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ABSTRACT  

The convergence of artificial intelligence and machine learning with material science holds significant 

promise to rapidly accelerate development timelines of new high-performance polymeric materials. Within 

this context, we report an inverse design strategy for polycarbonate and polyester discovery based on a 

recommendation system that proposes polymerization experiments that are likely to produce materials with 

targeted properties. Following recommendations of the system driven by the historical ring-opening 

polymerization results, we carried out experiments targeting specific ranges of monomer conversion and 

dispersity of the polymers obtained from cyclic lactones and carbonates. The results of the experiments 

were in close agreement with the recommendation targets with few false negatives or positives obtained for 

each class.  

Introduction 

Accelerated discovery of new materials has potential to broad economic impacts arising from both 

decreased cost of development timelines and improved material performance.1–5 To meet this challenge, 

traditional, labor-intensive research workflows have been redesigned to utilize a combination of automated 

or autonomous experimentation, accelerated characterization, high-performance computing, and artificial 



intelligence to improve experimental quality and rate.6–12 In this context, new automated synthesis platforms 

for polymeric materials are critical and offer significant benefits by enabling programmatic control over 

polymer properties such as monomer conversion (MC), the degree of polymerization (DP), dispersity (Ð), 

and resulting architecture of the polymeric materials.13–17 Additionally, these systems can be merged with 

in-line characterization to enable real-time feedback and optimization of polymer characteristics.14,15 

Coupling of these systems with advances in predictive models for polymer properties will undoubtedly 

afford immense progress towards rapid development and commercialization of new materials with 

improved performance characteristics.10,11,18 

However, the merging of laboratory automation and artificial intelligence does not automatically 

accrue or guarantee benefits from the reduction of experimental overhead. Frequently overlooked is the 

significant amount of background experimentation that must be completed before an automated synthetic 

platform can be used. For the ring-opening polymerization (ROP) of lactones and cyclic carbonates, it is 

imperative that the polymerization conditions of a particular monomer with a chosen ROP catalyst are 

investigated prior to use in an automated system—especially systems using continuous-flow. Failure to do 

so can lead to improper choice of conditions and residence times for the automated polymerization, leading 

to reactor fouling, undesired broadening of dispersity, or potentially no reaction at all.19 And while failed 

results are necessary for the development of improved predictive models, the costs of forgoing background 

experimentation can be significant, particularly when custom monomers or catalysts are used. 

The controlled ROP of lactones and cyclic carbonates is a result of the interplay between monomer 

reactivity20–23 and catalyst activity.13,24–27 While the thermodynamics and kinetics of ROP have been well-

studied,20–23 these insights do not provide a robust theoretical framework to enable a priori catalyst 

selection. Particularly since even relatively small changes in monomer structure can have an outsized 

influence on reactivity.20,28 Instead, experimentalists must rely on these principles in addition to the 

available literature and their own experience to guide catalyst choice and experimental design. Design of 

experiments—a statistical method to help determine the influence of different experimental factors—can 



be a powerful tool to help arrive at an optimized set of reaction conditions. Although this approach still 

necessitates a significant number of experiments to be run.29,30 Consequently, in order to truly accelerate 

materials development in combination with using automated platforms, the amount of background 

experimentation must be minimized. Ultimately, developing predictive models based on historical data 

which can be translated into experimentally actionable hypotheses could significantly reduce the time 

needed to determine the requisite reaction parameters for use of new monomers with automated synthetic 

platforms. Thus, given the significant breadth of catalysts available for ROP,31–33 a predictive framework 

capable of matching catalysts to lactone and carbonate monomers for controlled polymerization would both 

dramatically reduce experiment overhead and accelerate material development timeframes using automated 

synthetic platforms. 

The standard computational selection strategy for evaluating monomer–catalyst pairs would rely 

on the direct evaluation of the thermodynamic and kinetic reaction parameters via the state-of-the-art of 

quantum chemistry. It is straightforward to obtain enthalpic profiles along reaction paths, albeit achieving 

chemical accuracy would be challenging. Transition from enthalpic to free energy profiles will face a heavy 

overhead of conformational sampling of the potential surface of the reaction. Correct accounting for the 

effect of the medium, including the solvent and the growing chain of the polymer, is a steep cost factor as 

well. The computational task will, effectively, blow up once it is recognized that matching a monomer and 

a catalyst for polymer design in fact involves selection of a monomer, an initiator, a catalyst, a co-catalyst, 

a solvent, their respective feed ratios, and reaction time. 

