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Abstract 
The ability to forge difficult chemical bonds through catalysis has transformed society on all 
fronts, from feeding our ever-growing populations to increasing our life-expectancies through 
the synthesis of new drugs. However, developing new chemical reactions and catalytic systems 
is a tedious task that requires tremendous discovery and optimization efforts. Over the past 
decade, advances in machine learning have revolutionized a whole new way to approach data-
intensive problems, and many of these developments have started to enter chemistry. However, 
similar progress in the field of homogenous catalysis are only in their infancy. In this perspective, 
we want to outline our vision for the future of catalyst design and the role of machine learning to 
navigate this maze. 
 
Introduction 
The chemical industry accounts for about 10% of the global trade,1 and about 85% of all 
industrial processes are catalytic.2 About 25% of the global human energy consumption is used 
for producing chemicals,2 and the chemical industry sector accounts for about 7% of the global 
anthropogenic greenhouse gas emissions.3 To limit the global mean temperature rise to 2 °C 
above pre-industrial levels, a total reduction of absolute CO2 emissions in the chemical industry 
of 30% by 2050 is necessary. This challenge is at odds with a projected increase in demand of 
180% for the most energy-intensive chemicals in the same period,3 mainly due to economic 
growth in developing countries. This Gordian knot can only be disentangled with the 
development of new catalysts for novel industrial processes.1 However, the time from the initial 
idea to the discovery of new catalytic reactions can take several months to several years, and 
the subsequent process development cycle to deliver a commercial-scale plant adds several 
more years.4 Hence, meeting these challenges demands for a significant speed-up in the 
discovery process of new catalysts, and large-scale application of machine learning promises to 
deliver such speed-ups.5  
 
Catalysis is not only a means to make existing processes more efficient, but it also allows us to 
synthesize novel and unexplored molecules and materials, enabling the technologies of the 
future. Homogeneous catalysts, in particular, account for about 15% of all the catalytic 



 

processes, and they are becoming increasingly crucial for specialty and fine chemicals, 
pharmaceuticals, and materials due to their typically higher selectivities compared to 
heterogeneous catalysts.1,2,6 Some prominent exemplary processes include hydroformylation,7 
the single most important industrial process applying homogeneous catalysis, the Hoechst-
Wacker process for the oxidation of ethene to acetaldehyde,8 and the Suzuki-Miyaura cross-
coupling,9 which is especially attractive for fine chemicals.6 Here, we aim to chart a course for 
the future of homogeneous catalyst design by the use of machine learning with the ambitious 
near-term goal to speed up the time from initial conception to experimental demonstration in 
homogeneous catalysis at least by a factor of two within the next ten years. 
 
Basic Concepts and Status Quo 
In recent decades, computational chemistry experienced a tremendous surge due to the 
increasing computational power, and the accompanying heightened practicality to simulate 
ever-larger ensembles of atoms. Accordingly, these significant advances shifted the focus of 
computational chemistry from developing methods to simulate matter and benchmarking the 
results against experiments to predicting the properties of unknown molecules and materials to 
define new targets for synthesis. This paradigm shift prompted one of us to formulate six grand 
challenges for the future of simulations summarizing central future research goals in the field of 
computations charting the way forward.10 Similarly, computer-aided catalyst design experienced 
a strong surge and, until recently, one of the main approaches for computational catalyst design 
was based on ab initio simulations of chemical reactions and their potential energy surfaces to 
predict both thermodynamic and kinetic feasibility of specific transformations.11–13 Powerful tools 
have been developed to automate this sometimes human-intensive and tedious process.14  
In the past decade, homogeneous catalysis has seen a rise in new optimization strategies such 
as statistical modelling of experimental reactivity and selectivity data with chemical 
descriptors,15–17 and the systematic application of machine learning is starting to become more 
and more common.18 More specifically, the use of multivariate linear regression models for 
modelling experimental trends combined with the development of new computational 
descriptors has allowed for the rapid design of catalysts to improve yields, reaction rates and 
(enantio-)selectivities.19–21 While these approaches have pushed the field forward, their limited 
ability to extrapolate structures beyond the training set hampers inverse-design.15 More recent 
studies tried to improve upon the limitations of linear models and used a more sophisticated 
machine learning approaches like random forest successfully.22,23 Also, classical high-throughput 
virtual screening has also been applied to the inverse design of enantioselective catalyst 
candidates.24 More recently, a hybrid approach using both computational transition state 
modelling combined with machine learning has been shown to yield good accuracy for 
reproducing experimental Gibbs free energies of activation for nucleophilic aromatic substitution 
reactions, and this workflow is, in principle, also applicable to catalytic reactions.25 Alternatively, 
in a series of recent papers, inspired by the classic Sabatier principle established in 
heterogeneous catalysis,26,27 volcano plots were introduced as an effective tool to perform high-
throughput virtual screening in homogeneous catalysis, and perform insightful result analysis at 
the same time, to find optimal catalysts.28–31 
 



 

 
Figure 1. Status quo and evolution of computational strategies for catalyst optimization. 1. Direct 
comparison of potential energy surfaces for different catalysts, pioneered by the Houk group. 2. Multiple 
linear regression optimization on catalyst features, with a particular focus on asymmetric catalysis, 
popularized by the Sigman group. 3. The Corminboeuf group has shown how volcano plots can be 
harnessed for the optimization of catalyst activities. 4. Random forest regression models have been 
employed by the Doyle group to predict reaction yields, and the Denmark group to predict 
enantioselectivity. 



 

These approaches, summarized in Figure 1, outline the status quo of computer-aided 
homogeneous catalyst design and show advances for individual pieces of the overall design 
workflow puzzle.32 However, none of them showcase a fully automated closed-loop catalyst 
design; for this challenge to be achieved, all pieces need to come together in an integrated 
fashion. This requires the use of automated planning and orchestration tools for both 
experiments and computations (vide infra), as well as algorithms or heuristics, to propose 
promising modifications to catalyst structures. Furthermore, full integration of experimentation 
into the design workflow, ideally using automation and robotics, will close the loop and blur the 
barriers between theory and experiment. 
 
