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Abstract

This report describes a double-exponential algebraic equation for the time course of irreversible enzyme inhibition following the
two-step mechanism E + I 
 E·I → EI, under the steady-state approximation. Under the previously invoked rapid-equilibrium
approximation [Kitz & Wilson (1962) J. Biol. Chem. 237, 3245] it was assumed that the rate constant for the reversible dissociation
of the initial noncovalent complex is very much faster than the rate constant for the irreversible inactivation step. The steady-state
algebraic equation reported here removes any restrictions on the relative magnitude of microscopic rate constants. The resulting
formula was used in heuristic simulations designed to test the performance of the standard rapid-equilibrium kinetic model. The
results show that if the inactivation rate constant is significantly higher than the dissociation rate constant, the conventional “kobs”
method is incapable of correctly distinguishing between the two-step inhibition mechanism and a simpler one-step variant, E + I →
EI, even for inhibitors that have very high binding affinity in the reversible noncovalent step.

Key words: enzyme kinetics; inhibition; irreversible inhibition; covalent inhibition; steady-state approximation; mathematical
model; algebraic model

1. Introduction

The standard algebraic method of fitting irreversible inhibi-
tion data [1, Chap. 9] is based on the simplifying assumption
that the reversible formation of the initial noncovalent enzyme–
inhibitor complex is essentially instantaneous on the time scale
of the experiment. This assumption is based on the classic
rapid-equilibrium approximation in enzyme kinetics [2], where
it is assumed that the formation of the covalent conjugate is very
much slower than the dissociation of the noncovalent complex
into its constituent components. However, an examination of
existing experimental results reveals that the typical values of
rate constants for the covalent inactivation step [3, Fig. 63] are
not significantly smaller than the typical dissociation rate con-
stants of therapeutically relevant enzyme inhibitors [4]. Thus,
the rapid-equilibrium approximation clearly does not hold in
many experiments, in which covalent inhibitors are evaluated
for potency as possible therapeutic agents. This means that the
standard algebraic equations normally used to fit covalent ki-
netic data might not be appropriate in many cases.

One possible solution to this difficulty is to utilize mathe-
matical models that are based on the numerical solution of sys-
tems of simultaneous first-order ordinary differential equations
(ODEs). This approach avoids having to make any simplifying
assumptions, either about the underlying inhibition mechanism,
or about the magnitude of microscopic rate constants. For ex-
ample, the software package DynaFit [5, 6], which implements
a highly advanced numerical ODE solver algorithm [7], was
used in the study of covalent inhibition of the EGFR kinase [8].
However, one significant disadvantage of mathematical models
that rely on the numerical solution of ODE systems is that that
the requisite numerical algorithms are highly complex by com-

parison with the closed-form algebraic equations. Most impor-
tantly, high quality ODE solving algorithms are implemented
in only very few off-the-shelf software packages.

In this report we present a closed-form algebraic mathemat-
ical model that can be used either to simulate or to fit covalent
inhibition data by using any generic software package as long as
it allows the input of user-defined algebraic equations. The al-
gebraic model presented here allows that the three microscopic
rate constants that fully characterize the two-step covalent inhi-
bition mechanism can have arbitrary values. Only two simplify-
ing assumptions were used in the derivation. First, it is assumed
that there is no inhibitor depletion i.e. “tight binding” [9]. This
means that the concentration of the inhibitor is assumed to be
very much higher than the concentration of the enzyme. The
second simplifying assumption is that the uninhibited reaction
rate is constant throughout the entire assay, meaning that the
positive control progress curve (performed in the absence of the
inhibitor) can be mathematically described as a straight line.

The algebraic model presented in this report can be used
to gain understanding of the interplay between (a) the micro-
scopic rate constants that define the two-step “slow binding”
irreversible inhibition process and (b) experimentally observ-
able measures of covalent inhibition potency, such as the inhi-
bition constant (Ki), the inactivation rate constant kinact, and the
second-order covalent efficiency constant (kinact/Ki).

2. Methods

This section describes the theoretical and mathematical meth-
ods that were used in heuristic simulation described in this re-
port. All computations were performed by using the software
package DynaFit [5, 6].
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2.1. Kinetic mechanisms of irreversible inhibition

In this report we will consider in various contexts the kinet-
ics mechanisms of substrate catalysis and irreversible inhibition
depicted in Figure 1.
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Figure 1: Kinetic mechanisms of substrate catalysis (top) and
covalent inhibition (mechanisms A – C). For details see text.

