files obtained from hybrid 

ANI/MM calculations from 0.2 to 1 ns (80 snapshots in total). As the trajectory files involve drug 

molecules defined using an ANI forcefield, the free energy was computed using ∆𝐸!"#/%% (similar 

to the 𝜈"#$/!! term in equation 2) instead of ∆𝐸%%. Here, in this ANI/MM/PBSA computation, 

the ANI/MM term was computed for a gas-phase. For PB calculations, I used APBS programs 

(interfaced to CaFe) where boundary conditions were set to multiple Debye Huckel values and 

charges were mapped to grids using a cubic B spline method. To perform the SA calculations, the 

surface tension value was defined as 0.00542 with a surface offset of 0.92. Finally, the binding 

energy was summed and averaged over an ensemble of conformations (80 snapshots) as follows. 

 
 

Pose Clustering & 2D-interaction map. To cluster the trajectories (drugs poses) obtained by 

hybrid ANI/MM trajectories, I used TTclust, a trajectory clustering program developed by Tubiana 

et al (2018)26. The academically free Maestro software from Schrödinger (GUI) was used to 

generate the 2D-interaction map of the drug combined with the protein. 27. To map 3D-interactions 

of the drugs with the residues in the binding site, I used PLIP code (fully automated protein-ligand 

interaction profiler)28. By combining this code with PLIP, I report the number of hydrophobic 

interactions and hydrogen bonds between drugs and protein and extract common interacting 

residues. 

 

∆𝐺+&,- = ∆𝐻 − 𝑇∆𝑆	 ≈ 	 〈∆𝐸"#$/!! +	∆𝐺./0
1/023 + ∆𝐺./0

,/,1/023 − 𝑇	∆𝑆〉										(3)		 
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Results  
I extracted the target protein, a crystal structure of MPRO, the main protease of COVID-19, that 

was solved and deposited by Jin et al. (6LU7 chain A) from the RCSB PDB databank for all the 

analyses performed in this work. I used the MaSIF method to predict PPI sites on the protein 

surface that are defined as surface patches on a protein that are more likely to interact with other 

proteins and with potential drug molecules. The MaSIF method predicted five interaction sites on 

the MPRO surface with the highest score; these sites were labeled A, B, C, D, and E (Figure 2). Site 

‘A’ consists of residues 140-145, 163-168, and 187-192; site ‘B’ consists of residues 112-116, 

124-128, and 137-140; site ‘C’ covers residues in regions 192-199 and 235-239; site ‘D’ covers 

residues 292-301 and site ‘E’ consists of residues 65-68 and 19-22. Furthermore, I also found that 

site ‘A’ matches with the surface patch where an N3 inhibitor was identified in a bound form with 

the crystal structure of the protein. For drug screening, only site ‘A’ was used, while other sites 

reported here can also be potentially used to further screen a database of protein or drugs against 

MPRO. 

 

Figure 2. Interaction sites on the COVID-19 target protein. The surface representation 

of the main protease of COVID-19 (PDBID: 6LU7) generated using geometric deep 

learning and visualized using Pymol. The red region represents the best interaction sites 
and are labeled A, B, C, D, and E. The left and right representation is for the same 

A

B

C

D

E

Figure 2.
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structure but with a 180° rotation. The rightmost panel shows the N3 inhibitor that was 
crystallized with MPRO. The N3 inhibitor binds to site A of the protein. 

 
The next step involved virtual screening of FDA-approved drugs or repurposing drugs against 

MPRO. To perform this task, I first obtained the FDA-approved drug (dock ready) database from 

ZINC15. To select the drugs that can fit these criteria, I filtered out compounds that contained 

atoms other than C, H, N, and O and all drugs that contained charged atoms (to permit use of the 

ANI forcefield), thereby reducing the number of drugs in the database to 1188. Next, I performed 

molecular docking-based screening of the 1188 drugs using AutoDock Vina and ranked each drug 

according to their decreasing binding affinity. From this ranking list of drugs and their docking 

scores, I selected 91 compounds with binding affinity scores equal to or less than -8.0 kcal/mol. 

From this group of 91 compounds, I found that 10% had a score below -9.0 kcal/mol, 20% were 

between -8.9 kcal/mol and -8.5 kcal/mol, 30% ranged between -8.4 and -8.1 kcal/mol (both 

included), and the remaining 40% had a score of -8.0 kcal/mol (Figure 3). Because docking 

programs have a tendency to generate false poses, I performed classical MD simulations to validate 

these scores. 

 

Figure 3. Distribution of 91 drugs selected based on docking-based screening. 

Here, 10% of the most effective drugs had scores below -9.0 kcal/mol, 20% had scores 

40%

30%

20%

10%

<-9.0 kcal/mol
-8.9 to -8.5 kcal/mol
-8.4 to -8.0 kcal/mol
-8.0 kcal/mol

Figure 3.
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between -8.9 and -8.5 kcal/mol, 30% had scores between -8.4 and -8.0 kcal/mol, and 
the remainder of the drugs had scores of exactly -8.0 kcal/mol. 
 

