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Abstract 

In current study, we have focused on the outline of different coronaviruses including COVID-

19, along with potential therapeutic targets of SARC-CoV-2. Moreover, experimentally 

evident anti-coronavirus natural molecules were subjected for in silico screening against Mpro 

and RdRp of COVID-19, in order to predict effective cure agent for same. The chemical 

structures of all selected molecules and standard ligands were drawn by ChemDraw for 

molecular docking and pharmacokinetic analysis. All ligands were prepared using OPLS_2005 

force field of LigPrep tool, Schrodinger suite 2017-4 keeping default setting for generation of 

ionization and tautomeric state as well as low energy 3D-conformer. The template of main protease 

(6LU7) and RdRp (7BV2), were retrieved from the RCSB-PDB database. Both protein's 

structure was pre-processed, and minimized by utilizing default setting as integrated into the 

software package Maestro, Schrodinger. Receptor grid was generated by specifying around 

centroid of internal merged ligand atom i.e. N3 in case of Mpro, while best suited docking site 

was used in case of RdRp protein, predicted by Sitemap analysis tool, Schrodinger package. 

Molecular docking of selected bioactive natural products against target proteins was 

performed by using Glide module of Schrodinger package. Few water and avoidable 

molecules were removed, which amalgamated with docking site of the proteins template. The 

extra-precision (XP) and flexible molecular docking algorithm were employed to investigate 

free binding energy.  In silico pharmacokinetic parameter was calculated with QikProp 

module of Schrodinger was utilized to predict in silico pharmacokinetic parameter of top 

ranked natural molecules. Docking analysis have revealed hit molecules namely tetra-O-

galloyl-β-D-glucose (2) and juglanin (25) against main protease, in reference of N3 molecule 

(docking score = -5.95 Kcal/mol), while glycyrrhizin (1) and tetra-O-galloyl-β-D-glucose (2) 

are good against RdRp in reference of Remdesivir (docking score = -4.23 Kcal/mol). In-silico 

parameter revealed three lead compounds i.e. glycyrrhizin (1), tetra-O-galloyl-β-D-glucose 
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(2) and juglanin (25) which can be seen as hopeful molecule for COVID-19 treatment in 

upcoming time. Overall review lesson is to develop a specific and effective drug molecule 

against the current crisis i.e. COVID-19 derived from natural source. 
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1. Introduction 

In December 2019, a modern city Wuhan, Hubei province of China, which have recorded 

several novel pneumonia cases, caused by novel coronavirus-infected pneumonia (NCIP) [1]. 

Wuhan is the central point of a pandemic upsurge of SARS-CoV-2 also referred to as HCoV-

19 [2] causative agent of COVID-19 which subsequently expanded [3] and it has caught 

global attention again after SARS-CoV in 2003 and the Middle East respiratory syndrome-

related coronavirus (MERS-CoV), in 2012 outbreak. It is the deadliest coronavirus infection 

ever recorded with a mortality rate of 4-5% and a very high rate of transmission [4]. The 

coronavirus was originated more than 55 million years ago which was co-evolved with bats, 

and its most recent common ancestor (MRCA) has been estimated to have existed as recently 

as 8000 BCE [5]. The evolution of MRCA’s of the different genera of Coronaviridae family 

such as the α-coronavirus (2400 BCE), the β-coronavirus (3300 BCE), the γ-coronavirus 

(2800 BCE), and the δ-coronavirus (3000 BCE) has been estimated [5]. The ideal hosts for 

the evolution and transmission of coronaviruses are that bats (α-coronavirus and β-

coronavirus) and birds (γ-coronavirus and δ-coronavirus) [6]. The infectious bronchitis virus 

(IBV) was the first coronaviruses reported in the 1930s in chickens[7], while the first human 

coronaviruses were reported in the 1960s [8]. After that numerous human coronaviruses have 

been reported, including SARS-CoV (2003), HCoV NL63 (2004), HKU1 (2005), MERS-

CoV (2012), and SARS-CoV-2 (2019). History indicated that coronavirus outbreaks have a 

severe impact on human health. SARS-CoV (2002-2004) had infected ̴ 8,096 people in 

China, with a ̴ 9.2 % fatality rate [9]. MERS-CoV (2012) has infected ̴ 2494 people in Saudi 

Arabia, with a ̴ 37 % fatality rate [10]. Currently, SARS-CoV-2 (2019-2020) had infected 

more than ̴ 19 million people globally with a ̴ 3.8 % fatality [11]. A SARS-CoV-2 infection 

has been declared as a pandemic by the WHO on the 12th of March 2020. It was the seventh 
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human coronavirus strain identified, which is associated with a severe respiratory infection 

like SARS-CoV and MERS-CoV, whereas NL63, HKU1, 229E, and OC43 have associated 

with mild sign [12]. The majority of the coronaviruses are responsible for extensive 

respiratory and gastrointestinal tract infections in humans and other animals  [13][14]. 