 
Catalyst Informatics and the Role of Representations 
One cornerstone of machine learning is the distinct representations of data, which are used to 
train models. Most common in chemistry are descriptors, which are usually 1-dimensional real 
vectors providing information about a given (sub)structure, a classical example being the 
Hammett substituent constants.33 In their early days, descriptors were derived by and large from 
experiments,34 but in recent decades, the use of (cheap) computed descriptors has seen its 
heyday.35 Together with the creation of experimental databases and the use of informatics 
methods, this led to the emergence of cheminformatics as a new field.36 These approaches have 
been applied widely in quantitative structure-activity relationships (QSAR) for the prediction of 
basic physical properties of molecules, the study of reaction mechanisms, and drug design.37 
While bioinformatics had seen a similar rise already several decades ago,38 materials informatics 
only started emerging in the past decade.39,40 In classical homogeneous catalysis, ligand 
descriptors have received considerable attention due to their simplicity in classifying structures, 
rationalizing structure-property relations, and guiding catalyst optimizations.41 However, only 
now, the field of catalyst informatics is emerging,42 lagging far behind bioinformatics for 
biocatalysis.38 We believe that the adoption of catalyst informatics will be widespread and rapid, 
and will have a lasting impact on catalysis in the near future. 
 
From a fundamental point of view, one-dimensional descriptors are information about a 
molecule, which has many degrees of freedom, reduced in dimensionality almost to the extreme. 
Hence, most of the information is lost in the process, making them non-ideal when more 
informative representations are required. The rise of machine learning in chemistry resulted in 
the use of numerous alternative representations.5 Typically, they fall into one of three categories, 
namely discrete, continuous, to which molecular descriptors belong, and graph-based 
representations.5 The classic example of discrete representations is SMILES, a text-based 
encoding of the molecular graph.43–45 Recently, our lab developed SELFIES as an extremely 
robust alternative to SMILES, especially for simple and straightforward use in arbitrary machine 
learning models.46 Our lab also demonstrated the utility of SELFIES with genetic algorithms as a 
generative model to explore chemical space systematically and optimize target properties,47. We 
envision this type of approach to have a significant impact in catalysis as well. Another discrete 
representation that gained popularity for machine learning purposes are molecular fingerprints,23 
as they allow to correlate model predictions directly with structural features, as showcased in a 



 

recent study from our lab on dihydrogen activation with Ir(I) complexes.48 Alternatively, 
convolutional neural network models can be trained directly on molecular graphs enjoying the 
same advantage of interpretability.49 A recent paper from our group extended these molecular 
graph-convolutional neural networks to the use of higher-order paths allowing us to account for 
molecular substructures and geometry.50 We envision that graph convolutional neural networks 
will show significant adoption also for the design of new catalysts and will lead to further 
improvements in model performance in the field. 
 
Data Swamps and Data Lakes 
Another cornerstone of machine learning is data. Databases are commonplace in chemistry. 
Among the most important ones are structure and reaction databases,51 the Cambridge 
Structural Database (CSD) for experimental crystal structures,52 the Protein Data Bank (PBD) for 
3D structures of proteins,53 and numerous databases for both experimental and computed 
properties of materials.54–59 However, to the best of our knowledge, databases focusing on 
homogeneous catalysis are nearly non-existent. Currently, the entirety of scientific and patent 
literature on homogeneous catalysis is a huge data swamp that is prohibitively tedious to mine 
as common standards for reporting results are not enforced. However, the need for a factual 
database of catalysts has been recognized decades ago.60 We believe that a future database for 
homogeneous catalysis could be modeled around the standards defined for the Open Reaction 
Database (ORD),61 and designing and implementing ontologies will be central.62 Another 
database that could serve as a model for catalysis, but is still poorly used in the machine learning 
community, are the Active Thermochemical Tables (ATcT), which provide experimental 
thermodynamic data for an interconnected network of molecules.63–66 Importantly, databases in 
chemistry, especially in catalysis, need to be expanded to host computational results as they are 
becoming increasingly important,12 and will continue to rise in relevance in the future. The need 
for computational databases has been recognized before,2 and realizations thereof are Catalysis-
Hub, which focuses on surface reactions in heterogeneous catalysis,67 ioChem-BD68 and 
QCArchive,69,70 both databases for storing and analyzing output files of ab initio computations. 
However, comprehensive integration across all sub-disciplines of catalysis is still lacking. 
Overall, it is abundantly clear that we need to convert the existing data swamps into data lakes 
for (homogeneous) catalysis, and we need user-friendly platforms to access them to facilitate 
data mining and enable interactive catalyst design. Consequently, we envision that a 
comprehensive data lake centered around catalysts and their properties will facilitate future 
catalyst designs tremendously, both classical human-driven and computer-guided design. 
 
 
Robust Synthesis and Data-driven Experimentation 
Ever since the rise of combinatorial chemistry,71 high-throughput experimentation has become a 
standard tool of experimental homogeneous catalysis. Most of these studies rely on the design 
of experiments (DoE) to guide optimizations.72 However, recent studies coming from our lab 
showcased the robustness and efficiency of Bayesian optimizers like Phoenics,73 Chimera74, and 
Gryffin75 for real-life applications in chemistry. By using ChemOS as an experiment planning 



 

platform,76,77 both computational and experimental optimization problems have been tackled 
successfully.78 These algorithmic developments need to be matched by technological advances, 
and full experimental workflow implementation will enable closed-loop optimization but is 
challenging to achieve.79–81 Accordingly, autonomous closed-loop discovery is the ultimate 
dream for catalysis and science in general.81  
 