Rapid hypothesis generation can always benefit from first principle methods. However, a 

complementary strategy using data centric approaches rooted in statistical learning and demonstrating a 

different balance of advantages and disadvantage has been gaining relevance lately.34–43 In the chemical 

domain, the bulk of the machine learning (ML) studies, including deep learning (DL) as a subset of ML, 

relies on the construction of structure-property and structure-activity relations informed by the structural 

features of molecular compounds. Polymer materials research encounters easily identifiable unique 



challenges that set it apart from other chemical domains, such as drug design. Polymers are stochastic 

macromolecules built from well-defined, monomeric building blocks. Establishing the exact make-up of 

the ensemble of polymer chain—particularly those with cross-links or network interpenetration—is often 

impractical both from computational and experimental perspectives. Therefore, it makes sense to find 

alternatives to the molecular structure of the polymer chains as the source of features in statistical learning 

tasks involving polymer materials. Assuming that materials are produced in a deterministic manner, there 

is a level of consistency of the synthetic and processing conditions that guarantees a degree of 

reproducibility of the measurable properties of the material. For the purposes of data-centric modeling, the 

degrees of freedom of the experimental procedures—including synthesis and processing—should be 

minimally sufficient. In molecular design and discovery, models that help to identify molecules with target 

properties are not directly actionable—they transform the problem of finding a candidate structure into the 

subsequent problem of finding a way to produce this candidate structure experimentally. Transitioning from 

the structure-property to experiment-property models in the polymer materials domain helps to avoid this 

conundrum because the latter has the capability to predict experiments in terms of the control settings for 

the factually deployed equipment. Evaluation of the experimental conditions by means of ML/DL has been 

gaining momentum. The spectrum of this effort is quite broad, from the experiments on AI predicting 

organic synthesis,12 to retrosynthetic approaches for organic molecules44–46 to generative modeling of 

synthetic conditions for inorganics and mixed materials trained from the literature data.47,48 Experiment-

property models require adequate information about capabilities of the available experimental platform. 

Diversity of the data in published sources does not necessarily inform experimental choices for the specific 

performance targets of the material pursued in a given project: historical data might be obtained with 

different, potentially obsolete, methodologies and equipment, they also might miss critical execution 

details. Training data sets for the development of experiment-property models can be produced via data 

mining, but the most powerful aspect of experiment-property modeling is its innate capability to proceed 

via direct access of the data-centric model to the experimental equipment deployed in the project for the 

model training and target data acquisition stages.  



Having identified experiment-property modeling as the overarching theme of our efforts, we should 

distinguish the cases of the forward and inverse material design. The forward design of polymer material 

encompasses models that enable one-to-one mapping of polymer structure to the property. The structure 

can be captured explicitly, such as list of atomic positions in 3 dimensions, or implicitly, such as parameters 

of the experiments producing the polymer. The inverse material design includes the models that map 

polymer property on the structure in one-to-many manner. In other words, given the value or the range of 

property values, inverse design model is expected to produce several distinguishable hypotheses about 

material structure.18,49–51 The inverse design strategies offer higher computational efficiency of the design 

and discovery in terms of the computational cost and time to solution. In practice, the forward and inverse 

strategies should be seen as complementary in order to ensure flexibility and robustness of the 

computational design and discovery workflow.  