The top reaction scheme in Figure 1 represents the basic
Michaelis-Menten reaction mechanisms [2]. In the inhibition
mechanisms A through C, it is assumed that the covalent in-
hibitor I is kinetically competitive with the substrate S, because
the inhibitor binds only to the free enzyme E and not to the
Michaelis complex E·S.

Kinetic mechanisms A and B both include two consecu-
tive steps, where E·I is a reversibly formed noncovalent ini-
tial complex. However, the theoretical assumptions underlying
the two kinetic models are different. Mechanism A pertains to
the steady-state approximation in enzyme kinetics, where the
magnitudes of the microscopic rate constants k1, k−1, and k2
can have any arbitrary values. In contrast, mechanism B is in-
voked under the rapid equilibrium approximation [10], where
it is assumed that the inactivation rate constant k2 is negligibly
small compared to the dissociation rate constant k−1 and that
the enzyme, inhibitor, and the noncovalent complex are always
at equilibrium.

Kinetic mechanism C formally describes a direct formation
of the irreversibly formed covalent conjugate EI. The second-
order bimolecular rate constant keff (also known as “kinact/Ki”)
is the covalent efficiency constant. Note that under mecha-
nism C there is no distinction between the steady-state and
rapid-equilibrium approximations, because the noncovalent ini-
tial complex E·I is absent.

2.2. Mathematical models

2.2.1. General mathematical model for the reaction progress
The progress of enzyme reactions is modeled here by using

Eqn (1), where F is some experimental signal such as fluores-
cence intensity; F0 is the experimental signal observed at time
zero (i.e., a baseline signal as a property of the instrument);

[P] is the concentration of product P at the reaction time t in
some appropriate concentration units, such as micromoles or
nanomoles per liter; and rP is the molar response coefficient of
the product under the given conditions. The molar response co-
efficient rP is a proportionality constant that translates the prod-
uct concentration to an experimentally observable signal, such
as UV/Vis absorbance, fluorescence, or peak area, in appropri-
ate instrument units.

F = F0 + rP [P] (1)

2.2.2. Uninhibited substrate kinetics
In the absence of inhibitors, it is assumed that the product

concentration changes over time according to the linear Eqn
(4), where v0 is the uninhibited initial rate according to Eqn (2)
and t is the reaction time. The linearity of Eqn (4) implies that
the uninhibited reaction rate v0 stays effectively constant under
the given experimental conditions. This in turn implies either
that the initial substrate concentration is very much higher than
the Michaelis constant KM defined by Eqn (3); or that only a
negligibly small fraction of the substrate S is converted to the
product P at the end of the uninhibited assay; or that both of the
above assumptions are satisfied.

v0 = k2s [E]0
[S]0

[S]0 + KM
(2)

KM =
k−1s + k2s

k1s
(3)

[P] = v0 t (4)

2.2.3. Steady-state model for two-step covalent inhibition
In the presence of a covalent inhibitor following the steady-

state mechanism A, and under the assumption of zero substrate
conversion implied by the linear Eqn (4), the concentration of
product P changes over time according to the double-exponential
Eqn (5); the two exponential amplitudes a1, a2 and the two first-
order rate constants r1, r1 are defined by Eqns (6)–(9), respec-
tively.

[P] =
v0

k∗eff [I]0

[
1 − a1 exp (−r1 t) − a2 exp (−r2 t)

]
(5)

a1 =
α + β

2α
(6)

a2 =
α − β
2α

(7)

r1 =
γ − α

2
(8)

r2 =
γ + α

2
(9)
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α =

√(
[I]0 k∗1 + k−1 + k2

)2 − 4 [I]0k∗1 k2 (10)

β = [I]0 k∗1
k−1 − k2

k−1 + k2
+ k−1 + k2 (11)

γ = [I]0 k∗1 + k−1 + k2 (12)

k∗1 =
k1

1 + [S]0/KM
(13)

k∗eff =
k∗1 k2

k−1 + k2
(14)

The auxiliary variables α, β, γ, and k∗1 are defined by Eqns
(10)–(13); t is the reaction time; [I]0 is the total or analytic con-
centration of the inhibitor, assumed to be effectively constant
throughout the inhibition assay; and k∗eff is the apparent cova-
lent efficiency constant. The assumption of zero inhibitor de-
pletion implies that the initial concentration of the inhibitor is
very much higher than the initial concentration of the enzyme.

The sum of exponential amplitudes a1 + a2 is by definition
equal to unity, because (α+β)/2α+(α−β)/2α = 1. Thus, in this
sense a1 and a2 are relative amplitudes. The second exponential
term, with amplitude a2, decays faster than the first term, with
amplitude a1, because by definition α and γ are both positive
and therefore (α + γ) > (α − γ), which implies r2 > r1 for the
two first-order rate constants.