Coronaviruses have stable and lasting threats for human health therefore we necessitate 

understanding their virology for controlling the transmission of coronavirus to stabilize 

public health and global economies. Due to the environment-dependent adaptability of 

coronaviruses through mutations and recombination, it provides them wide host range and 

tissue tropism [15][16][17]. Due to novelty of SARS-CoV-2 virus, there is lack of concrete 

data on the SARS-CoV-2 origin and COVID-19 treatments. The complete development of 

novel antiviral drugs for treating COVID-19 could be protracted, and the main concern could 

be a bio-safety. Therfore, it seems idealistic to investigate clinically tested molecules within a 

restricted time when the infection is spreading in exponential manner. Animals depend on 

their innate and adaptive immune system in order to defend against pathogenic microbes. 

Similarly, bacteria, algae, fungi, and plants, synthesize a variety of secondary metabolites for 

their defense mechanism. These natural products often target common biochemical pathways 

and cellular regulatory systems, which can be hijacked by viruses for their proliferation [18]. 

Therefore, natural products can be a potent arsenal of broad-spectrum antiviral agents. Why 

natural products? Because they are the outcome of million years of evolution, biologically 

compatible, and exhibited diverse stereochemistry which remains unrelated to existing drugs 

skeleton. Structural diversity is a fundamental prerequisite to hits a wide-range of therapeutic 

targets thus, natural products are considered as broad-spectrum agents for the defense 

purpose [19]. Traditional Chinese and Indian Ayurveda Medicine System have been utilized 

for thousands of years. Experimental evidence suggested that several natural products have 

acted as anti-SARS-CoV agents including, Glycyrrhizin (licorice/Glycyrrhiza glabra), 
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lycorine (Lycoris radiate), and Ginsenoside-Rb1 (Panax ginseng) [20][21]. Numerous 

scientific investigations were confirmed honey has been as an effective antimicrobial natural 

formulation which could be considered an excellent alternative or combination for antiviral 

drugs [22].  

Some questions are arising due to the current scenario like, why it's so lethal as compared to 

the other coronaviruses? Is it any structural or genetic evolutions which improved their mode 

of action, sustainability, and resistibility to the host? Is there any scope of natural products for 

the development of broad-spectrum antiviral drugs? In order to answer these questions, here 

we have reviewed the biochemistry, pathogenesis of coronavirus and antiviral medicinal 

plants, and natural products as cure agent. Intentionally, we have directed our attention on the 

identification of the anti-SARS-CoV-2 agents through docking study of experimentally 

evident natural products against SARS-CoV, which may act as foundation for the discovery 

of natural products based drugs.  

2.   Coronavirus 

Coronaviruses are a group of (+) ssRNA enveloped viruses [23] that cause respiratory or 

gastrointestinal infection in birds and mammals. In humans, it has showed mild symptoms 

such as common cold, similar to rhinoviruses infections in some cases, while in other cases 

such as SARS, MERS, and COVID-19, it can be lethal. Coronaviruses categorized under 

family Coronaviridae, which meaning "crown" or "halo", which refers to the distinctive 

appearances of virions resembling solar corona under an electron microscope, due to the 

surface embedded glycoprotein spike peplomers [24].  

2.1. Morphology and genome 

Coronaviruses are the largest RNA viruses with the pleomorphic spherical form with 

projecting homotrimeric spike-proteins (peplomers) surrounded by envelope proteins [25]. 
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Envelop protein has implicated the maturation and discharge of viruses, results in the 

progression of the infection. The diameter of the coronaviruses is ranging around from 120-

160 nm [26]. The viral envelope developed by a lipid bilayer where the trimeric spike 

proteins are anchored which interacts with host receptors to enable the virus entery [27]. β-

coronavirus has a 5-10-nm long shorter projection of peplomers called hemagglutinin 

esterase (HE) [28]. Inside the core of transmembrane proteins, which hold nucleocapsid  

associated with ss-RNA in a curvature arrangement [29]. Peripheral lipid bilayer, envelop, 

matrix proteins, and nucleo-proteins protect the genome when the virus is exterior the host 

cell (Fig. 1) [30]. 

The genome size of coronaviruses is approximately 27-34 kb [23] which has protected 3′ by 

polyadenylation and a 5′ by methylation [26]. Genome organization of SARS-CoV-2 as 5′ 

UTR-[methylation]-(replicase/transcriptase)-(spike)-(envelope protein)-(matrix protein)-

(nucleocapsid)-3′ UTR-[poly (A)] which is slightly different in different strains of 

coronaviruses [26]. There are two open reading frames (ORF) in coronaviruses such as 

ORF1a and ORF1b, that covered the first 2/3 portion of the genome. ORF is highly 

conserved and encoded 16 non-structural proteins (nsp1-nsp16) [26], including nsp1 which 

facilitate host cellular mRNA lysis and obstruct translation, consequently, impede innate 

immune response [31][32][33], nsp13 is the RNA helicase and 5′ triphosphatase [34] [35], 

and nsp15 is endoribonuclease and NendoU [36] [37]. The structural genes are common to all 

coronaviruses, while accessory genes are unique in number, organization, sequence, and 

function that encoded by specific coronaviruses. The translated product of the spike gene is 

cleaved after synthesis into the N' subunit is S1, which interacts with host cell receptor; and 

the C' subunit is S2 subunit, which facilitate membrane fusion [38][39]. The genome SARS-

CoV-2 has shown 87.99 % sequence identity with bat-SL-CoVZC45, 87.23% with bat-SL-

CoVZXC21, and 79% with SARS-CoV [40]. SARS-CoV-2 has classified into two types 
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based on population genetic analysis, such as L-type (~ 70%) and S-type (~ 30%). The L-type 

strains are more aggressive and infectious, which are evolutionarily developed from S-type 

strains [41]. 