We report an inverse design strategy for hypothesis generation about experiments that are likely to 

produce the desired outcome. Specifically, given the target range of the measurable property of a polymer 

material, we generate recommendations for the values of the experimental degrees of freedom, both 

categorical and quantitative, that are immediately actionable. The recommendation engine performs link 

completion on the network of the historical experiments. Preparation of the network amenable to link 

completion can be approached in different ways. We describe an operational approach motivated by 

potential utilization of the knowledge graphs (KG) in polymer materials domain.52 The first step is to 

convert a relational database of historical experiments into resource description framework (RDF) graph 

(Figure 1A). We refer to this construction as “experiment knowledge graph” (eKG). Prediction of new 

experiments on eKG is an instance of the network completion problem53 where one infers a new 

“experiment” node connected to a new “material” node. On the eKG, the “experiment” node on the eKG is 

linked to the nodes representing particular values of the control parameters and the “material” node is linked 

to the nodes representing particular values of measurable properties. The second step is to collapse nodes 

on the historical eKG forming a network with multiple partitions (Figures 1A and 1B). In the case of ROP, 



we consider three partitions. The nodes in the first partition are bundles of control parameter values related 

to the catalyst utilization, including the catalyst and the co-catalyst (red outlines, Figures 1A and 1B). The 

nodes in the second partition are bundles of control parameter values related to the monomer utilization, 

including the monomer, the initiator, the monomer concentration ([M]0), and initial monomer–initiator 

molar ratio ([M]0:[I]0) (blue outlines, Figures 1A and 1B). The nodes in the third partition are values of 

polymer properties (grey outlines, Figures 1A and 1B). Finally, the multi-partite graph is simplified by 

projecting out the partition of property values (Figure 1C). In the resulting bi-partite network two nodes are 

connected via a link if the experiment with the respective parameters was carried out; the outcome of the 

experiment, i.e., measured properties, are assigned to the link as attributes (Figure 1C). Both the original 

eKG and the generated bi-partite network are suitable inputs for the network completion task. Structuring 

the data as a bi-partite network (Figure 1C) enables network completion via both simple decomposition 

methods, such as non-negative matrix factorization (NMF)54 and advanced representation learning 

approaches, such as node2vec55,56 The presented study reports the results obtained with continuous feature 

representation of the nodes in the bi-partite network (Figure 1C) obtained using node2vec framework. 

 

Figure 1. Transformation of the “experiment knowledge graph” (eKG) into a network amenable to link prediction via non-negative 
matrix factorization. Panel A: an RDF graph constructed from the relational database of the experimental parameters and outcomes 
(not shown). Continuous experimental parameters and measured properties are converted into categorical values via binning. 
Dashed outlines show the patterns of node collapse. Panel B: simplified RDF graph where nodes of the experimental parameters 
(objects) are collapsed forming bundles and the categorical value of the measured property is treated as a subject. The same 



procedure applies to MC (shown) and Ð (not shown). Panel C: RDF triples are transformed into a bi-partite graph, where nodes 
representing bundled experimental parameters (RDF objects) are directly connected to each other via a link; the value of the 
measured property (RDF subject) is assigned to the link as an attribute. 

 

Results  

Historical data prepared by the subject matter expert (SME) included 810 experiments involving 

total of 83 catalysts, 24 co-catalysts, 80 monomers, and 61 initiators. Additionally, experiment specification 

requires selection of values with at least two continuous degrees of freedom: the [M]0 and the [M]0:[I]0. In 

order to make the recommendation of the values of continuous variables tractable, we discretized historical 

ranges of the respective degrees of freedom, producing 21 sub-ranges, or bins, for each. Approaching 

combinatorial design of the future experiments by strictly recycling the historical sets of options for the 

aforementioned degrees of freedom, one would have to navigate a set of 4B possible experiments.  

We constrained the space of recommendations by considering only those historical experiments 

that resulted in the successful polymerization and evaluation of the monomer conversion (741 experiment). 

Considering monomer conversion (MC) as the target property, the successful historical experiments 

involved 77 catalysts, 24 co-catalysts, 68 monomers, and 50 initiators. Only 12 sub-ranges of [M]0 and 11 

ranges of [M]0:[I]0 were utilized in these experiments. Specifically, 121 unique catalyst/co-catalyst 

combinations and 292 unique monomer/monomer concentration/initiator/monomer-initiator molar ratio 

combinations were encountered, shaping up a combinatorial space of 35K possible experiments (Figure 

2A). Successful historical experiments that measured dispersity (Ð) comprised 69 catalysts, 20 co-catalysts, 

67 monomers, and 53 initiators. There were 104 unique catalyst/co-catalyst combinations and 289 unique 

monomer/[M]0/initiator/[M]0:[I]0 combinations with the potential for ~30K experiments (Figure 2C). 