It is abundantly clear that the success of data-driven catalyst optimization relies on generating 
significant amounts of high-quality experimental data providing both structural and quantitative 
information about the reaction substrates and products.82 Most notable in that regard are recent 
developments in mass spectrometry (MS) methods enabling analysis times below 1s per sample 
allowing to screen a large number of samples essentially in parallel through imaging techniques, 
providing both structural and semi-quantitative information.83–86 In that regard, scientists in 
catalysis should be inspired by the tremendous progress in the field of biochemistry, enabling 
directed evolution,87,88 for instance, making use of microfluidics89 like droplet sorting 
techniques.90 Parallelization is another critical requirement in the experimental setup to be able 
to generate sufficient data in a reasonable timeframe with minimum effort. Digital microfluidic 
devices are tailor-made for performing a large number of experiments simultaneously.91  
Furthermore, adjusting experiment design to extract both kinetic information (related to the 
catalyst turnover frequency) and yield information (related to the catalyst turnover number and 
provides information about catalyst stability), will also be paramount to gather most information 
with the least effort. 
 



 

 
Figure 2: Current and Future Paradigm in Catalysis Experimentation. Top: Modernizing the Design-
Make-Test-Analyze cycle. A comparison between conventional and self-driving labs. While both start at 
the catalyst/reaction design, the self-driving lab counts with robotics for its make and test steps. 
Additionally, data analysis processes are performed in an automated fashion. Powered by machine-
learning algorithms, this approach tries to close the loop in autonomous experimentation. Bottom: High-
Throughput Experimentation and Analysis in Catalysis. Modern catalyst optimizations need to rely on 
screenings parallelization and imaging. Analysis techniques for increasing throughput include droplet 
sorting. Robustness of catalyst synthesis can be assessed by quantification of sensitivity for perturbations 
of reaction conditions and for contaminations of ambient chemicals like oxygen or water. Kinetic 
performance metrics like turnover frequency (TOF) or turnover number (TON) need to be extracted from 
these analyses to facilitate the performance assessment of catalysts. 



 

Nevertheless, the main bottleneck of catalyst optimization studies is usually, by a large margin, 
catalyst synthesis. Hence, not only is it necessary to streamline the catalytic experiments 
themselves and their analyses, but catalyst synthesis needs to be rethought from the ground up 
for efficient closed-loop optimization studies.92 Typically, the catalysts that can be synthesized 
are limited by the scope and robustness of the synthetic procedures available.  
This is a call for action to not only develop new catalytic reactions but also make the experimental 
protocols robust and highly reproducible. One step towards that goal is the widespread use of 
previously proposed standardized robustness screens to establish a common baseline for 
comparing methodologies, which are only rarely applied.93–96 We believe that the use of a 
common baseline will lead to improved fidelity in the assessment of reaction robustness and, 
ultimately, facilitate the design of enhanced catalysts. Improved catalytic reactions will 
streamline the synthesis of new catalysts making novel developments possible.97 In that sense, 
catalysis is autocatalytic for the development of new catalysts. 
 
 
New Ideas and Paradigms 
At present, progress in machine learning and artificial intelligence comes at an astonishing pace, 
and it usually takes time for the most recent developments to enter other fields. One of the 
outstanding challenges is realizing explainable artificial intelligence, also referred to as the 
interpretability problem.98–100 The current black-box nature of many machine learning approaches 
is unsatisfying, as Eugene Wigner said:101 “It is nice to know that the computer understands the 
problem. But I would like to understand it too.” Accordingly, the importance of the interpretability 
for machine learning models in chemistry has been outlined before.102 One pathway towards 
inherently explainable artificial intelligence could be the re-emergence of symbolic artificial 
intelligence.103 In chemistry, interpretability goes hand-in-hand with the representation of a given 
problem.104 Hence, the path towards explainable artificial intelligence naturally leads to rethinking 
representations used in the models. In that regard, the extensive use of descriptors is somewhat 
unsatisfying as it can lead to the exploitation of hidden correlations. From a quantum mechanical 
perspective, the direct use of molecular wavefunctions or molecular electron densities, or 
systematic simplifications thereof, would be most appealing. In that framework, machine learning 
models represent the operators acting on the wavefunctions, i.e., the molecular representations, 
to deliver the corresponding observables.105–107 Overall, we believe that the development of 
explainable artificial intelligence in chemistry will lead to enhanced human understanding, inspire 
hybrid human- and computer-guided catalyst design, and ultimately lead to improved machine 
learning models. 
 
 



 

 
Figure 3: New strategies for catalyst optimizations with machine learning. Top: interpretable machine 
learning models enable chemists to rapidly make predictions of new catalysts. Additionally, it remediates 
the reasonable dissatisfaction with lack of understanding behind black-box models. Bottom left: Evolving 
catalysts with a genetic algorithm (GA) counts on random mutations and crossover on molecular structure 
and diversity. Appropriate catalysts can be selected by their performance and stability. Bottom right: A 
combined workflow of a generative model (GA) and high-throughput virtual screening (HTVS) for 
systematic exploration of chemical space and thorough optimization of catalysts of interest. 
 
 
Other notable developments in machine learning that are progressively entering the center stage 
in chemistry are generative models.108–110 In the context of deep learning, generative models have 
entered the public discussion via so-called "deep fakes," which are images, sound, or other 
media that are entirely computer-generated but appear realistic because of their far-reaching 
implications in society.111 In chemistry, the idea of generative models is to propose new 
molecular structures with specific target properties. This is perfectly suited for exploratory 
optimization problems without restricting the molecular space. Recently, our lab developed a 
workflow using a genetic algorithm as the generative model for the systematic exploration of 
chemical space looking for molecules with specific target properties (see Figure 3 for a 
schematic overview of this approach).47 We believe that this kind of workflow has enormous 
potential when applied systematically to catalyst design, with significant advances in that area 
shortly. Moreover, another powerful concept for generative models is deep reinforcement 
learning,112 and this has been demonstrated recently by the tremendous advances of AlphaZero 