2.2. Mode of Action and Pathogenesis 

Coronavirus entere into the host cell by the interaction between spike-glycoprotein and its 

complementary receptor. The S1 region of spike glycoprotein position of receptor binding 

domains (RBD) is varied in different viruses, either at the N-terminus (MHV) or at the C-

terminus (SARS- CoV) [42][43]. The binding between the spike-glycoprotein and host 

receptor is the prime requisite for an infection and the tissue tropism of the coronaviruses. 

Mostly peptidases have utilized as host entry gate by coronaviruses. Several α-coronaviruses 

interact with aminopeptidase N (APN) [44][45][46][47], while HCoV-NL63 and SARS-CoV 

interact with angiotensin-converting enzyme 2 (ACE-2) [48] [49], MERS-CoV utilize 

dipeptidyl-peptidase 4 (DPP4) [50], and MHV interact with CEACAM1 [51] [52]. Following 

virus-host interaction, spike glycoprotein has depredated by acid-dependent proteolysis by 

the host cell proteases, to promotes fusion of viral and host cell membranes. Generally, 

viruses fuse intracellularly with acidic endosomes, but few viruses like MHV, can fuse with 

host cell plasma membrane. Due to the cleavage of spike-glycoprotein, which results 

exposure to a fusion peptide that penetrates the membrane and endorse the formation of the 

antiparallel Hexa-helix bundle [53]. This Hexa-helix bundle allows for the viral and host 

membranes amalgamation, which leads to ejection of the viral genome into the host cells. The 

cluster of non-structural proteins (nsp’s) forms a replicase-transcriptase complex including 

RNA-dependent RNA polymerase (RdRp) which involved in replication and transcription of 

RNA by catalyzing the synthesis of (-)-RNA from the (+)-RNA, while other nsp’s are 

responsible for assisting this process [26]. The exoribonuclease provides additional fidelity to 
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the replication by its proof reading activity which is lack in RdRp enzyme [26]. Membrane or 

M protein execute the assembly of viruses by protein-protein interactions followed by its 

coupling with the nucleocapsid and viral genome, which leads to release of virions by 

exocytosis from the host cell (Figure 1) [26].  

Coronaviruses cause a severe upper respiratory and gastrointestinal tract infection in 

mammals and birds including livestock; therefore, it can be a serious threat to the farming 

industry. Coronavirus target the respiratory and urogenital tract in IBV infection, but it also 

spreads throughout the body of chicken [54]. Porcine and bovine coronavirus causes diarrhea 

in young animals and both are considered as economically significant viruses. Feline enteric 

coronavirus showed minor clinical symptoms, but the mutated form of the same virus is 

responsible for feline infectious peritonitis (FIP), which causes a high fatality. Similarly, 

ferret enteric coronavirus infects a ferret that causes epizootic catarrhal enteritis (ECE), 

which is gastrointestinal and deadlier one [55]. Canine coronavirus (CCoV) has also two 

forms, first one is mild form which causes gastrointestinal symptoms while other is severe 

form which causes respiratory symptoms. Coronaviruses in rodents is mouse hepatitis virus 

(MHV) is responsible for a worldwide murine contagion with a high fatality, particularly in 

laboratory mice [56]. Pigs are also the target of swine acute diarrhoea syndrome coronavirus 

(SARS-CoV) which shows symptoms like diarrhea [57]. 

Previous outbreaks of coronavirus like as SARS-CoV and MERS-CoV which is biological 

agents that threaten human health. In the case of SARS-CoV infection, the physiological 

symptoms appear after 5.2 days which is incubation period [3]. In SARS-CoV-2 infection, 

the period from the beginning of symptoms to death is approximately 1-6 weeks’ days with a 

14 days median [58]. Moreover, this fatality period is also dependent on the age, status of 

ongoing health issues, and immune system. If infected patients are > 70 years old, those are 

on higher risk for fatality [58]. The symptoms of COVID-19 are cough with fever (body 
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temperature of 39.0 °C), difficulties in breathing fatigue, headache, diarrhea, sputum 

formation, haemoptysis, and lymphopenia (Figure 1) [59] [60].  

COVID-19 patients generally have high leucocytes count with elevated levels of pro-

inflammatory cytokines and chemokines including IL1-β, IL1RA, IL2 IL7, IL8, IL9, IL10, 

IFNγ, basic FGF2, GCSF, GMCSF, IP10, MCP1, MIP1α, MIP1β, PDGFB, TNFα, and 

VEGFA [59]. The sputum sample has taken for confirmation of COVID-19 infection by real-

time polymerase chain reaction [61]. Moreover, the C-reactive protein level in blood is 

around 16.16 mg/L which is higher than the basal range (0–10 mg/L) [61]. The important 

pathophysiogenesis of COVID-19 are severe pneumonia, acute cardiac injury, RNAaemia 

[59]. SARS-CoV-2 accesses host lung cells via transmembrane ACE2 receptor which is 

highly expressed in type II alveolar cells of the lungs, therefore lungs are most distress organ 

by COVID-19 [62]. Together with lungs, a gastrointestinal tract also targeted by SARS-CoV-

2 due to abundant expression of ACE2 is in the enterocytes, glandular cells, and endothelial 

cells of the gastrointestinal tract [63][64]. 