 

Figure 2. Historical data selected to train the recommender; the target properties are MC and Ð. Panel A: heatmap of MC values. 
Vertical axis represents the bundled degree of freedom includes catalyst/co-catalyst combinations designated as “Catalyst Bundle”; 
horizontal axis represents the bundled degree of freedom that includes monomer/monomer concentration/initiator/monomer-
initiator molar ratio combinations designated as “Monomer Bundle”. Panel B: histogram of MC values observed in the historical 
data. Panel C: heatmap of Ð data. Panel D: histogram of Ð values observed in the historical data. 

Recommendations regarding experiments that are expected to produce polymers with target 

properties were generated in the following manner. The target range of MC was set at 90–100%; the target 

range of Ð was set at 1.05–1.15. These ranges were dictated by the practical constraints of the ongoing 

polymer synthesis efforts and consideration of balancing positive and negative classes in the 

recommendation task. Separate bi-partite networks were constructed for each property (cf. Figure 1C). 

“Monomer” and “catalyst” nodes in these networks were connected via links of weight 1.0 if the resulting 

experiments produced polymers with properties in the target ranges. Nodes comprising “unknown” 

experiments were connected via links of weight 0.5 per imputation strategies outlined in the studies of 

recommenders (see “Recommender Methodology” section in SI for the discussion). Finally, the nodes were 

disconnected if the resulting experiments produced polymers with properties outside target ranges. The 

recommendation workflow comprised the node embedding stage utilizing node2vec algorithm, the stage 

computing edge embedding as Hadamard product of the node embeddings, and the edge evaluation stage 



using a random forest classifier (RFC) producing probabilities of the “unknown” edges to have weight 1.0 

(see Supporting Information). A cross-validation study was performed to select parameter values for the 

stages of the recommendation workflow and to establish expectations about its performance (see Supporting 

Information).  

Full specifications of the recommended experiments were reviewed by the SMEs to perform the 

basic sanity checks and provide the initial level of the assessment of the prediction quality. We attempted 

to predict reaction time for each experiment using several standard regressors and treating the combination 

of binned continuous parameters and one-hot encoded categorical parameters as the features. In order to 

facilitate SMEs review and prioritization of the proposed experiments, we introduced the following novelty 

classes for the proposed experiments. The class of recommendations with the highest novelty comprises 

pairs of monomers and catalysts that have not been investigated before. Medium novelty class comprises 

combinations of monomer, initiator, catalyst, and co-catalyst that have not been attempted. This class 

comprises performance-tuning hypotheses where new initiators and co-catalyst accompany known 

monomer-catalyst pairs. Finally, the class with the lowest novelty of recommendations comprises 

combinations of monomer, initiator, catalyst, and co-catalyst that exist in historical data but new 

quantitative parameters, such as concentrations and ratios. Considerations of the novelty of the proposed 

experiments were further constrained by the availability and/or accessibility of the required monomers and 

catalysts. In our case, there were seven monomers and five catalysts available for the immediate 

recommender-driven action (Figure 3).  

The recommender produced approximately 16K hypotheses above 0.51 threshold (see 

“Recommender Methodology” section in SI for the discussion of the threshold selection) comprising 

monomer, initiator, [M]0 (discretized), [M]0:[I]0 (discretized), catalyst, and co-catalyst that are expected to 

produce polymers with the MC within the target range; 199 hypotheses were based on the 

available/preferred molecular components only and were considered actionable. Further, 52 actionable 

hypotheses belonged to the highest novelty class and were based on unique combinations of the molecular 



components. 48 actionable hypotheses in the medium novelty class were based on unique combinations of 

the molecular components. In the case of Ð as the target characteristic, approximately 16K experiments 

were recommended with the threshold set at 0.6 (see “Recommender Methodology” section in SI for the 

discussion of the threshold selection), including 238 based on the available/preferred components and were 

considered actionable; 61 actionable hypotheses had the highest novelty and were based on unique 

combinations of the molecular components. 36 actionable hypotheses had medium novelty and were based 

on unique combinations of the molecular components. Overall, 14 recommendations were selected by the 

SME for the experimental follow-up (Table 1) driven primarily by the availability of the monomers and 

catalysts and novelty class of the experiment. These experiments included ten unique combinations of the 

components; five of which were ranked as having high novelty and five combinations are medium novelty. 