MD simulations with classical forcefields (e.g., CHARMM36m) can improve and validate the 

pose obtained by a docking program. MD samples a conformation space of protein-drug binding 

conformations starting with the initial conformation extracted from docking experiments. I carried 

out 10 ns MD simulations for 82 of the 91 drugs (using parameters that are available in 

SwissParam) in complex with protein in a TIP3-solvated box and with Na+ Cl- as neutralizing ions. 

From the trajectories obtained, I classified the drugs that bound. The drugs that left the active site 

of the protein were classified, and the average RMSD values were computed for each drug with 

the secondary structure of the protein and drug aligned to the initial conformation. With the drugs 

arranged according to their decreasing RMSD values, drugs with the highest RMSD (of ~10 Å) 

are those that do not bind to the protein, while drugs with the lowest RMSD (~1.5 Å) exhibit 

favorable binding. In this manner, and with a cutoff of 4 Å, I classified 37 drugs as binding, and 

the remainder as leaving drugs, which were disqualified from proceeding to the next level (Figure 

4). The RMSDs of selected drugs along with their ZINC-ID are shown in Supplementary Table 1. 

 

Figure 4. Average RMSD values for 91 drugs. The averaged RMSD values for each 

drug with respect to the initial conformation. The blue bars represent binding drugs with 

an average drug RMSD below 4 Å and green bars represent leaving drugs with an 
average ligand RMSD above 4 Å. Indexing is based on the docking score from highest 

to lowest. 
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To accurately describe the inhibition profile for the selected drugs, ANI/MM dynamic runs were 

conducted using NAMD. To obtain the initial conformation for the ANI/MM setup, the final 

snapshot was extracted from the 10 ns MD production run which was performed using a classical 

forcefield. To setup the ANI/MM system, I defined the ANI region to contain the atoms of drug 

molecules and combined the ANI region with the region defined by a classical forcefield 

(CHARMM36m) for protein, water, and ions. Short 1 ns snapshots of ANI/MM MD at constant 

pressure and temperatures were then conducted. The RMSD computations for 1 ns of trajectory 

(100 snapshots) produced by ANI/MM dynamics were conducted again to classify binding drugs 

from leaving drugs. Using a cutoff of 4 Å, 18 drugs were eliminated and 19 drugs were selected 

(Figure 5). To further investigate the set of 19 selected drugs, I examined the binding affinity of 

each with protein by computing binding free energies using the MM/PBSA method. Using 

ANI/MM trajectories as an input, these calculations were labeled ANI/MM/PBSA, replacing the 

MM term with ANI/MM. Based on the energies obtained using ANI/MM/PBSA, 12 of the 19 

drugs were determined to bind spontaneously, having free energy values that were negative (Figure 

5). In addition, two drugs with the highest binding affinities, Targretin and Eltrombopag, have 

reported ANI/MM/PBSA free energies of -11.74 and -11.16 kcal/mol, respectively. The 

MM/PBSA data for the binding of 12 selected drugs with protein (energy differences of terms 

Elec, vdW, Pol, Sol, PB, SA, Gas and Npol) are reported in Supplementary Tables S1 and S2. 
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Figure 5. RMSD and ANI/MM/PBSA values from ANI/MM MD. Averaged RMSD 

values for the trajectories generated from ANI/MM simulations. Blue bars represent 
binding drugs (below 4 Å) and green bars represent weaker binding drugs (above 4 Å). 

Gray bars represent ANI/MM/PBSA free energy for binding drugs; only drugs with a 
negative free energy of binding are shown. 

 
In the final selection, 12 drugs were chosen to characterize the drug-protein interactions from the 

trajectories produced by the ANI/MM calculations. Using TTclust, I clustered snapshots from 

ANI/MM trajectories based on their similarities The trajectories of 8 drugs, Lifaximin, Doxazosin, 

Deflazacort, Lastacaft, Rifampicin, Victrelis, Topovar and Indinavir binding to protein were 

clustered in as few as 3 clusters, Targretin, Eltrombopag, and Trajenta binding trajectories were 

clustered in 4 clusters, and Ergotamine binding trajectories were clustered in 5 clusters (Figure 6). 

Trajectory profiles are important tools for analyzing drug-binding protein interactions, and they 

provide more detail than can be obtained by computing RMSDs. Based on this description, 11 of 

the 12 drugs should be subjected to further simulations. The 2D interaction maps from the last 

trajectory of ANI/MM calculations were analyzed using PLIP and combined with the 2D 

drug/ligand interaction images generated from Maestro. Based on these results, GLU166, GLN189 
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and THR190 were determined to be key residues in binding site ‘A’ that interacted with most of 

the selected drugs. The other key residues involved in binding of drugs to the binding site of the 

protein can be easily identified, i.e., the residues of the protein that are common to the 12 selected 

drugs (Figure 7). 