 

to master the games Go, shogi, and chess.113 The idea is to formulate the molecular design 
problem in terms of a Markov decision process,114 i.e., every step of this process begins with a 
starting molecule and chooses from several allowed structural modifications to obtain a new 
molecule. The new molecule is evaluated in its performance, providing a reward for the decision 
taken. This step is repeated until a molecule with the desired properties is obtained, or the 
maximum number of steps is reached. Notably, this algorithm closely resembles the human 
approach to molecular design. Recently, this kind of workflow has been demonstrated in 
chemistry in the molecular design task and tested in benchmark molecular optimization tasks.115 
Alternative successful implementations of reinforcement learning include optimization of reaction 
conditions for product yields116 and for polymer molecular weight distributions.117 To the best of 
our knowledge, deep reinforcement learning has not been applied to catalyst design workflows, 
and we foresee a vast number of potential applications in the coming decade. 
 
Our Vision as a Maze 
The path towards autonomous catalyst discovery is far from linear, as many designs and 
implementation choices remain to be decided. Accordingly, we view the future of homogeneous 
catalyst design as a maze (Figure 4). We incorporated what we envision to be important 
milestones as forks along the path. However, while Figure 4 depicts only one path towards the 
center of the maze, as the proverb goes, “All roads lead to Rome,” we believe that there are 
many viable paths ahead towards this goal. 
 

 
Figure 4: Navigating the maze of homogeneous catalyst optimization with machine learning. From 
the data swamps and descriptor-based models to closed-loop optimizations and, ultimately, the 
autonomous discovery of catalysts. 



 

Achieving this goal requires the close collaboration of scientists across many disciplines and will 
only be accomplishable as an interdisciplinary endeavor. However, establishing autonomous 
catalyst discovery is not a self-serving research goal. Ultimately, it needs to deliver the catalysts 
of the future and solve some of the greatest challenges that humanity is facing in the coming 
decades, including climate catastrophe and environmental pollution. We believe that machine 
learning is the most promising way forward to explore the chemical space at an unprecedented 
pace and increase the rate of discovery significantly. 
We are looking forward to all the exciting advances the field will experience in the years to come. 
 
 
Acknowledgments 
G. P. G gratefully acknowledges the Natural Sciences and Engineering Research Council of 
Canada (NSERC) for the Banting Postdoctoral Fellowship. We acknowledge the Defense 
Advanced Research Projects Agency (DARPA) under the Accelerated Molecular Discovery 
Program under Cooperative Agreement No. HR00111920027, dated August 1, 2019. The 
content of the information presented in this work does not necessarily reflect the position or the 
policy of the Government. A. A.-G. thanks Anders G. Frøseth for his generous support. A. A.-G. 
also acknowledges the generous support of Natural Resources Canada and the Canada 150 
Research Chairs program. We also acknowledge the Department of Navy award (N00014-19-1-
2134) issued by the Office of Naval Research. The United States Government has a royalty-free 
license throughout the world in all copyrightable material contained herein. Any opinions, 
findings, and conclusions or recommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of the Office of Naval Research. 
 
 
Disclaimer Statement 
A.A.-G. is a co-founder and the Chief Visionary Officer of Kebotix, Inc. 
 
 
References and Notes 
(1)  Chemical Industry and Homogeneous Catalysis. In Homogeneous Catalysis; John Wiley & Sons, 

Ltd, 2014; pp 1–21. 
(2)  Thomas, J. M. Summarizing Comments on the Discussion and a Prospectus for Urgent Future 

Action. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering 
Sciences 2016, 374, 20150226. 

(3)  Levi, P. G.; Cullen, J. M. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to 
Chemical Products. Environ. Sci. Technol. 2018, 52, 1725–1734. 

(4)  Council, N. R. Impact of Advances in Computing and Communications Technologies on Chemical 
Science and Technology: Report of a Workshop; 1999. 

(5)  Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse Molecular Design Using Machine Learning: 
Generative Models for Matter Engineering. Science 2018, 361, 360–365. 

(6)  Homogeneously Catalyzed Industrial Processes. In Industrial Catalysis; John Wiley & Sons, Ltd, 
2015; pp 47–80. 

(7)  Franke, R.; Selent, D.; Börner, A. Applied Hydroformylation. Chem. Rev. 2012, 112, 5675–5732. 
(8)  Keith, J. A.; Henry, P. M. The Mechanism of the Wacker Reaction: A Tale of Two 

Hydroxypalladations. Angewandte Chemie International Edition 2009, 48, 9038–9049. 



 

(9)  Miyaura, Norio.; Suzuki, Akira. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron 
Compounds. Chem. Rev. 1995, 95, 2457–2483. 

(10)  Aspuru-Guzik, A.; Lindh, R.; Reiher, M. The Matter Simulation (R)Evolution. ACS Cent. Sci. 2018, 4, 
144–152. 

(11)  Houk, K. N.; Liu, F. Holy Grails for Computational Organic Chemistry and Biochemistry. Acc. 
Chem. Res. 2017, 50, 539–543. 

(12)  Houk, K. N.; Cheong, P. H.-Y. Computational Prediction of Small-Molecule Catalysts. Nature 2008, 
455, 309–313. 

(13)  Bahmanyar, S.; Houk, K. N. Transition States of Amine-Catalyzed Aldol Reactions Involving 
Enamine Intermediates:  Theoretical Studies of Mechanism, Reactivity, and Stereoselectivity. J. 
Am. Chem. Soc. 2001, 123, 11273–11283. 

(14)  Guan, Y.; Ingman, V. M.; Rooks, B. J.; Wheeler, S. E. AARON: An Automated Reaction Optimizer 
for New Catalysts. J. Chem. Theory Comput. 2018, 14, 5249–5261. 

(15)  Sigman, M. S.; Harper, K. C.; Bess, E. N.; Milo, A. The Development of Multidimensional Analysis 
Tools for Asymmetric Catalysis and Beyond. Acc. Chem. Res. 2016, 49, 1292–1301. 