The summary of the experimental outcomes is provided in Table 1.  

Table 1: Experimental Evaluation of Recommendations 

 

Entry Novelty Classa Initiator Catalyst Co-
catalyst 

Monomer Time 
(s) 

Conv. 
(%)b 

Mn 
(GPC)c Ðc MCd Ðd 

1 High C(+),Ð(+) BnOH U-3-CF3 KH TMC-BnF5 180 96 11388 1.39 TP FP 

2 High C(+),Ð(+) BnOH U-3-CF3 KH TMC-BnF5 5 91 14288 1.07 TP TP 

3 Medium C(+),Ð(+) Pyrene-
Bu-OH U-3-CF3 KH VL 186 97 14629 1.07 TP TP 

4 High C(+),Ð(+) BnOH TU-(Ph)2 DBU TMC 300 0 — — FP FP 

O Z

O

R R1

Catalyst, Intiator

THF, rt, time
Z

R1R
O

H
O

O
R2

n

Cyclic Monomers
Z  = C, O

Polyesters or Polycarbonates

N
H

N
H

O

N
H

N
H

O

CF3

CF3

N
H

N
H

O

CF3

CF3

CF3N
H

N
H

S

N
H

N
H

S

TU-(Ph)2 TU-Ph-Cy U-3-CF3

U-2-CF3-Cy

VL

O O

O

O

O O O

O

O O
Me

6

O O

O

O O

O O

O

O O F
F

F
F

F
Cl

O O

O

O O N+O O-

TMC TMC-Octyl

TMC-BnCl TMC-BnF5 TMC-NitroBnU-Ph-Cy

Catalysts

MonomersROP of Cyclic Carbonates and Lactones

O O

O

O O

TMC-Bn



5 Medium C(+),Ð(–) KOMe U-Ph-Cy — TMC-BnCl 720 97 5340 1.7 TP TN 

6 Medium C(+),Ð(–) KOMe U-Ph-Cy — TMC-BnCl 5 96 8729 2.24 TP TN 

7 Medium C(+),Ð(–) KOMe U-2-CF3-Cy — VL 15007 98 14672 1.77 TP TN 

8 Medium C(+),Ð(–) KOMe U-2-CF3-Cy — VL 1800 98 15791 1.62 TP TN 

9 Medium C(+),Ð(–) KOMe U-2-CF3-Cy — TMC 27901 99 7835 2.16 TP TN 

10 Medium C(+),Ð(–) KOMe U-2-CF3-Cy — TMC 600 99 8696 2.01 TP TN 

11 High C(+),Ð(–) BnOH TU-Ph-Cy DBU TMC-Octyl 225 38 — — FP TN 

12 High C(–),Ð(+) BnOH U-3-CF3 DBU TMC-Bn 60 95 9276 1.15 FN TP 

13 High C(–),Ð(–) BnOH U-Ph-Cy DBU TMC-Octyl 141 20 — — TN TN 

14 Medium C(–),Ð(–) KOMe U-2-CF3-Cy — TMC-NitroBn 190 87 2311 1.83 FN TN 

aRecommender output classes: C(+) — monomer conversion >90% after allotted experiment time; C(–) — monomer conversion 
<90% after allotted experiment time; Ð(+) — dispersity of resulting polymer within 1.05–1.15 range; Ð(–) — dispersity of resulting 
polymer greater than 1.15. Bold entries are ones that have SME adjusted reaction times. bDetermined by 1H NMR spectroscopy of 
crude reaction mixture. cDetermined by gel-permeation chromatography using THF as the eluent and calibration with polystyrene 
standards. THF = tetrahydrofuran; KOMe = potassium methoxide; KH = potassium hydride; DBU = 1,8-diazabicyclo[5.4.0]undec-
7-ene; BnOH = benzyl alcohol; Pyrene-Bu-OH = 1-pyrene butanol. dEvaluation of the predicted class labels: TP = true positive; 
FP = false positive, TN = true negative, and FN = false negative. See Supporting Information for details on reaction conditions and 
characterization data. 