The definition of k∗1 in Eqn (13) expresses the assumption
that the inhibitor (I) is kinetically competitive with the substrate
(S), in the sense that S and I bind to the same enzyme form,
E. If the inhibitor happened to be kinetically non-competitive
with the substrate, in the sense that the inhibitor would bind si-
multaneously and equally strongly to the free enzyme E and to
the Michaelis complex E·S, the definition of k∗1 would change
such that k∗1 = k1. This situation could arise experimentally for
example in covalent inhibition assays of protein kinases follow-
ing an Ordered Bi-Bi catalytic mechanism [2], in which the in-
hibitor might be strictly kinetically competitive with ATP (i.e.,
noncompetitive with peptide substrate) but at the same time the
assay might monitor the appearance of the phosphorylated pep-
tide as opposed to ADP.

2.2.4. ODE model for covalent enzyme inhibition
In the context of differential-equation modeling, the two-

step inhibition mechanism A in Figure 1 is mathematically rep-
resented by the ODE system defined by Eqns (15)–(21).

d[E]
dt

= −k1s[E][S] + (k−1s + k2s)[E·S]

−k1[E][I] + k−1[E·I] (15)

d[S]
dt

= −k1s[E][S] + k−1s[E·S] (16)

d[E·S]
dt

= +k1s[E][S] − (k−1s + k2s)[E·S] (17)

d[P]
dt

= +k2s[E·S] (18)

d[I]
dt

= −k1[E][I] + k−1[E·I] (19)

d[E·I]
dt

= +k1[E][I] − (k−1 + k2)[E·I] (20)

d[EI]
dt

= +k2[E·I] (21)

The ODE system defined by Eqns (15)–(21) was automati-
cally generated by the software package DynaFit [6] from sym-
bolic input. See the Supporting Information document for de-
tails.

3. Results

According to Cobelli et al. [11], “[t]he notion of identi-
fiability addresses the question of whether it is at all possible
to obtain unique solutions for unknown parameters of interest
in a mathematical model, from data collected in well defined
stimulus-response experiments performed on a dynamic sys-
tem represented by the model.” Structural identifiability anal-
ysis [12] is concerned with idealized data, completely free of
the error, whereas practical identifiability analysis takes the in-
evitable random error into account [13].

In this section we first address both the structural and the
practical identifiability of the newly derived algebraic model for
covalent inhibition. We then use this model to conjure up a hy-
pothetical irreversible inhibitor that has very strong initial bind-
ing affinity, as measured by the dissociation equilibrium con-
stant Ki of the initial noncovalent complex, and yet apparently
follows the “one-step” kinetic mechanism C, as if the complex
E·I were absent.

3.1. Structural identifiability analysis
The results of structural identifiability analysis are illus-

trated in Figure 2. Idealized, noise-free data were simulated
by using the following values of model parameters in Eqn (5):
V0 = 0.0005 RFU/sec;1 k∗1 = 0.5 µM−1s−1; k−1 = 0.001 s−1;
and k2 = 0.01 s−1. Note that k2/k−1 = 10, meaning that that

1 RFU stands for relative fluorescence units, but in the more general case
it could represent any other appropriate instrument unit such as UV/Vis ab-
sorbance units, chromatographic peak areas, radioactive counts, etc.
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Figure 2: Results of structural identifiability analysis. Ideal-
ized, noise-free data were simulated by using the algebraic Eqn
(5) and fit by using the ODE system Eqns (15)–(21)

rapid-equilibrium approximation (requiring k2 << k−1) does
not hold. The inhibitor concentrations were 0.5, 1, 2, 4, 8,
and 16 nM. The simulated time coordinates were 0, 60, 120,
180, ..., 3000 seconds (50 simulated time points, stepping by
one minute). The artificial data were subsequently subjected to
a global fit [14] to an ODE model defined by Eqns (15)–(21).
In the ODE model, the fixed parameters were [E]0 = 1 pM,
[S]0 = 1 µM, k1s = 10 µM−1s−1, k−1s = 9.9 s−1, k2s = 0.1 s−1,
and rP = 104 RFU/µM. Accordingly, the Michaelis constant
value was KM = (0.1 + 9.9)/10 = 1 µM. The globally opti-
mized model parameters were the molar response coefficient rP
and the rate constants k1, k−1 and k2; locally optimized2 model
parameters were the eight baseline offsets, F0, fit separately for
each progress curve. DynaFit [6] scripts that were used for the
simulation and for the fitting are listed in the Supporting Infor-
mation document.

