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ABSTRACT: Appearance for the first time from Wuhan, China, 
the SARS-CoV-2 rapidly outbreaks worldwide and causes a 
serious global health issue. The effective treatment for SARS-
CoV-2 is still unavailable. Therefore, in this work, we have tried 
to rapidly predict a list of potential inhibitors for SARS-CoV-2 
main protease (Mpro) using a combination of molecular 
docking and fast pulling of ligand (FPL) simulations. The 
approaches were initially validated over a set of eleven 
available inhibitors. Both Autodock Vina and FPL calculations 
adopted good consistent results with the respective 
experiment with correlation coefficients of  𝑅Dock = 0.72 ±
0.14 and 𝑅W = −0.76 ± 0.10, respectively. The combined 
approaches were then utilized to predict possible inhibitors, 
which were selected from a ZINC15 sub-database, for SARS-
CoV-2 Mpro. Twenty compounds were suggested to be able to 
bind well to SARS-CoV-2 Mpro. The obtained results probably 
lead to enhance COVID-19 therapy. 

INTRODUCTION 

 The novel coronavirus, named SARS-CoV-2 or 2019-nCoV, 
causes COVID-19 disease which is an ongoing global 
pandemic. First cases of COVID-19 infection were reported in 
Wuhan, Hubei, China in December 2019.1-3 The virus was 
found to be able to transmit from human to human.4 
Especially, It has been suggested that SARS-CoV-2 can 
transmit through airborne/aerosol since the virus was found 
to remain viable and infectious in such environment for more 
than three hours.5 The novel coronavirus causes severe acute 
respiratory syndromes which have resulted in hundreds of 
thousands of deaths worldwide.6, 7 Moreover, the intermediate 
host is still undetected, although the original reservoir is 

indicated as the bat.8 Understanding the spread of the virus 
thus becomes more difficult. The current global health crisis 
caused by COVID-19 has called for urgent research and 
development of an efficient antiviral drug.  

 SARS-CoV-2 and SARS-CoV share about 82% similarity in 
their RNA genomes. The genomes of coronaviruses ranges  
from 26 to 32 kb in length. The viruses thus have the largest 
sequence among RNA virus.9, 10 There are more than 20 
different proteins encoded by the genomes of the SARS-CoV-
2. In particular, the SARS-CoV-2 main protease (Mpro) is 
known as one of the most critical viral proteins. It should be 
noted that the SARS-CoV-2 Mpro adopts more than 96% 
similarity to the SARS-CoV Mpro. During the viral translation, 
the SARS-CoV-2 Mpro cleaves eleven polyproteins to 
polypeptides, which are necessary for the transcription and 
replication of the virus.10 The SARS-CoV-2 Mpro is selected as 
one of the most potent drug targets for inhibiting the viral 
proliferations.11, 12 Thefore, numerous studies have been 
conducted using experimental and computational approaches 
in order to search for potential small-molecule inhibitors that 
can effectively block the activity of this protease.11-17  

 It should be noted that computer-aided drug design 
(CADD) can significantly reduce the time and cost for 
developing  a therapy.18, 19 In the CADD approach, the ligand-
binding free energy ∆𝐺 can be calculated through MD 
simulations. This metric is linked with the experiment 
through formula ∆𝐺bind = 𝑅𝑇𝑙𝑛(𝑘i), where 𝑘i is inhibition 
constant, 𝑇 is absolute temperature, and 𝑅 is gas constant. In 
some cases, IC50 is assumed to be equal to 𝑘i in order to 
estimate the experimental binding free energy ∆𝐺EXP.14, 20, 21 
Because the metric reveals the binding mechanism between 
biomolecules,18 accurate and precise investigation of the 
ligand-binding free energy is tremendously critical for 



 

 

searching potential inhibitors.22 In this work, the potential 
candidates from ZINC15 in man compounds,23 which can bind 
to the SARS-CoV-2 Mpro, were screened using combined 
approaches of molecular docking and FPL simulations. It 
should be noted that this combined computational scheme 
was previously validated by testing on eleven available 
inhibitors whose calculated binding free energies were in 
good agreement with respect to experiments.11-13 Our present 
study suggested that twenty compounds were able to bind 
with high affinity to SARS-CoV-2 Mpro. These compounds can 
become promising leads for developing drugs against the 
COVID-19 disease. 