(16)  Santiago, C. B.; Guo, J.-Y.; Sigman, M. S. Predictive and Mechanistic Multivariate Linear 
Regression Models for Reaction Development. Chem. Sci. 2018, 9, 2398–2412. 

(17)  Reid, J. P.; Sigman, M. S. Comparing Quantitative Prediction Methods for the Discovery of Small-
Molecule Chiral Catalysts. Nature Reviews Chemistry 2018, 2, 290–305. 

(18)  Strieth-Kalthoff, F.; Sandfort, F.; Segler, M. H. S.; Glorius, F. Machine Learning the Ropes: 
Principles, Applications and Directions in Synthetic Chemistry. Chem. Soc. Rev. 2020. 

(19)  Harper, K. C.; Bess, E. N.; Sigman, M. S. Multidimensional Steric Parameters in the Analysis of 
Asymmetric Catalytic Reactions. Nature Chemistry 2012, 4, 366–374. 

(20)  Milo, A.; Bess, E. N.; Sigman, M. S. Interrogating Selectivity in Catalysis Using Molecular 
Vibrations. Nature 2014, 507, 210–214. 

(21)  Orlandi, M.; Coelho, J. A. S.; Hilton, M. J.; Toste, F. D.; Sigman, M. S. Parametrization of Non-
Covalent Interactions for Transition State Interrogation Applied to Asymmetric Catalysis. J. Am. 
Chem. Soc. 2017, 139, 6803–6806. 

(22)  Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Predicting Reaction Performance 
in C–N Cross-Coupling Using Machine Learning. Science 2018, 360, 186–190. 

(23)  Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Prediction of Higher-
Selectivity Catalysts by Computer-Driven Workflow and Machine Learning. Science 2019, 363, 
eaau5631. 

(24)  Rosales, A. R.; Wahlers, J.; Limé, E.; Meadows, R. E.; Leslie, K. W.; Savin, R.; Bell, F.; Hansen, E.; 
Helquist, P.; Munday, R. H.; et al. Rapid Virtual Screening of Enantioselective Catalysts Using 
CatVS. Nature Catalysis 2019, 2, 41–45. 

(25)  Jorner, K.; Brinck, T.; Norrby, P.-O.; Buttar, D. Machine Learning Meets Mechanistic Modelling for 
Accurate Prediction of Experimental Activation Energies. 2020. 

(26)  Sabatier, P. Hydrogénations et Déshydrogénations Par Catalyse. Berichte der deutschen 
chemischen Gesellschaft 1911, 44, 1984–2001. 

(27)  Balandin, A. A. Modern State of the Multiplet Theory of Heterogeneous Catalysis. In Advances in 
Catalysis; Eley, D. D., Pines, H., Weisz, P. B., Eds.; Academic Press, 1969; Vol. 19, pp 1–210. 

(28)  Busch, M.; Wodrich, M. D.; Corminboeuf, C. A Generalized Picture of C–C Cross-Coupling. ACS 
Catal. 2017, 7, 5643–5653. 

(29)  Wodrich, M. D.; Sawatlon, B.; Busch, M.; Corminboeuf, C. On the Generality of Molecular Volcano 
Plots. ChemCatChem 2018, 10, 1586–1591. 

(30)  Meyer, B.; Sawatlon, B.; Heinen, S.; Lilienfeld, O. A. von; Corminboeuf, C. Machine Learning Meets 
Volcano Plots: Computational Discovery of Cross-Coupling Catalysts. Chem. Sci. 2018, 9, 7069–
7077. 

(31)  Wodrich, M. D.; Sawatlon, B.; Solel, E.; Kozuch, S.; Corminboeuf, C. Activity-Based Screening of 
Homogeneous Catalysts through the Rapid Assessment of Theoretically Derived Turnover 
Frequencies. ACS Catal. 2019, 9, 5716–5725. 

(32)  Foscato, M.; Jensen, V. R. Automated in Silico Design of Homogeneous Catalysts. ACS Catal. 



 

2020, 10, 2354–2377. 
(33)  Hammett, L. P. The Effect of Structure upon the Reactions of Organic Compounds. Benzene 

Derivatives. J. Am. Chem. Soc. 1937, 59, 96–103. 
(34)  Hansch, Corwin.; Leo, A.; Taft, R. W. A Survey of Hammett Substituent Constants and Resonance 

and Field Parameters. Chem. Rev. 1991, 91, 165–195. 
(35)  Handbook of Molecular Descriptors, 1st ed.; John Wiley & Sons, Ltd, 2000. 
(36)  Engel, T. Basic Overview of Chemoinformatics. J. Chem. Inf. Model. 2006, 46, 2267–2277. 
(37)  Muratov, E. N.; Bajorath, J.; Sheridan, R. P.; Tetko, I. V.; Filimonov, D.; Poroikov, V.; Oprea, T. I.; 

Baskin, I. I.; Varnek, A.; Roitberg, A.; et al. QSAR without Borders. Chem. Soc. Rev. 2020, 49, 
3525–3564. 

(38)  Ouzounis, C. A.; Valencia, A. Early Bioinformatics: The Birth of a Discipline—a Personal View. 
Bioinformatics 2003, 19, 2176–2190. 

(39)  Agrawal, A.; Choudhary, A. Perspective: Materials Informatics and Big Data: Realization of the 
“Fourth Paradigm” of Science in Materials Science. APL Materials 2016, 4, 053208. 

(40)  Takahashi, K.; Tanaka, Y. Materials Informatics: A Journey towards Material Design and Synthesis. 
Dalton Trans. 2016, 45, 10497–10499. 

(41)  Durand, D. J.; Fey, N. Computational Ligand Descriptors for Catalyst Design. Chem. Rev. 2019, 
119, 6561–6594. 