2.3. Challenges and Opportunity in COVID-19 Treatment 

The COVID-19 is a novel pneumonia-like severe disease, which is an unprecedented 

challenge and drastically affects global healths and the economy. Due to its novelty of this 

virus, there is lack of vaccine, effective anti-SARS-CoV-2 drug, therefore, we confront 

several challenges for the definitive treatment of COVID-19. Another important concern is 

the shortage of ICU facilities including isolation beds, ventilators, fluid management, and 

essential medicines like Hydroxychloroquine, which are also the barrier for treatments. 

Approximately 20.1% of COVID-19 patients were developed SARS, while 25.9% of patients 

required ICU facility for treatment [65].   
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The antiviral, anti-malarial, and herbal medicines have been alternative options for the 

treatment of COVID-19. Presently > 85% of COVID-19 patients have been treated by the 

anti-viral agents, including Oseltamivir, Lopinavir/Ritonavir, and Ganciclovir, while 

Remdesivir at present under clinical trials [65]. The critical condition of COVID-19 has been 

managed by the combination of corticosteroids and anti-viral agents along with atomized 

inhalation of IFNγ [66]. The effective anti-malarial drug Chloroquine phosphate showed anti-

viral and anti-inflammatory potential, thereby it has been exploiting for the inhibiting the 

aggravated effects of pneumonia [67]. Some traditional Chinese herbal formulation was used 

for the treatment of SARS-COV infection, and also for COVID-19 management. The most 

effective anti-SARS-COV medicinal herbs, include Astragali radix (steroidal saponins and 

isoflavonoids), Glycyrrhizae radix Rhizome (flavonoids and triterpenoid saponins), 

Saposhnikoviae radix (chromones and coumarin), Atractylodis macrocephalae Rhizome 

(atractylon and atractylenolides), and Lonicerae japonicae (flavonoids, iridoid glycosides, 

and flavonoids), Forsythiae fructus (phenylethanoid glycosides, lignans) [68][69]. 

Convalescent plasma (immuno-globulins of recovered patients) has also been useful for 

selective and potential approach obliging for immediate and short-term treatment of COVID-

19 [70]. Earlier convalescent plasma therapy has been utilized for the recovery of the patients 

of H5N1, avian influenza, SARS, Ebola, and influenza A (H1N1 pdm09) infections [71][72]. 

2.4. Potential therapeutic targets for COVID-19 treatment 

There are several potential targets in order to restrain coronavirus infection, which primarily 

associated with virus entry, viral genome replication, translation, assembly, and exocytosis 

[73]. Nsp’s are functional proteins which are essential for executing the life cycle of 

coronaviruses. Among them, RdRp, PLpro, 3CLpro, and helicase are the key and most valid 

molecular targets for designing and development of an anti-coronaviral drug owing to their 
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vital biological role. Viral proteases may prove as remarkable targets responsible for 

proteolysis of large polyprotein chain into different functional proteins such as replicase and 

polymerase [74]. For the development of an effective drugs against COVID-19, it is essential 

to hamper viral as well as host protein targets. The spike glycoprotein recognize the host cell 

receptor proteins ACE2 and CD147 as an alternative receptor, then spike protein proteolyzed 

by host proteases including transmembrane serine protease 2 (TMPRSS2) and furin [75][76]. 

Besides that, direct fusion of SARS-CoV-2 with the host cell membrane, it has also been 

postulated to penetrate through endocytosis [75]. In this pathway, some key proteins 

including, Vacuolar-type H+ ATPase (V-ATPase), Cathepsin L (CTSL), two pore segment 

channel 2 (TPC2), and Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve), which  assist 

the formation of endosomes [75]. Above all mentioned viral and host proteins are considered 

as a probable target for the anti-coronaviral drugs and which are summarized in Table 1 with 

its natural inhibitors.  

3. Anti-coronaviral natural products  

Natural products always remain a crucial platform, in order to search a bioactive drug 

molecule, and play a vital role in the drug discovery process [77]. Medicinal plants have the 

potential for promising sources of novel antiviral prototypes [78]. Several compounds from 

extracts of diverse species of higher plants have shown antiviral activity such as tannins, 

flavones and alkaloids, which displayed in vitro activity against numerous viruses. Limited 

availability of currently available antiviral drugs is the driving force for the discovery of new 

antiviral agents. The primary approaches for the discovery of new herbal agent is the classical 

method involves random screening, phytochemical factors and serendipity approaches. The 

secondary approach is traditional knowledge and practices on ethnopharmacology, which 

may prove as one good choice for the discovery of antiviral agents, and it involves the study 
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of medicinal plants with a history of traditional use as a potential source of substances with 

significant pharmacological activities [79] [80]. Herbal based therapeutic agent has several 

advantages too such as high effectiveness, less side effect, easy availability, and relatively 

low cost. Herein, we are more focused on compiling natural agents against SARS-CoV, 

which will anchor in the discovery of new antiviral agent especially against the current 

disaster started from Wuhan city of China.  