Discussion 

The implemented recommender system is intrinsically sensitive to the connectivity of the networks 

subject to node2vec embedding. If only successful historical experiments are considered, the bi-partite 

networks connecting “monomer bundle” nodes and “catalyst bundle” nodes include multiple connected 

components (Figure S1). This is a form of the “cold start” problem, i.e., lack of the data required to produce 

a recommendation. If only successful experiments are expressed as links, there are pairs of monomers and 

catalysts that do not have any paths between them. Our imputation strategy (expressing unknown 

experiments as links with weight 0.5) enables node2vec to carry out random walks between disconnected 

components and produce a unified embedding. Of course, the obtained embeddings for the nodes that 

belong to the different connected components lead to recommendations equivalent to random guesses which 

drags down the performance metrics. The presence of the multiple connected components in the network 

of successful experiments is easy to interpret in the context of historical patterns of data acquisition, such 

as low tolerance for failing experiments leading to “survivor’s bias” and “frozen accidents” in the selection 

of the catalytic platforms. Exposure of this feature of the historical data topology in the recommender 



workflow helps to explicitly address “cold start” problem via acquisition of the critically missing 

experimental data.  

The experiments from the recommendation engine fell into two outcome-based classes based on 

the Ð or MC. Within each class, the experiment was assigned a positive or negative label based on whether 

its outcome will be within the targeted ranges for each class (>90 MC and Ð between 1.05–1.15). For each 

experiment selected for validation, the conditions were tested as given (see Table S1 for additional 

recommended parameters), meaning no additional fine-tuning of reaction parameters based on the 

knowledge of SME were performed. In select cases where the provided reaction time was determined by 

the SME be longer than necessary, a second experiment was performed at a shorter reaction time based on 

the SME’s estimation (entries 2, 5, 7, and 14; Table 1).  

The validation experimental results are summarized in Table 1 and are highly encouraging. Out of 

the 10 recommended experiments and 40 potential outcomes (positive or negative within each class), only 

five experiments had outcomes containing either a false positive or negative. Notably, in the four cases 

where a second experiment was run with the SME adjusted reaction time, the one with a false positive 

outcome (entry 1, Table 1) could be changed into a true positive (entry 2, Table 1) and for the others true 

positive outcomes were maintained. It is also important to the note that the experimental results are 

consistent with general reactivity trends for the ROP catalysts and monomers utilized, in particular for 

combinations classified as having high novelty. For example, the high conversion and broad dispersity 

resulting from using U-Ph-Cy catalyst with TMC-BnCl (entries 5 and 6, Table 1) is clearly a mismatched 

catalyst–monomer pair at the given reaction time and the obtained results are not unexpected from the 

perspective of a SME given the reported trends.24,25 Together, the experimental validation results 

demonstrate the overall robustness of the recommendations, with recommender accurately providing true 

positive results across all Ð and MC class combinations. 

Conclusion 



 In this work we demonstrated that a recommender system constructed from sparse historical 

experimental data can accurately provide recommendations to match catalysts with monomers for ROP. 

The process starts with curating a suitable dataset as well as selecting the target property class and proceeds 

to infer the parameters of the experiments that are expected to produce polymers with the target property. 

The pattern of our recommendation workflow matches the pattern of the inverse design strategies actively 

pursued in the context of “structure–property” relationship (where “property–structure” is the inverse of 

“structure-property”). By exploring “experimental parameters–property” paradigm of discovery, we ensure 

that the computational predictions are “embarrassingly actionable”, as in immediately transferrable into the 

experimental phase on the factually available equipment under realistic experimental conditions. This 

approach is more streamlined compared to typical protocols that rely on a SME to de novo construct a 

polymerization experiment using experience and knowledge by matching a ROP catalyst, monomer, and 

reaction conditions, particularly in cases of high novelty. Overall, this work highlights the potential for AI 

systems informed by historical data to reduce experimental workloads by enabling focus towards desired 

outcome classes. Elaboration of these systems and their combination with automated platforms will 

significantly enhance and accelerate materials development endeavors. 
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