 

MATERIALS & METHODS 

Structure of Ligands and SARS-CoV-2 Mpro 
 Three-dimensional structures of SARS-COV-2 Mpro was 
obtained from the Protein Data Bank with the identify of 
6Y2F.11 Ligand structures were taken from the ZINC15 in man 
only and the PubChem database.23, 24 

Molecular Docking Simulations 
 The ligands were docked to the SARS-CoV-2 Mpro by using 
the Autodock Vina version 1.1 package.25 The parameter of the 
docking approach was chosen according to the previous 
study,14, 26 in which the parameter of exhaustiveness was set to 
the default value of 8. The best docking conformations were 
chosen as having the largest binding affinity. The grid center 
was designated as the center of mass of compound α-
ketoamide 13b.11 The grid size was chosen as 2.6 × 2.6 × 2.6 
nm according to the recent work.14 

Fast Pulling of Ligand (FPL) Simulations 
 GROMACS version 5.1.527 was utilized to simulate 
unbinding process of a ligand pulled out of the binding cavity 
of the SARS-CoV-2 Mpro. The protein and ions were 
parameterized using the Amber99SB-ILDN force field.28 The 
TIP3P model was utilized for water molecules.29 The general 
Amber force field (GAFF)30 was used to represent the ligand 
via AmberTools18.31 The ACPYPE32 protocol was used to 
transform AMBER to GROMACS formats. In particular, the 
ligand atomic charges were fitted using the restrained 
electrostatic potential (RESP) method33 which is based on 
DFT calculations with B3LYP functional and 6-31G(d,p) basis 
set. It should be noted that the combination of the force fields 
was preferred since it is one of the most solution for free 
energy assessment.34, 35 

  The complex SARS-CoV-2 + inhibitor was initially inserted 
into a rectangular PBC (periodic boundary conditions) box 
with a size of 9.83 × 5.92 × 8.70 nm (Figure 1), similarly to 
the recent work.14 The complex system thus consists of more 
than 50 000 atoms including the SARS-CoV-2 Mpro, ligand, 
water molecules, and counterbalanced ions Na+. The solvated 
SARS-CoV-2 Mpro + inhibitor system was firstly minimized 
via the steepest descent approach. The 0.1 ns of NVT and 2.0 
ns of NPT imitations were then followed to relax the 
complexed system, in which the SARS-CoV-2 Mpro 𝐶𝛼 atoms  
were positionally restrained using a harmonic potential. 
Finally, the ligand was forced to move out of the SARS-CoV-2 
Mpro active site by applying an external harmonic force with 
a pulling speed of 𝑘 = 0.005 nm ps-1 and a spring constant of 
𝑣 = 600 kJ mol-1 nm-2. The pulling speed and spring constant 
were chosen to be the same as in the previous works.14, 36, 37 
During steered-MD simulations, the ligand displacement and 
the applied pulling force were recorded every 0.1 ps that would 

be used to estimate the ligand binding affinity.36 Totally, the 
FPL calculations were independently performed 8 times to 
guarantee the sufficient sampling. 

 

Figure 1. Computational conformation of the SARS-CoV-2 Mpro 

+ periandrin V.  

Analyzed Tools 
 The ligand protonation state was predicted by using the 
Chemicalize tools (www.chemicalize.com), a website 
application of the ChemAxon. The error of computations was 
estimated via 1000 rounds of the bootstrapping method.38 