(42)  Takahashi, K.; Takahashi, L.; Miyazato, I.; Fujima, J.; Tanaka, Y.; Uno, T.; Satoh, H.; Ohno, K.; 
Nishida, M.; Hirai, K.; et al. The Rise of Catalyst Informatics: Towards Catalyst Genomics. 
ChemCatChem 2019, 11, 1146–1152. 

(43)  Weininger, D. SMILES, a Chemical Language and Information System. 1. Introduction to 
Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. 

(44)  Weininger, D.; Weininger, A.; Weininger, J. L. SMILES. 2. Algorithm for Generation of Unique 
SMILES Notation. J. Chem. Inf. Comput. Sci. 1989, 29, 97–101. 

(45)  Weininger, D. SMILES. 3. DEPICT. Graphical Depiction of Chemical Structures. J. Chem. Inf. 
Comput. Sci. 1990, 30, 237–243. 

(46)  Krenn, M.; Häse, F.; Nigam, A.; Friederich, P.; Aspuru-Guzik, A. Self-Referencing Embedded 
Strings (SELFIES): A 100% Robust Molecular String Representation. arXiv:1905.13741 [physics, 
physics:quant-ph, stat] 2020. 

(47)  Nigam, A.; Friederich, P.; Krenn, M.; Aspuru-Guzik, A. Augmenting Genetic Algorithms with Deep 
Neural Networks for Exploring the Chemical Space. arXiv:1909.11655 [physics] 2020. 

(48)  Friederich, P.; Gomes, G. dos P.; Bin, R. D.; Aspuru-Guzik, A.; Balcells, D. Machine Learning 
Dihydrogen Activation in the Chemical Space Surrounding Vaska’s Complex. Chem. Sci. 2020, 11, 
4584–4601. 

(49)  Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-
Guzik, A.; Adams, R. P. Convolutional Networks on Graphs for Learning Molecular Fingerprints. 
arXiv:1509.09292 [cs, stat] 2015. 

(50)  Flam-Shepherd, D.; Wu, T.; Friederich, P.; Aspuru-Guzik, A. Neural Message Passing on High 
Order Paths. arXiv:2002.10413 [cs, stat] 2020. 

(51)  Papadakis, E.; Anantpinijwatna, A.; Woodley, J. M.; Gani, R. A Reaction Database for Small 
Molecule Pharmaceutical Processes Integrated with Process Information. Processes 2017, 5, 58. 

(52)  Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta 
Cryst B 2016, 72, 171–179. 

(53)  Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; 
Bourne, P. E. The Protein Data Bank. Nucleic Acids Res 2000, 28, 235–242. 

(54)  MaterialsGenome, Inc http://www.materialsgenome.com/ (accessed Aug 6, 2020). 
(55)  Liu, Z. Perspective on Materials Genome®. Chin. Sci. Bull. 2014, 59, 1619–1623. 
(56)  Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; 

Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A Materials Genome Approach to 
Accelerating Materials Innovation. APL Materials 2013, 1, 011002. 

(57)  Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with 
High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). 



 

JOM 2013, 65, 1501–1509. 
(58)  Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rühl, S.; Wolverton, C. 

The Open Quantum Materials Database (OQMD): Assessing the Accuracy of DFT Formation 
Energies. npj Computational Materials 2015, 1, 1–15. 

(59)  Curtarolo, S.; Setyawan, W.; Hart, G. L. W.; Jahnatek, M.; Chepulskii, R. V.; Taylor, R. H.; Wang, S.; 
Xue, J.; Yang, K.; Levy, O.; et al. AFLOW: An Automatic Framework for High-Throughput Materials 
Discovery. Computational Materials Science 2012, 58, 218–226. 

(60)  Ito, T.; Hamada, H.; Kintaichi, Y.; Sasaki, M. Database for Catalysis Design. Catalysis Today 1991, 
10, 223–232. 

(61)  Overview — Open Reaction Database documentation https://ord-
schema.readthedocs.io/en/latest/overview.html (accessed Jul 3, 2020). 

(62)  Takahashi, L.; Miyazato, I.; Takahashi, K. Redesigning the Materials and Catalysts Database 
Construction Process Using Ontologies. J. Chem. Inf. Model. 2018, 58, 1742–1754. 

(63)  Active Thermochemical Tables - Home https://atct.anl.gov/ (accessed Jul 3, 2020). 
(64)  Ruscic, B.; Pinzon, R. E.; Laszewski, G. von; Kodeboyina, D.; Burcat, A.; Leahy, D.; Montoy, D.; 

Wagner, A. F. Active Thermochemical Tables: Thermochemistry for the 21st Century. J. Phys.: 
Conf. Ser. 2005, 16, 561–570. 

(65)  Ruscic, B.; Pinzon, R. E.; Morton, M. L.; von Laszevski, G.; Bittner, S. J.; Nijsure, S. G.; Amin, K. A.; 
Minkoff, M.; Wagner, A. F. Introduction to Active Thermochemical Tables:  Several “Key” 
Enthalpies of Formation Revisited. J. Phys. Chem. A 2004, 108, 9979–9997. 

(66)  Ruscic, B. Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure 
Computations, and Active Thermochemical Tables. International Journal of Quantum Chemistry 
2014, 114, 1097–1101. 

(67)  Winther, K. T.; Hoffmann, M. J.; Boes, J. R.; Mamun, O.; Bajdich, M.; Bligaard, T. Catalysis-
Hub.Org, an Open Electronic Structure Database for Surface Reactions. Scientific Data 2019, 6, 
75. 

(68)  Álvarez-Moreno, M.; de Graaf, C.; López, N.; Maseras, F.; Poblet, J. M.; Bo, C. Managing the 
Computational Chemistry Big Data Problem: The IoChem-BD Platform. J. Chem. Inf. Model. 2015, 
55, 95–103. 