The best-fit values of the globally optimized model param-
eters and the associated formal standard error were as follows:
k1 = (1.0012 ± 0.0003) µM−1s−1; k−1 = (0.00102 ± 0.00001)
s−1; k2 = (0.01011 ± 0.00003) s−1; and rP = (10000.10 ± 0.04)
RFU/µM. The expected best-fit value of k1 was 1 µM−1s−1, be-
cause the simulated value of k∗1 = k1/(1 + [S]0/KM) was 0.5
µM−1s−1 and the adjustment factor 1 + [S]0/KM in this case is
equal to 1+ 1/1 = 2. Thus, the fitted and theoretically expected
values of all adjustable model parameters agree within five sig-
nificant digits. The best-fit model curves also agree with the
simulated data within five significant digits, as is illustrated in
the residual plot shown as the bottom panel of Figure 2. The
very small systematic discrepancies between the algebraic and

2 Local optimization means that the optimized parameter is adjustable in the
fitting model such that the best-fit value is specific only to a subset of experi-
mental data points, such as in this case each individual progress curve.

ODE models, shown in the slightly non-random distribution
of the residuals of fit, are due to the inevitable propagation of
round-off and truncation errors.

The two main conclusions that can be reached from the re-
sults of this heuristic simulation study are as follows. First,
the theoretical model represented by Eqn (5) is algebraically
correct, because it is congruent with a fully independent mathe-
matical representation provided by the numerical solution of an
equivalent ODE system. Second, the algebraic model is struc-
turally identifiable with respect to all three microscopic rate
constants that appear in the inhibition mechanism A. Thus, in
the purely hypothetical case of having access to entirely noise-
free experimental data, it would always be possible to determine
all three rate constants k1, k−1 and k2 by performing a global
least-squares fit of combined reaction progress curves similar
to those shown in Figure 2.

3.2. Practical identifiability analysis

In the practical identifiability study the roles of the algebraic
vs. numerical models were reversed. Artificial data were sim-
ulated according to the differential-equation system Eqns (15)–
(21), this time with a finite level of experimental noise added to
the results. The pseudo-experimental data were subsequently
fit by using the algebraic model represented by Eqn (5). The
requisite DynaFit [6] input scripts are listed in the Supporting
Information document.

The simulated concentration plot in the bottom panel of Fig-
ure 3 shows that at [I]0 = 80 nM the noncovalent complex E·I
has a significant presence in the evolving reaction mixture and
that this noncovalent complex is formed gradually on the time
scale of the simulated experiment. These observations suggest
that there is a good chance of successfully determining all three
rate constants that appear in the two-step inhibition mechanism
A.

Simulated data shown in Figure 3 were globally fit to the
algebraic model represented by Eqn (5). The overlay of the
best-fit model curves on the simulated data points was visually
indistinguishable from the display of the simulated shown in
Figure 3. The residual plots were distributed randomly, similar
to the residual plot shown in Figure 3, upper panel. The best-
fit values of globally adjustable model parameters are listed in
Table 1. The columns labeled “low” and “high” are lower and
upper limits, respectively, of non-symmetrical confidence in-
tervals obtained by the profile-t method [15, 16] at 5% ∆SSQ
level according to the empirical cut-off criterion advocated by
Johnson [17, 18].

parameter best-fit ± std. err. low high

V0, RFU/s 0.0005011 ± 0.000002
k∗1, µM−1s−1 0.046 ± 0.002 0.040 0.056
k−1, s−1 0.0007 ± 0.0001 0.0004 0.0014
k2, s−1 0.0008 ± 0.0001 0.0003 0.0012

Table 1: Results of practical identifiability analysis. For details
see text.
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Figure 3: Artificial data simulated by using the ODE system
Eqns (15)–(21). Top: Pseudo-experimental data (symbols) and
the corresponding idealized model curves. Bottom: Enzyme
species concentrations evolving over time at [I]0 = 80 nM. The
“concentration” axis is in µM units.

The results displayed in Table 1 show that all three mi-
croscopic rate constants appearing in the steady-state two-step
covalent inhibition mechanism A could be reliably determined
from the simulated data. The non-symmetrical confidence in-
terval for the apparent association rate constant k∗1 spanned from
0.046 to 0.056 µM, while the theoretically expected value of
k∗1 = k1/(1 + [S]0/KM) = 0.05 µM. Similarly, the confidence
intervals for k−1 and k2 were relatively narrow (high/low ratios
were approximately equal to 4) and encompassed the simulated
values (0.001 s−1 in both cases). The best-fit values of k−1 and
k2 were only 20% to 30% lower than the simulated values.