RESULTS AND DISCUSSION 

Molecular Docking Simulation 
 Molecular docking simulations are normally employed to 
probe the binding affinity between ligands and proteins. 
Autodock Vina25, an open-source docking protocol, is widely 
used for this purpose. The binding affinity between the 
ligands and the SARS-CoV-2 Mpro was efficiently estimated 
using Autodock Vina.25 The calculated binding affinity (Table 
1) is strongly correlated with experimental binding affinity 
with an estimated correlation coefficient of 𝑅Dock = 0.72 ±
0.14 (cf. Table 1 and Figure 2).11-13 Moreover, the root-mean-
square error (RMSE) with respect to experiment was 
estimated as 𝑅𝑀𝑆𝐸 = 2.42 ± 0.22 kcal mol-1 (Figure 2).11-13 It 
should be noted that the obtained results are consistent with 
the recent work which reported the corresponding values of 
𝑅Dock = 0.82 ± 0.08 and 𝑅𝑀𝑆𝐸 = 2.28 ± 0.21 kcal mol-1.39 

Table 1. The obtained values of the docking simulations. 

N0 Name ∆𝐆𝐃𝐨𝐜𝐤 ∆𝐆𝐄𝐗𝐏b 

1 11r -6.5c -9.23 

2 13a -6.5c -7.70 

3 13b -6.3c -8.45 

4 11a -6.8 -9.96 

5 11b -7.0 -10.13 

6 Carmofur -5.7 -7.86 

7 Disulfiram -3.8 -6.89 

8 Ebselen -5.6 -8.45 

9 PX-12 -3.8 -6.39 

10 Shikonin -6.1 -6.58 

11 Tideglusib -6.6 -7.95 

aThe docking affinity was gained using the Autodock Vina 
package. bThe experimental binding free energy ∆𝐺EXP was 
roughly computed via the reported IC5011-13 with a supposition 
that the IC50 value is equal to the inhibition constant 𝑘i. eThe 
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values were reported in the previous work.14 The unit is in kcal 
mol-1. 

 

Figure 2. Correlation between molecular docking and experi-
ment. The error of the correlation coefficient was determined 
via 1000 rounds of the bootstrapping method.38 

 The good docking performance for 11 ligands as shown 
above gives us the confidence to carry out docking 
calculations for 36090 compounds in ZINC15 in man only 
compounds using Autodock Vina package.25 However, the 
compound ZINC000169876613 was skipped because it 
contains the element silicon for which the docking package 
has no parameters. The estimated binding free energies for 
36089 compounds ranges from -1.8 to -9.9 kcal mol-1 and have 
the median of -5.72 kcal mol-1 and the standard deviation of 
1.20 kcal mol-1. We selected one hundred compounds with 
binding affinity to the SARS-CoV-2 Mpro lower than -8.9 kcal 
mol-1 (Figure 3) for from further investigations using MD 
simulations. However, thirty-nine of them were discarded 
from the set since they are just different in protonation states 
of the same molecules. Overall, sixty-one compounds with 
two-dimensional interaction diagrams with SARS-CoV-2 
Mpro (Table S1 of the Supplementary - SI file) were 
investigated the unbinding progress via FPL simulations. 

 

Figure 3. Distribution of the docking energy between 36089 
ZINC15 in man only compounds and the SARS-CoV-2 Mpro. 
The results were gained using the Autodock Vina. 

Estimating Ligand Affinity using FPL Simulations 
 Although, the docking protocol adopts appropriate results 
compared with experiments (Figure 2),11-13 lacking 
consideration of the receptor dynamics and limiting the 
number trial position of ligands may cause inaccurate 
prediction. A more accurate and precise method would be 
normally employed to refine the docking observation.21, 40 
Moreover, because the FPL calculation commonly offers 
accurate and precise results with an reasonable CPU time 
consumption.41 Furthermore, it should be noted that FPL 
simulations were successfully used in the previous work14 to 

correctly rank the ligand-binding affinity of the α-ketoamide 
11r, 13a, and 13b11 to the SARS-CoV-2 Mpro. The validated 
calculations were also performed over the additionally 
available inhibitors including 11a, 11b, carmofur, disulfiram, 
ebselen, PX-12, shikonin, and tideglusib.12, 13 The obtained 
results were shown in  