At present, there is unavailablity of any potential existing or newly developed antiviral drug 

which can successfully treat COVID-19. Nevertheless, several research institutes are working 

on screening and clinical testing of potential antiviral small-molecules. The small molecules 

ligands can be categorized into two groups based on their therapeutic target - molecules of 

the first group are acting on the protein targets of coronaviruses, while molecules of the 

second group interact with host proteins to modulate the host immune system. In Table 2 we 

have compiled experimentally screened natural products against coronaviruses. 

4. Molecular docking screening & pharmacokinetic study of natural inhibitor’s 

The structures of all selected natural products (Fig. 2) were drawn by ChemDraw for 

molecular docking and ADME analysis against SARS-CoV-2 therapeutic targeted proteins. 

The stereochemical conformers of the natural products and standard ligands were prepared by 

using LigPrep tool, Schrodinger suite 2017-2, by utilizing OPLS_2005 force field. 3D 

template of main protease (PDB entry: 6LU7) & RdRp (PDB entry: 7BV2), were retrieved 

from the RCSB-PDB database. Both selected protein's structure was pre-processed, 

optimized and minimized with the help of protein preparation wizard in Maestro software, 

Schrodinger by using default setting. We have generated receptor grid around the best suited 

docking site which was analysed by sitemap wizard, in case of RdRp protein (7BV2), while 

internal merged ligand i.e. N3 atom were selected in order to generate receptor grid in case of 
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main protease (6LU7). Molecular docking of selected proteins with bioactive natural products 

was executed by using Glide, Schrodinger. Few water and avoidable molecules were 

removed, which amalgamated with docking site of the proteins template. The extra-precision 

(XP) algorithm with flexible molecular docking setting was employed to investigate binding 

affinity of ligands toward protein. Internal ligand i.e. N3 inhibitor [(Benzyl 

(3S,6S,9S,12R,Z)-9-isobutyl-6-isopropyl-3-methyl-1-(5-methylisoxazol-3-yl)-1,4,7,10-tetra 

oxo-12-(((R)-2-oxopyrrolidin-3-yl)methyl)-2,5,8,11-tetraazapentadec-13-en-15-oate)] in 

main protease crystal structure was utilized as reference ligand, whereas  Remdesivir was 

used as reference in case of RdRp enzyme, in order to validate apex hit molecules against 

COVID-19.
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 Docking analysis (Table. 3) has revealed hit molecules namely tetra-O-galloyl-β-D-glucose 

(2), & juglanin (25) against protease, and same molecule i.e. tetra-O-galloyl-β-D-glucose (2) 

and glycyrrhizin against RNA replicase in reference of N3 inhibitor (docking score = -5.95 

Kcal/mol) & Remdesivir (docking score = -4.23 Kcal/mol). 3D-interaction diagram for apex 

hit molecules have shown in fig. 3. In silico pharmacokinetic parameters were calculated with 

QikProp module of Schrodinger suit. The pharmacokinetic profile study is one strong point to 

minimize drug failure rate during drug discovery process. Recommended pharmacokinetic 

parameter and their corresponding value is mentioned in below Table. 3. 

5. Conclusion 

The pandemic contagion of the SARS-COV-2, their transmission rate and availability of no 

effective COVID-19 treatment is one of tough challenge for the medical and pharmaceutical 

fraternities. In an unprecedented display of effort and collaboration, the scientific community 

has made great strides in such a short amount of time which can be seen through publication of 

>1,000 SARS-CoV-2 genomes till now. Several crystal structures of key proteins of SARS-

CoV-2 have been solved now, including the spike glycoprotein, RNA replication machinery 

proteins, and viral proteases. The life cycle of SARS-CoV-2 is now reasonably well 

understood, owing to years of study on related coronaviruses. Here we have discussed what 

researchers have now learned about the viral infection pathway of COVID-19 with an 

emphasis on the emerging targets for new drugs and vaccines. We warmly believe that ‘for 

every illness in the living organisms, somewhere in world there exist plants which are cure’. 

Hence, Nature makes available an easy way out for any complex difficulty. This encourages us 

to perform in-Silico screening of experimentally validated anti-coronaviral natural compounds 

to forecast the biocompatible inhibitors against coronavirus. In-silico parameter revealed three 

lead compounds i.e. tetra-O-galloyl-β-D-glucose (2), juglanin (25) & glycyrrhizin (1) which 

can be seen as hopeful molecule for COVID-19 treatment in upcoming time. Therefore, our 
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broad study from experimental to in silico stage, generates a high impact to produce safe 

natural therapeutics against current threat i.e. COVID-19. 
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Figure 1. A) Diagrammatic representation of coronavirus, which is composed of the structural 

proteins, including spike protein, envelope protein, matrix protein, and nucleo-capsid, and 

inside the capsule, it has positive single-stranded RNA (+) ss-RNA). B) Mode of action and 

pathogenesis of coronaviruses. The bats are the reservoir of several types of coronaviruses 

and dog, mouse, swine, and civet are the transmission vectors for coronavirus contagion into 

the humans. Coronaviruses infection in humans causes respiratory syndrome such as SARS, 
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MERS, and COVID-19. Coronaviruses primarily act on the respiratory system and 

gastrointestinal tract, interact with host cells by the membrane enzymes mostly peptidases, 

which is a critical phase for virus entry. After that replication, translation, and assembly of 

viral proteins and genome has carried out inside the endoplasmic reticulum and cytoplasm 

following released by exocytosis from the host cell.  
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Figure 2. Selected bioactive natural products against coronaviruses. 
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Figure 3. A) 3D-interaction of Tetra-O-galloyl-β-D-glucose (-12.20 Kcal/mol) and juglanin 