(69)  Smith, D. G. A.; Altarawy, D.; Burns, L. A.; Welborn, M.; Naden, L. N.; Ward, L.; Ellis, S.; Pritchard, 
B. P.; Crawford, T. D. The MolSSI QCArchive Project: An Open-Source Platform to Compute, 
Organize, and Share Quantum Chemistry Data. WIREs Computational Molecular Science e1491. 

(70)  The MolSSI QCArchive https://qcarchive.molssi.org/about/ (accessed Aug 10, 2020). 
(71)  Szostak, J. W. Introduction:  Combinatorial Chemistry. Chem. Rev. 1997, 97, 347–348. 
(72)  Weissman, S. A.; Anderson, N. G. Design of Experiments (DoE) and Process Optimization. A 

Review of Recent Publications. Org. Process Res. Dev. 2015, 19, 1605–1633. 
(73)  Häse, F.; Roch, L. M.; Kreisbeck, C.; Aspuru-Guzik, A. Phoenics: A Bayesian Optimizer for 

Chemistry. ACS Cent. Sci. 2018, 4, 1134–1145. 
(74)  Häse, F.; Roch, L. M.; Aspuru-Guzik, A. Chimera: Enabling Hierarchy Based Multi-Objective 

Optimization for Self-Driving Laboratories. Chem. Sci. 2018, 9, 7642–7655. 
(75)  Häse, F.; Roch, L. M.; Aspuru-Guzik, A. Gryffin: An Algorithm for Bayesian Optimization for 

Categorical Variables Informed by Physical Intuition with Applications to Chemistry. 
arXiv:2003.12127 [physics, stat] 2020. 

(76)  Roch, L. M.; Häse, F.; Kreisbeck, C.; Tamayo-Mendoza, T.; Yunker, L. P. E.; Hein, J. E.; Aspuru-
Guzik, A. ChemOS: Orchestrating Autonomous Experimentation. Science Robotics 2018, 3, 
eaat5559. 

(77)  Roch, L. M.; Häse, F.; Kreisbeck, C.; Tamayo-Mendoza, T.; Yunker, L. P. E.; Hein, J. E.; Aspuru-
Guzik, A. ChemOS: An Orchestration Software to Democratize Autonomous Discovery. PLOS ONE 
2020, 15, e0229862. 

(78)  MacLeod, B. P.; Parlane, F. G. L.; Morrissey, T. D.; Häse, F.; Roch, L. M.; Dettelbach, K. E.; 
Moreira, R.; Yunker, L. P. E.; Rooney, M. B.; Deeth, J. R.; et al. Self-Driving Laboratory for 
Accelerated Discovery of Thin-Film Materials. Science Advances 2020, 6, eaaz8867. 

(79)  Häse, F.; Roch, L. M.; Aspuru-Guzik, A. Next-Generation Experimentation with Self-Driving 



 

Laboratories. Trends in Chemistry 2019, 1, 282–291. 
(80)  Burger, B.; Maffettone, P. M.; Gusev, V. V.; Aitchison, C. M.; Bai, Y.; Wang, X.; Li, X.; Alston, B. M.; 

Li, B.; Clowes, R.; et al. A Mobile Robotic Chemist. Nature 2020, 583, 237–241. 
(81)  Flores-Leonar, M. M.; Mejía-Mendoza, L. M.; Aguilar-Granda, A.; Sanchez-Lengeling, B.; Tribukait, 

H.; Amador-Bedolla, C.; Aspuru-Guzik, A. Materials Acceleration Platforms: On the Way to 
Autonomous Experimentation. Current Opinion in Green and Sustainable Chemistry 2020, 100370. 

(82)  Shevlin, M. Practical High-Throughput Experimentation for Chemists. ACS Med. Chem. Lett. 2017, 
8, 601–607. 

(83)  Wang, Y.; Shaabani, S.; Ahmadianmoghaddam, M.; Gao, L.; Xu, R.; Kurpiewska, K.; Kalinowska-
Tluscik, J.; Olechno, J.; Ellson, R.; Kossenjans, M.; et al. Acoustic Droplet Ejection Enabled 
Automated Reaction Scouting. ACS Cent. Sci. 2019, 5, 451–457. 

(84)  DiRico, K. J.; Hua, W.; Liu, C.; Tucker, J. W.; Ratnayake, A. S.; Flanagan, M. E.; Troutman, M. D.; 
Noe, M. C.; Zhang, H. Ultra-High-Throughput Acoustic Droplet Ejection-Open Port Interface-Mass 
Spectrometry for Parallel Medicinal Chemistry. ACS Med. Chem. Lett. 2020. 

(85)  Wleklinski, M.; Loren, B. P.; Ferreira, C. R.; Jaman, Z.; Avramova, L.; Sobreira, T. J. P.; Thompson, 
D. H.; Cooks, R. G. High Throughput Reaction Screening Using Desorption Electrospray Ionization 
Mass Spectrometry. Chem. Sci. 2018, 9, 1647–1653. 

(86)  Lin, S.; Dikler, S.; Blincoe, W. D.; Ferguson, R. D.; Sheridan, R. P.; Peng, Z.; Conway, D. V.; 
Zawatzky, K.; Wang, H.; Cernak, T.; et al. Mapping the Dark Space of Chemical Reactions with 
Extended Nanomole Synthesis and MALDI-TOF MS. Science 2018, 361. 

(87)  Arnold, F. H. Directed Evolution: Bringing New Chemistry to Life. Angewandte Chemie International 
Edition 2018, 57, 4143–4148. 

(88)  Arnold, F. H. Innovation by Evolution: Bringing New Chemistry to Life (Nobel Lecture). Angewandte 
Chemie International Edition 2019, 58, 14420–14426. 

(89)  Whitesides, G. M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. 
(90)  Chiu, F. W. Y.; Stavrakis, S. High-Throughput Droplet-Based Microfluidics for Directed Evolution of 

Enzymes. ELECTROPHORESIS 2019, 40, 2860–2872. 
(91)  Torabinia, M.; Asgari, P.; Dakarapu, U. S.; Jeon, J.; Moon, H. On-Chip Organic Synthesis Enabled 

Using an Engine-and-Cargo System in an Electrowetting-on-Dielectric Digital Microfluidic Device. 
Lab Chip 2019, 19, 3054–3064. 