The main conclusion is that, for at least some combinations
of microscopic rate constants appearing in the two-step mech-
anism A, all three rate constants (k1, k−1, and k2) can be deter-
mined in ordinary kinetic measurements, such as those that are

typical for plate-reader assays usually performed in preclinical
inhibitor screening.

3.3. “One-step” kinetics of a high-affinity inhibitor

Pseudo-experimental data were simulated by using the fol-
lowing values of model parameters in Eqn (5): V0 = 0.0005
RFU/sec; k∗1 = 0.5 µM−1s−1; k−1 = 0.001 s−1; and k2 = 0.01
s−1. Note that those are the same parameters that were used
in the structural identifiability analysis, as described in section
3.1. However, in this case the simulated signal was perturbed by
adding a Gaussian-distributed random noise with the standard
deviation equal to 0.5% of the maximum simulated value. Each
of the simulated progress curves were fit individually and sepa-
rately to the standard algebraic model [1, sect. 9.1] for the time
course of covalent inhibition, represented by the exponential
Eqn (22), where vi is the initial reaction rate in instrument units
and kobs is the apparent first-order rate constant corresponding
to each inhibitor concentration.

F = F0 +
vi

kobs

[
1 − exp (−kobs t)

]
(22)

The results of fit are shown graphically in Figure 4. Note
that the residuals of fit in the bottom panel are distributed ran-
domly, which means that the single-exponential Eqn (22) is an
adequate fitting model for this data, even though the data were
simulated on the basis of a double-exponential Eqn (5). The
best-fit values of the apparent first-order rate constant kobs ob-
tained at each inhibitor concentration are collected in Table 2.
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Figure 4: Results of fit of each individual progress curve simu-
lated by using Eqn (5), with parameter values listed in the text,
to Eqn (22), in order to determine the kobs values associated
with each inhibitor concentration listed in the right margin.
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[I]0, nM 1000 × kobs, s−1 ± std. err.

0.5 0.225 ± 0.006
1 0.458 ± 0.008
2 0.902 ± 0.016
3 1.327 ± 0.027
4 1.806 ± 0.045
5 2.280 ± 0.070
6 2.715 ± 0.101
8 3.485 ± 0.188

10 4.561 ± 0.320

Table 2: Best-fit values of the apparent first-order rate constant
kobs obtained by fitting the progress curves shown in Figure 4
to the exponential Eqn (22).

The kobs results collected in Table 2 were subjected to a
model discrimination analysis according to the procedure de-
scribed in ref. [19], considering Eqn (23) and Eqn (24) as the
two candidate fitting models, according to the standard treat-
ment described in ref. [1, sect. 9.1] and elsewhere. The hy-
perbolic Eqn (23), corresponding to the two-step mechanism B,
could be reliably excluded from consideration, using four inde-
pendent statistical model selection criteria [19]. The preferred
model was the linear Eqn (24), corresponding to the one-step
mechanism C. The fit to the linear Eqn (24) produced a very
well defined value of keff = (0.4496 ± 0.0030) µM−1s−1, with
the 95% confidence interval computed by the profile-t method
[15, 16] spanning from 0.4426 to 0.4566 µM−1s−1. The results
of fit to the linear model regression model are shown in Figure
5.

kobs = kinact
[I]0

[I]0 + K∗i
mechanism B (23)

kobs = k∗eff [I]0 mechanism C (24)

The values of microscopic rate constants used in simulating
the artificial data shown in Figure 4 were k∗1 = 0.5 µM−1s−1,
k−1 = 0.001 s−1 and k2 = 0.01 s−1. The apparent covalent
efficiency constant is defined as k∗eff = k∗1 × k2/(k−1 + k2). Ac-
cordingly, the “true” value of the covalent efficiency constant
was k∗eff = 0.5×0.01/(0.001+0.01) = 0.454545 µM−1s−1. Thus
the best-fit value k∗eff = (0.455 ± 0.003) µM−1s−1 and the “true”
value keff = 0.454 µM−1s−1 are in good agreement. Importantly,
this agreement between the “true” and best-fit values of k∗eff ≡
“kinact/K∗i ” holds even though the individual values of kinact and
K∗i could not be determined from the simulated data.

4. Discussion

Challenges in evaluating covalent inhibitors as potential drugs
Reliable evaluation of irreversible enzyme inhibitors as po-

tential therapeutic agents is exceptionally challenging for the
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Figure 5: Results of fit of the kobs values listed in Table 2 to Eqn
(24), corresponding to the one-step covalent inhibition mecha-
nism C. For further details see text.

biochemical data analyst engaged in drug discovery. The rea-
son is that the overall potency of covalent inhibitors consists
of two separate and yet intertwined contributions. First, the in-
hibitor’s binding affinity is measured by the inhibition constant,
Ki. Second, the inhibitor’s chemical reactivity is measured by
the inactivation rate constant kinact. However, we have previ-
ously documented that at least some inhibitors currently being
prescribed as experimental anti-cancer drugs effectively follow
the one-step kinetic mechanism C [19]. In those cases, the only
available measure of potency is the efficiency constant keff , also
known as “kinact/Ki”, which blends together both affinity and
reactivity such that those two distinct molecular properties can
no longer be evaluated separately.