(-8.96 Kcal/mol) against main protease Enzyme (6lu7); B) 3D-interaction of Tetra-O-galloyl-

β-D-glucose (-11.74 Kcal/mol) and glycyrrhizin (-7.77 Kcal/mol) against RdRp enzyme 

(7BV2). 
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Table 1 

Therapeutic target and its natural inhibitor 

 

Targets Description Natural molecule modulators Ref. 
Papain‐like protease 

(PLpro)  

Essential for CoV replication, and 

involved in the proteolytic 

processing of Nsp1-3  

Cinnamic amides, ferulic acid,   tomentin A, 

tomentin B, tomentin C, tomentin D, tomentin 

E, bavachinin, neobavaisoflavone, 

isobavachalcone, 4′-O-methyl-bavachalcone, 

psoralidin, and corylifol A.  

[81] 

[82] 

[83] 

[84] 

Main protease (Mpro/ 3CL-

Protease) 

Function as proteolytic processing 

of Nsp4-16 including RdRp and 

replicase-transcriptase complex 

(RTC). 

Esculetin-4-carboxylic acid methyl ester, 

esculetin-4-carboxylic acid ethyl ester, aloe-

emodin, beta-sitosterol, indigo, hesperetin, 

sinigrin, quercetin, gallocatechin gallate, and 

epigallocatechin gallate. 

 

[85] 

[86] 

[87] 

RNA-dependent RNA 

polymerase (RdRp/ nsp12) 

It is a supra-molecular complex 

associated with processivity clamps 

(nsp7 and nsp8), exoribonuclease, 

RNA helicase, and 5′-

triphosphatase. Replication of the 

viral RNA and transcription of sub-

genomic RNA. 

 

Monoethyl ester of meconic acid, extract from 

Fructus Ligustri Lucidi, Silibinin A, silibinin 

B, and aureusidin.  

[88] 

[89] 

[90] 

[91] 

 

 

Exoribonuclease 

(Exo/nsp14) 

Function as 3′-5′ proofreading 

ribonuclease. Hammering ExoN 

activity results enhance the antiviral 

potency of remdesivir.  

 

NA 

[92] 

Angiotensin-converting 

enzyme 2 (ACE2) 

 It is a transmembrane receptor with 

peptidase activity to cleave 

angiotensin II and other peptide 

hormones. ACE2 is interacting with 

the spike protein of SARS-CoV-2. 

To prevent ACE2-spike protein 

coupling is considered an ideal 

model for antiviral therapeutics.  

 

Quercetin, quercetin-3-glucoside, quercetin-3-

galactoside, cyanidin-3-galactoside, acteoside, 

Emodin, leucosceptoside A, martynoside, 

acteoside isomer, isomartynoside, 

gluco‐aurantioobtusin. 

[93] 

[94] 

[95] 

[96] 

 

Transmembrane serine 

protease 2 (TMPRSS2) 

TMPRSS2 is a protease involved in 

cleaves of ACE2 and the spike 

protein. It assists in viral entry into 

the host lung cells. Inhibition of 

TMPRSS2 results impedes viral 

entry into host cells.  

 

Sunflower trypsin inhibitor (SFTI-1). [76] 

[97] 

 

Furin It is a protease that proteolyzed 

inactive proteins precursor into 

their active form. Notably, it 

cleaving viral envelope proteins.  

Catechins, gallic acid, neoandrographolide, 

Andrographolide,     baicalein,  quercetin,    

phlogantholide,  and  epigallocatechin gallate. 

 

[98] 

[99] 

CD147 It is an alternative receptor for the 

SARS-CoV-2.  

 

NA 

[99] 

Cathepsin L (CTSL)  Cathepsin L is a pH-dependent 

protease localized in the lysosome 

that mediates the entry of the virus 

via endosomes. 

Gallinamide A gathisflavone, tetrahydro-

robustaflavone, 3-oxo-urs-12-en-28-oic acid, 

3‐ epiursolic acid, 3‐(hydroxyimino) oleanolic 

acid, and 3‐(hydroxyl-imino) masticadienoic 

[100] 

[101] 

[102] 
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 acid. 

 

Vacuolar-type H+ ATPase 

 (V-ATPase)  

V-ATPase is a proton pump located 

into endosomes and lysosomes, 

which minimized the pH. At acidic 

pH cathepsins required for the 

endocytosis of SARS-CoV-2. 

 

Destruxins, Archazolid A, Archazolid B, 

concanamycin A, bafilomycin A1, 11-deoxy-

apicularen, Apicularen B,  Open apicularen, 

Apicularen A,  salicylihalamide A, lobatamide 

A, apicularen A, cruentaren, Benzolactone 

enamides, oximidine I. 