 

Figure 6. Clustering of ANI/MM MD trajectories: Clustering of trajectories generated 

using ANI/MM dynamics. Twelve drugs that were selected based on the ANI/MM/PBSA 
are shown. Different colors represent different clusters. A total of 100 ANI/MM snapshots 

were clustered for each drug-protein binding simulation. 
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Figure 7. 2D interaction map of selected drugs with MPRO. 2D - Structures for each 

selected drug is shown. Colored drops represent different properties of interacting 

residues of the protein (representation is shown with the figure). 
 

Discussion and Conclusion 
With the rapidly growing concern over coronavirus (COVID-19), which is leading to an 

exponential increase in the number of people becoming affected and fatalities, I present an 

investigation on the development of potential inhibitors against the virus using a drug repurposing 

approach. The scientific community is devoting a tremendous amount of effort to characterizing 

potential drugs to inhibit this virus, yet much more information and effort is required before a 

unique treatment can be approved29. Careful studies on the interaction of viral proteins with 

Figure 7
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available drugs that are FDA-approved are crucial for understanding the binding behavior of these 

proteins and can aid in accelerating the development of biochemical assays30. Molecular dynamics 

with classical forcefields can describe many important drug-protein binding interactions, but they 

tend to miss smaller details at the electronic and nuclear levels31. These missed details can be 

recovered when MD classical forcefields can be combined with methods such as DFT and 

CCSD(T)/CBS that are most effectively used to provide the most accurate descriptions of 

electronic and nuclear phenomenon for small drug molecules. In this work, neural network force 

fields were explored to study binding interactions of repurposed drug molecules to the MPRO 

protein. The findings from this study, the interaction sites and the structure of selected drugs may 

be useful for designing novel drugs that can be used against COVID-19. 

 

To initiate the conventional process of drug discovery, identification of drug binding sites is 

extremely important and several methods for identifying binding sites on the protein have already 

been proposed and can perform an accurate search of the protein surface. Neural network methods 

such as MaSIF take advantage of accurate methods for training and mimic performance compared 

to physical chemical methods that are based on prediction accuracy17. The MaSIF method also 

provides other approaches, one of them can be used to screen other proteins that can interact with 

the protein of interest based on the descriptors that are generated for site identification. This work 

is limited to identifying sites for PPI using a single site (site ‘A’) for drug screening and binding 

dynamics. PPI sites are reported to be important as interaction sites for proteins as well as drugs32. 

Other sites reported in this work (‘B’, ‘C’, ‘D’ and ‘E’) can also be used to screen other types of 

interactions. 

 

To perform the conventional drug screening work, drugs were selected from an FDA-approved 

drugs database based on the atoms they contain and charges they possess. Using molecular docking 

techniques, the number of drugs was reduced to 91 by selecting specific drugs, i.e., those with the 

best docking scores. To sample the conformational space of drug-protein complexes, molecular 

dynamics simulations were conducted using classical molecular dynamics, which were then 

combined with an ANI/MM approach to provide an accurate description of the interaction profile 

of drugs with the protein. The steps involving virtual screening and classical MD are traditionally 

used in any drug discovery process, and this process has been performed by several groups6–8. In 
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this work, classical MD methods were combined with ANI/MM dynamics to investigate other sets 

of interactions that may be ignored by classical MD simulations but could prove to be useful for 

experimental drug design. Additionally, combining ANI/MM trajectories with endpoint 

MM/PBSA computations assists in obtaining physically important information related to binding. 

The ANI/MM/PBSA calculations reported in this work require further development in order to 

handle the ANI/MM interactions and will be the focus of future research. As ANI forcefields are 

still in development, and the analysis tools are not as developed compared to classical MD 

methods, other basic tools were used to analyze the ANI/MM simulations. Cluster analysis of 

ANI/MM trajectories was performed to further validate the outcome and 100 snapshots were 

observed to cluster in as few as 3 or 4 clusters (Figure 6). This result may also imply that drug 

binding to protein does not induce drastic conformational changes when the number of clusters are 

limited to 3 or 4 (for 100 snapshots). I found that one of the drugs had binding trajectories that 

were clustered in 5 clusters, implying rapid conformational changes, and thus could be eliminated, 

retaining 11 of the 12 drugs. This workflow with the trajectory validation can be useful for 

analyzing other simulations that involve drug interactions with MPRO or other proteins in the future. 

 

Based on these findings, the structures of drugs such as Targretin and Eltrombopag and antiviral 

drugs such as Indinavir and Victrelis are potent drugs that have the most inhibitory action against 

the MPRO protein. Ten other drugs were also identified that might be repurposed against MPRO. By 

characterizing the output from each level, 91 FDA-approved drugs were selected from virtual 

screenings, 37 drugs from MD simulations profile, and 19 drugs from ANI/MM Trajectories. An 

attempt was made to provide the maximum amount of information related to each of the drugs and 

to cover all of the interaction aspects of these drugs with the MPRO protein in this study. The 

structure of the shortlisted drugs and their detailed interaction fingerprints with the protein are 

discussed in great detail, which may be useful for discovering other small molecules. This study 

performs only computational studies, and the drugs reported in this work are only characterized 

by computations. No experiments have been performed related to these drugs binding with the 

protein. 
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