Irreversible inhibitors express their potency in a dynamic
fashion, in the sense that the residual enzyme activity decreases
over time, along with the gradual evolution of the permanent
covalent bond between the enzyme and the inhibitor. Thus, in
order to evaluate the potency of covalent inhibitors, we need
mathematical models that describe the gradual formation of the
final reaction product while appropriately taking into account
that the rate of product formation (i.e., enzyme activity) in-
evitably decreases over time. As a result, all mathematical mod-
els for the progress of covalent inhibition assays are by defi-
nition nonlinear. This complexity presents an additional chal-
lenge when compared with measuring the potency of noncova-
lent inhibitors, where the assay in many cases can be arranged
such that the reaction progress is nearly linear.

Existing models for the progress of covalent inhibition
Currently existing nonlinear regression models for the progress

of covalent inhibition assays can be divided into two categories,
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according to the mathematical formalism involved. In the first
category are highly advanced differential equation models, which
eliminate any simplifying assumptions about the relative mag-
nitude of microscopic rate constants, such as the rapid-equilibrium
approximation [2]; about the relative concentration of reactants,
such as requiring a very large excess of inhibitor over enzyme;
or about the reaction conditions, such as assuming strict linear-
ity of the positive control progress curve. One important dis-
advantage of these ODE models is that they require highly spe-
cialized software algorithms for the numerical (i.e., iterative)
solution of ODE systems. Only very few off-the-shelf software
packages can be used for this purpose.

In the second category of mathematical models are alge-
braic equations, such as Eqn (22) originally derived by Kitz &
Wilson [10], where the definition of kobs is given by Eqns (23)–
(24). The Kitz–Wilson equation Eqn (22) applies only to cova-
lent inhibition assays where the uninhibited positive control re-
action proceeds at a strictly constant rate, meaning that the plot
of product concentration over time is linear. We have previously
described a closely related algebraic model that allows for the
control assay to be exponential, as opposed to linear [20]. On
the one hand, these algebraic models have the major advantage
that they can be implemented in any software system that al-
lows the investigator so specify an arbitrary algebraic equation.
On the other hand, both of these algebraic equations are based
on the rapid-equilibrium approximation in enzyme kinetics [2].
Accordingly, it is assumed the chemical inactivation step (rate
constant k2 in Figure 1) is very much slower than the dissocia-
tion of the noncovalent complex (rate constant k−1).

In the specific case of the Kitz–Wilson single-exponential
model represented by Eqn (22), Cornish-Bowden [21, sec. 7.2.2]
pointed out that “if k2 is not small enough to allow formation
of E·I to be treated as an equilibrium [...] the loss of activ-
ity does not follow simple first-order kinetics: there is no exact
analytical solution, but the kinetics may still be analyzed by nu-
merical methods.” Translated into non-mathematical language,
this brief quote contains three highly relevant statements. First,
if the microscopic rate constant k2 (inactivation) happens to
be larger in magnitude than the microscopic rate constant k−1
(dissociation), the single-exponential (“first-order”) Eqn (22)
in principle cannot be used as a fitting model for the reaction
progress, and therefore any kobs results derived from that equa-
tion are by implication invalid. Second, if we suspect that the
chemical reaction is not rate-limiting (k2 not being “small enough”)
we should resort to differential equation modeling (“numerical
methods”) instead of relying on Eqn (22). Third, the author is
suggesting that it is in principle impossible to derive an alge-
braic equation (“analytical solution”) that would be applicable
under the steady-state approximation (k2 > k−1), as opposed
to the rapid-equilibrium approximation (k2 << k−1) implied by
Eqn (22).

A need for the newly derived steady-state algebraic model
Cornish-Bowden [21, sec. 7.2.2] stated that a steady-state

(i.e., k2 > k−1) algebraic model for the progress of covalent inhi-
bition assays cannot be derived as a matter of principle (“there
is no exact analytical solution”, as quoted above). However,

that statement happens to be incorrect, because the required an-
alytic solution is actually presented in this report, as the double-
exponential Eqn (5). Why is it important to have at our disposal
a closed-form algebraic model for the time-course of covalent
inhibition assays under the steady-state approximation? There
are at least two important reasons, which are now addressed in
their turn.