[103] 

[104] 

[105] 

[106] 
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Table 2  

Experimentally screened anti-coronavirus natural molecules/extract 

Molecules/ extract Source Targets Activity Ref. 

Glycyrrhizin liquorice roots Replication unit The IC50 value is 316–625 mg/L  [20] 

Tetra-O-galloyl-β- 

D-glucose 

  An EC50 value is 4.5 μM and a selective 

index is 240. 

[107] 

Quercetin   The EC50 is 83.4 μM [107] 

Lycoris radiata  

extract (lycorine) 

Lycoris radiata,  The EC50 value of 2.4±0.2 μg/ml. [108] 

Isatis indigotica root 

extract  

Isatis indigotica 3CL protease  The IC50 value is 53.8 ± 4.2 μg/ml by the 

cell-free assay and 191.6 ± 8.2 μg/ml by 

the cell-based assay. 

[86] 

Indigo Isatis indigotica 3CL protease The IC50 value is 300 μM by the cell-free 

assay and 752 μM by the cell-based 

assay. 

[86] 

Indirubin Isatis indigotica 3CL protease The IC50 value is 293 μM by the cell-free 

assay. 

[86] 

Indican Isatis indigotica 3CL protease The IC50 value is 112 μM by the cell-free 

assay. 

[86] 

Sinigrin Isatis indigotica 3CL protease The IC50 value is 121 μM by the cell-free 

assay and 217 μM by the cell-based 

assay 

[86] 

β-sitosterol Isatis indigotica 3CL protease The  IC50 value is 115 μM by the cell-

free assay and 1210 μM by the cell-based 

assay 

[86] 

Aloe-emodin  3CL protease The IC50 value is 132 μM by the cell-free 

assay and 366 μM by the cell-based 

assay 

[86] 

Hesperetin  3CL protease The IC50 value is 60 μM by the cell-free 

assay and 8.3 μM by the cell-based assay 

[86] 

Daidzein  3CL protease The IC50 value is 105 μM by the cell-free 

assay.  

[86] 

Emodin Rheum officinale and  

Polygonum multiflorum 

S protein and 

ACE2 interaction 

The IC50 value is 200 μM [96] 

Chrysin Rheum officinale and  

Polygonum multiflorum 

S protein and 

ACE2 interaction 

The IC50 value is 400 μM [96] 

Radix et Rhizoma 

Rhei, Radix Polygoni 

multiflori, and Caulis 

Polygoni multiflori 

extract 

Radix et Rhizoma Rhei, 

Radix Polygoni 

multiflori, and 

Caulis Polygoni 

multiflori 

S protein and 

ACE2 interaction 

The IC50 value ranged from 1 to 10 

μg/ml. 

 

[96] 

Ferruginol   The CC50 80.4 µM, EC50 1.39 µM, and 

selective index are 58.0. 

[109] 

Dehydroabieta-7-one   A CC50 305.1 µM, EC50 4.00 µM, and 

selective index are 76.3. 

[109] 

6,7-

dehydroroyleanone 

 

  The CC50 89.7 µM, EC50 5.55 µM, and 

selective index are 16.2. 

[109] 
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α-cadino   The CC50 76.8 µM, EC50 4.44 µM, and 

selective index are 17.3. 

[109] 

Honokiol   The IC50 value is >100 μM, CC50 88.9 

µM, EC50 6.50 µM and selective index is 

13.7. 

[109] 

Magnolol   The CC50 68.3 µM, EC50 3.80 µM and 

selective index is 18.0. 

[109] 

Niclosamide   The CC50 22.1 µM, EC50 <0.1 µM and 

selective index is >221. 

[109] 

Valinomycin    The CC50  67.5 µM,  EC50 1.63 µM and 

selective index is 41.4 

[109] 

Betulinic acid  3CL Protease The IC50 value is 10 μM [109] 

Betulonic acid  3CL Protease The IC50 value is >100 μM [109] 

Savinin  3CL Protease The IC50 value is 25 μM [109] 

Curcumin  3CL Protease The IC50 value is 40 μM [109] 

Niclosamide  3CL Protease The IC50 value is 40 μM [109] 

Leptodactylone Boenninghausenia 

sessilicarpa 

 Protective activity against Vero-E6 cells 

infected by SARS-CoV at a 

concentration of 100 μg/ml  

[110] 

water fraction of 

Houttuynia cordata 

Houttuynia cordata 3CL protease and 

RdRp 

It has shown biphasic action i.e. it 

reduces viral replication as well as helps 

in activating immunity to prevent viral 

infection. 

[111] 

The fraction of 

Cinnamomi Cortex 

Cinnamomi Cortex  The IC50 value of n-Butanol fraction 

(7.8±0.3 μg/ml) 

The IC50 value of Ethanol fraction 

(10.7±04 μg/ml) 

[112] 

Biflavoneamentoflav

one 

Torreya nucifera 3CL Protease The IC50 value is 8.3 μM [113] 

Myricetin  

 

Chromadex Nsp13 Inhibited the 90% of ATPase activity of 

nsP13 at a 10 μM concentration. 