(92)  Renom-Carrasco, M.; Lefort, L. Ligand Libraries for High Throughput Screening of Homogeneous 
Catalysts. Chem. Soc. Rev. 2018, 47, 5038–5060. 

(93)  Collins, K. D.; Glorius, F. A Robustness Screen for the Rapid Assessment of Chemical Reactions. 
Nature Chemistry 2013, 5, 597–601. 

(94)  Collins, K. D.; Rühling, A.; Glorius, F. Application of a Robustness Screen for the Evaluation of 
Synthetic Organic Methodology. Nature Protocols 2014, 9, 1348–1353. 

(95)  Gensch, T.; Teders, M.; Glorius, F. Approach to Comparing the Functional Group Tolerance of 
Reactions. J. Org. Chem. 2017, 82, 9154–9159. 

(96)  Pitzer, L.; Schäfers, F.; Glorius, F. Rapid Assessment of the Reaction-Condition-Based Sensitivity 
of Chemical Transformations. Angewandte Chemie International Edition 2019, 58, 8572–8576. 

(97)  Schultz, D.; Campeau, L.-C. Harder, Better, Faster. Nature Chemistry 2020, 1–4. 
(98)  Rai, A. Explainable AI: From Black Box to Glass Box. J. of the Acad. Mark. Sci. 2020, 48, 137–141. 
(99)  Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; 

Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, 
Taxonomies, Opportunities and Challenges toward Responsible AI. Information Fusion 2020, 58, 
82–115. 

(100)  Carvalho, D. V.; Pereira, E. M.; Cardoso, J. S. Machine Learning Interpretability: A Survey on 
Methods and Metrics. Electronics 2019, 8, 832. 

(101)  Heller, E. J.; Tomsovic, S. Postmodern Quantum Mechanics. Physics Today 1993, 46, 38. 
(102)  Haghighatlari, M.; Li, J.; Heidar-Zadeh, F.; Liu, Y.; Guan, X.; Head-Gordon, T. Learning to Make 

Chemical Predictions: The Interplay of Feature Representation, Data, and Machine Learning 
Methods. Chem 2020, 6, 1527–1542. 

(103)  Garnelo, M.; Shanahan, M. Reconciling Deep Learning with Symbolic Artificial Intelligence: 



 

Representing Objects and Relations. Current Opinion in Behavioral Sciences 2019, 29, 17–23. 
(104)  Lambard, G.; Gracheva, E. SMILES-X: Autonomous Molecular Compounds Characterization for 

Small Datasets without Descriptors. Mach. Learn.: Sci. Technol. 2020, 1, 025004. 
(105)  Ramakrishnan, R.; von Lilienfeld, O. A. Many Molecular Properties from One Kernel in Chemical 

Space. CHIMIA International Journal for Chemistry 2015, 69, 182–186. 
(106)  Ramakrishnan, R.; Lilienfeld, O. A. von. Machine Learning, Quantum Chemistry, and Chemical 

Space. In Reviews in Computational Chemistry; John Wiley & Sons, Ltd, 2017; pp 225–256. 
(107)  Christensen, A. S.; Faber, F. A.; von Lilienfeld, O. A. Operators in Quantum Machine Learning: 

Response Properties in Chemical Space. J. Chem. Phys. 2019, 150, 064105. 
(108)  Lim, J.; Hwang, S.-Y.; Moon, S.; Kim, S.; Kim, W. Y. Scaffold-Based Molecular Design with a 

Graph Generative Model. Chem. Sci. 2020, 11, 1153–1164. 
(109)  Maziarka, Ł.; Pocha, A.; Kaczmarczyk, J.; Rataj, K.; Danel, T.; Warchoł, M. Mol-CycleGAN: A 

Generative Model for Molecular Optimization. Journal of Cheminformatics 2020, 12, 2. 
(110)  Schwalbe-Koda, D.; Gómez-Bombarelli, R. Generative Models for Automatic Chemical Design. In 

Machine Learning Meets Quantum Physics; Schütt, K. T., Chmiela, S., von Lilienfeld, O. A., 
Tkatchenko, A., Tsuda, K., Müller, K.-R., Eds.; Lecture Notes in Physics; Springer International 
Publishing: Cham, 2020; pp 445–467. 

(111)  Westerlund, M. The Emergence of Deepfake Technology: A Review. Technology Innovation 
Management Review 2019, 9, 40–53. 

(112)  Li, Y. Deep Reinforcement Learning. arXiv:1810.06339 [cs, stat] 2018. 
(113)  Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; 

Kumaran, D.; Graepel, T.; et al. A General Reinforcement Learning Algorithm That Masters Chess, 
Shogi, and Go through Self-Play. Science 2018, 362, 1140–1144. 

(114)  Bellman, R. A Markovian Decision Process. Journal of Mathematics and Mechanics 1957, 6, 679–
684. 

(115)  Zhou, Z.; Kearnes, S.; Li, L.; Zare, R. N.; Riley, P. Optimization of Molecules via Deep 
Reinforcement Learning. Scientific Reports 2019, 9, 10752. 

(116)  Zhou, Z.; Li, X.; Zare, R. N. Optimizing Chemical Reactions with Deep Reinforcement Learning. 
ACS Cent. Sci. 2017, 3, 1337–1344. 

(117)  Li, H.; R. Collins, C.; G. Ribelli, T.; Matyjaszewski, K.; J. Gordon, G.; Kowalewski, T.; J. Yaron, D. 
Tuning the Molecular Weight Distribution from Atom Transfer Radical Polymerization Using Deep 
Reinforcement Learning. Molecular Systems Design & Engineering 2018, 3, 496–508. 