The first and most important need for the algebraic model
newly presented in this report is that the simplistic rapid-equili-
brium approximation (k2 << k−1) is almost certainly violated in
many practically relevant cases. This is especially true for the
most promising drug candidates. The Kinetics for Drug Dis-
covery (K4DD) project [4] revealed that the dissociation rate
constants for therapeutically relevant enzyme inhibitors are fre-
quently in the range corresponding to hour-long drug–target
residence times, which implies k−1 < 0.0001 s−1 or even k−1 <
0.00001 s−1 in many cases. On the other hand, Abdeldayem
et al. [3] reported that the large majority of covalent inhibitor
drugs and drug candidates are associated with inactivation rate
constants in the range from approximately k2 = 0.0001 s−1 to
k2 = 0.01 s−1. Therefore, assuming that the initial (noncovalent,
reversible) binding affinity of covalent inhibitors is reasonably
similar to the binding affinity of their noncovalent structural
analogs, we can conclude that the typical values of dissociation
rate constants are not very much larger than the covalent inacti-
vation rate constants, as is required by the rapid-equilibrium ap-
proximation. Thus, the Kitz–Wilson single-exponential equa-
tion Eqn (22) for the reaction progress is very likely to be in-
valid, especially in the case of highly potent covalent drugs.

The second reason to have available an algebraic equation
as the theoretical model for the progress of steady-state cova-
lent inhibition assays is convenience and portability. The newly
derived algebraic Eqn (5) can be implemented even in general-
purpose software systems such as in Microsoft Excel, as op-
posed to requiring highly specialized ODE solving algorithms
that are only available in very few software packages. In fact, a
relevant Microsoft Excel template file is attached as one of the
Supporting Information documents to this report.

Simplifying assumptions and limitations underlying Eqn (5)
As a reminder, the double-exponential equation Eqn (5) was

derived under two simplifying assumptions. First, it is assumed
that the inhibitor is not being depleted in the course of the as-
say. This implies that the initial concentration of the inhibitor
is very much larger than the initial concentration of the en-
zyme. Second, it is assumed that the positive control assay, per-
formed under the same experimental conditions but in the ab-
sence of inhibitors, proceeds with a constant rate. This implies
that the positive control progress curve can be described math-
ematically as a straight line. Thus, the only difference in theo-
retical assumptions underlying the classic Kitz–Wilson single-
exponential Eqn (22) and the double-exponential Eqn (5) is that
the newly derived algebraic model presented here allows for all
three rate constants in mechanism A to have entirely arbitrary
values.

The utility of the double-exponential steady-state model Eqn
(5) lies predominantly in the ability to simulate artificial data
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set, which can be subsequently used to test the performance of
the various established method of evaluating the potency of co-
valent inhibitors. A typical example is represented by the sim-
ulation study described in section 3.3, where we tested the per-
formance of the classic “kobs method”. The steady-state model
does theoretically allow for all three rate constants k1, k−1, and
k2, to have any arbitrary values. However, preliminary expe-
rience specifically in the data-fitting context strongly suggests
that it is possible to actually determine all three microscopic
rate constants from realistically “noisy” data only for certain
special combinations of rate constants. In the majority of cases
that were examined, it was possible to determine only either two
rate constant, or even just one microscopic rate constant, from
the simulated pseudo-experimental data. These investigations
are currently ongoing in a more systematic fashion and the final
results will be reported elsewhere.

“One-step” kinetics of high-affinity covalent inhibitors
One of the principal motivations for addressing the funda-

mental difference between the steady-state approximation and
the rapid-equilibrium approximation in the analysis of cova-
lent inhibition data has been the puzzling observation that many
highly potent covalent inhibitors apparently follow the one-step
kinetic mechanism C. The inhibition of certain protein kinases
by ibrutinib represents a typical example [19, 22]. The occur-
rence of the one-step mechanism has been described as “non-
specific affinity labeling” in textbook literature. Small-molecule
inhibitors similar to iodoacetate and N-ethyl maleimide are as-
sumed to simultaneously modify many side-chains on the target
protein molecule and have negligibly low initial binding affin-
ity, which presumably explains their one-step kinetic behavior.
In contrast, highly specific inhibitors that precisely target the
enzyme’s active site are assumed to always follow the two-step
kinetic mechanism A or B [21, sec. 7.2.1] [1, sec 9.1]. In this
sense, the fact that certainly highly specific and high-affinity in-
hibitors also follow the one-step mechanism C might appear as
a paradox.