[114] 

Scutellarein Scutettaria baicalensis Nsp13 Inhibited the 90% of ATPase activity of 

nsP13 at a 10 μM concentration. 

[114] 

Quercetin, 

epigallocatechin 

gallate, gallocatechin 

gallate 

Pichia pastoris 3CL Protease The IC50 values of quercetin (73 μM), 

epigallocatechin gallate, (73 μM) and 

gallocatechin gallate (47 μM) with Ki 

value of 25 ± 1.7 μM. 

[87] 

Tanshinone I Salvia miltiorrhiza 3CLpro and PLpro The good inhibitory activity even at 0.7 

μM concentration by a deubiquitinating 

mechanism with good selectivity. 

[115] 

Rosmariquinone Salvia miltiorrhiza 3CLpro and PLpro It possesses different kinetic mechanisms 

as well as slow & reversible inhibition.  

[115] 
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Table 3 

 Docking score & ADME parameters of Anti-SARS candidates (Bold text shows 

recommended values) 

 

 

 

Natural candidate 

Docking Score         
LogKp 

(–8.0 - 

1.0) 

PHOA 

(<25 

poor, 

>80 

good) 

PCaco2 

(<25 

poor, 

>500 

great) 

Log

Khsa 

(–1.5 

- 1.5 

) 

 

logS (–

6.5  -

0.5) 

PMDC

K 

(<25po

or, 

>500 

great ) 

Rule 

of 

five 

QPlo

gHE

RG 

(<5) 

HB-accept 

(2.0 -20.0)                         

HB-donate 

(0.0 - 6.0) Mpro 

(6lu7) 

RdRp 

(7bv2) 

Tetra-O-galloyl-β-

D-glucose 
-12.20 -11.74 -12.19 0.0 0.001 -1.24 -4.53 0 3 

-

7.823 
20.4/13 

Juglanin -8.96 -4.97 -5.72 29.02 9.41 -0.65 -2.78 3.2 1 -5.23 11.3/5 

Epigallocatechin 

gallate 
-8.35 -7.13 -7.54 0.0 1.03 -0.44 -3.49 0.3 2 -5.62 8.8/8 

Myricetin -7.33 -5.67 -6.38 27.43 6.97 -0.49 -2.64 2.3 1 -4.97 6/5 

Scutellarein -7.18 -3.94 -4.68 63.31 50.80 -0.2 -3.03 19.8 0 -5.02 4.5/3 

Quercetin -6.69 -4.83 -5.49 52.20 19.29 -0.34 -2.88 6.9 0 -5.07 5.3/4 

Luteolin -6.38 -4.14 -4.86 61.49 42.00 -0.20 -3.06 16.1 0 -5.02 4.5/3 

Aloe-emodin -6.05 -3.52 -4.49 66.29 79.02 -0.31 -2.59 31.9 0 -4.51 5.2/1 

Gallocatechin 

gallate 
-5.89 -7.08 -7.3 2.01 1.31 -0.43 -3.35 0.4 2 -7.30 8.8/8 

Hesperetin -5.67 -4.11 -4.07 75.40 132.07 0.02 -3.73 55.5 0 -4.94 4.8/2 

Sinigrin -5.41 -6.14 -6.27 21.29 1.89 -1.47 -0.94 1.05 0 -1.95 14/5 

Emodin -5.25 -2.05 -4.71 68.32 79.84 -0.10 -3.05 32.2 0 -4.33 4.3/1 

Amentoflavone -4.51 -5.16 -6.33 24.46 2.46 0.68 -6.79 0.8 2 -7.27 7.5/4 

Laptodactylone -4.23 -2.96 -3.11 83.17 645.66 -0.46 -2.09 308.3 0 -3.94 4.8/1 

Savinin -4.11 -1.40 -1.66 100 2491.65 -0.53 -1.06 1327.1 0 -2.51 6/0 

Terpenoid (13) -4.08 0.0 -2.50 100 1911.12 1.03 -6.44 996.3 1 -4.45 4.5/0 

Terpenoid (11) -3.92 -2.14 -2.61 100 2029.96 0.81 -4.97 1063.4 0 -3.30 2.8/6 

Terpenoid (12) -3.86 -2.58 -2.24 100 2568.42 0.73 -4.83 1371.4 0 -3.42 3.2/2 

Terpenoid (10) -3.78 0.0 -2.04 100 3810.83 1.15 -5.75 2100.7 1 -3.59 0.8/1 

Rosmariquinone -3.72 -1.53 -2.62 100 1720.64 0.35 -4.43 889.4 0 -4.13 4/0 

Tanshinone -3.62 -1.87 -2.21 100 1485.61 -0.07 -3.49 758.9 0 -4.94 4.5/0 

Lycorin -3.58 -6.56 -4.58 77.15 363.96 -0.34 -1.45 183.6 0 -4.09 6.9/2 

Glycyrrhizin -3.41 -7.77 -8.64 0 0.01 -0.71 -5.12 0.0 3 -0.46 21.3/6 

Triterpenoid (14) -2.62 -2.99 -3.14 93.89 268.41 1.41 -7.15 151.8 1 -1.97 4/1 

Betulinic acid -2.35 0.0 -2.96 94.63 296.40 1.36 -6.94 169.0 1 -1.95 3.7/2 