In order to better understand the unexpected “one-step” ki-
netics of certain high-affinity inhibitors, in section 3.3 of this re-
port we have conjured up an inhibitor with molecular properties
that were perfectly known (i.e., simulated) in advance. The ob-
jective was to simulate a compound that might approximate the
kinetic properties of ibrutinib and similar “one-step” inhibitors
of protein kinases. This hypothetical inhibitor was character-
ized by high initial binding affinity, with inhibition constant
equal to Ki = 1 nM. We have simulated assays of this inhibitor
at concentrations as high as [I](max)

0 = 10 nM, which is ten times
higher than the inhibition constant. Under the rapid-equilibrium
approximation, it should be easily possible to determine the in-
hibition constant from the simulated data, because at a ten-fold
excess of the inhibitor concentration over the inhibition con-
stant the plot of kobs vs. [I]0 is expected to be highly hyperbolic.
The maximum observed kobs value should be closely approach-
ing the asymptotically saturating value, which is by definition
equal to kinact. However, the actually observed kobs vs. [I]0
plot was essentially linear, showing no sign of hyperbolic sat-
uration. This means that only the covalent efficiency constant

keff = “kinact/Ki” could be determined from the simulated data,
but not the values of kinact and Ki considered separately.

The results of this simulation study confirm what has been
observed experimentally for example for ibrutinib inhibition of
the TEC and BTK kinases [19, 22]. A highly specific, pre-
cisely targeted, and high-affinity irreversible inhibitor charac-
terized by an extremely low equilibrium dissociation constant
of the reversibly formed noncovalent complex, can indeed be-
have kinetically though the reaction were proceeding via the
simple one-step mechanism C. There are at least two possible
non-mathematical explanations of this potentially puzzling be-
havior, as described immediately below. In either case, it be-
comes practically impossible to determine either the inhibition
constant Ki or the inactivation rate constant kinact. Thus, the
only way to quantitatively characterize the potency of such ex-
tremely efficient “one-step” covalent inhibitors is by way of the
covalent efficiency constant keff ≡ kinact/Ki.

The first intuitively accessible explanation of “one-step” ki-
netics has to do with the familiar idea that those reversible (non-
covalent) inhibitors that are characterized by extremely low dis-
sociation rate constant k−1 can behave as effectively irreversible
on the time scale of the given kinetic experiment. In fact, the
distinction between truly irreversible (covalent) inhibition and
effectively irreversible (non-covalent) inhibition can be so blurred
that in many cases it can only be established by specialized ex-
periments [1, sec. 5.2]. See also our previous results on ex-
tremely potent, non-covalent but nearly irreversible inhibitors
of 5-α-ketosteroid reductase [23]. Importantly, if a given co-
valent inhibitor happens to be “effectively” or “nearly” irre-
versible already in the first (strictly speaking reversible) binding
step, the overall two-step covalent inhibition mechanism will
kinetically manifest as a one-step process. This is because the
decrease in catalytic activity over time (by definition propor-
tional to the mole fraction of unmodified enzyme remaining in
the reaction mixture) is exactly identical for the single-step irre-
versible mechanism E+I → EI and also for any multi-step irre-
versible process of type E+I → (EI)1 → (EI)2 → · · · → (EI)n.
The rate of product formation is completely insensitive to how
many isomers of the EI complex exist, as long as the first one is
formed effectively irreversibly.

Another intuitively understandable reason for “one-step” ki-
netic behavior of certainly highly specific and precisely targeted
irreversible inhibitors has to do with the reactivity of the cova-
lent warhead. Indeed if the covalent inactivation rate constant
k2 ≡ kinact happens to be sufficiently high, the initial noncova-
lent complex may be converted to the final covalent conjugate
so rapidly that the mole fraction of the noncovalent complex
in the enzyme mass balance is always negligibly small. Under
those circumstances, the overall two-step inactivation reaction
might manifest kinetically as a one-step bimolecular associa-
tion.

The steady-state algebraic model for two-step irreversible
inhibition, newly presented in this report, should serve as a
convenient tool to help increase our understanding of complex
data-analytic issues arising in the evaluation of covalent en-
zyme inhibitors as potential therapeutic agents.
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Supporting information

The following supporting files accompany this document:

1. File CovalentSteadyState-SI.pdf: Mathematical details
of the derivation of the double-exponential Eqn (5); list-
ing of all DynaFit input scripts that were used to gener-
ate this report; instructions for using the Microsoft Excel
simulation file CovalentSteadyState-SI2.xls.

2. File CovalentSteadyState-SI2.xls: A Microsoft Excel
template file that can be used to simulate the reaction
progress curves according to the steady-state kinetic mech-
anism A in Figure 1.
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