Table 2 and Figure S1 of the SI file. In particular, the mean 
pulling work 𝑊 of eleven inhibitors falls in the range from 16.5 
± 1.7 to 94.6 ± 5.0 kcal mol-1, giving a median of 47.2 ± 8.6 kcal 
mol-1. Besides that, the average of the rupture forces forms in 
the range from 321.2 ± 26.5 to -884.2 ± 36.5 pN, giving an 
average value of 530.2 ± 62.6 pN. The calculated values are in 
good agreement with the respective experiments,11-13 because 
the correlation coefficient between the mean pulling work and 
experimental values is of  𝑅W = −0.76 ± 0.10 (Figure 4). The 
computed error was estimated using 1000 rounds of the 
bootstrapping method.38 Furthermore, the sign of the 
correlation coefficient 𝑅W implied that the ligand with a 
stronger binding affinity requires a larger pulling work to 
dissociate from the SARS-CoV-2 Mpro. Therefore, from linear 
regression we could estimate the relation between binding 

free energy ∆𝐺FPL
Pre  and the pulling work as  

 

   ∆𝐺FPL
Pre = −0.056 ∗ 𝑊 − 5.512      (1) 

 

 The precision of the FPL estimation was evaluated by the 
RMSE with linear regression, giving 𝑅𝑀𝑆𝐸W = 1.03 ± 0.14 
kcal mol-1. The small value of RMSE imply that the FPL 
simulations can discriminate ligands revealing similar binding 
free energies. The error was estimated by the standard 
deviation of 1000 bootstrap samples.38 Overall, the FPL 
calculations are effective protocol to evaluate the ligand-
binding affinity of the SARS-CoV-2 Mpro with the suitable 
accuracy and precision. 

Table 2. The obtained values of the FPL calculations. 

N0 Name 𝑭𝐌𝐚𝐱
a 𝑾b ∆𝐆𝐄𝐗𝐏c 

1 11r 857.5 ± 38.7d 94.6 ± 5.0e -9.23 

2 13a 496.0± 32.5d 43.3 ± 3.9e -7.70 

3 13b 884.2 ± 36.5d 91.9 ± 3.6e -8.45 

4 11a 701.3 ± 54.1 70.7 ± 5.9 -9.96 

5 11b 718.7 ± 46.8 74.3 ± 4.4 -10.13 

6 Carmofur 421.5 ± 23.9 32.6 ± 1.8 -7.86 

7 Disulfiram 371.3 ± 20.3 24.5 ± 1.9 -6.89 

8 Ebselen 381.0 ± 34.0 23.5 ± 2.5 -8.45 

9 PX-12 321.3 ± 26.5 16.5 ± 1.7 -6.39 

10 Shikonin 327.9 ± 24.4 21.2 ± 2.1 -6.58 

11 Tideglusib 351.8 ± 32.4 26.3 ± 2.4 -7.95 

aThe obtained value of the mean rupture force 𝑭𝐌𝐚𝐱 and bthe 
recorded metric of the pulling work 𝑾. cThe experimental 
binding free energy ∆𝐺EXP was coarsely estimated via the 
reported IC5011-13 with a supposition that the IC50 value is 
equal to the inhibition constant 𝑘i. deThe values were reported 
in the previous work.14 The computed error was the standard 
error of the average. The unit is in kcal mol-1. 

 



 

 

 

Figure 4. Correlation between the average of the pulling work 
𝑊 and the binding free energy ∆𝐺𝐸𝑋𝑃 of the respective exper-
iments. Computed values were obtained via the FPL simula-
tions. Experimental metrics were roughly estimated via the re-
ported IC5011-13 with a hypothesis that the IC50 value is equal 
to the inhibition constant 𝑘𝑖 in the recent publications.11-13 The 
linear regression between pulling work and the experiment is 
𝑊 = −17.993 ∗ ∆𝐺EXP − 98.852. 

 The FPL calculations were thus applied to evaluate the 
binding affinity of docking-top-lead compounds to the SARS-
CoV-2 Mpro, which consists of  sixty-one compounds listing 
in Table 3 and Table S2 of the SI file. The mean rupture forces 
and mean pulling works were found to be diffused in the range 
from 389.5 ± 20.9 to 822.4 ± 40.0 pN and 32.9 ± 2.6 to 94.1 ± 
4.7 kcal mol-1

, respectively. Particularly, the median of the 
corresponding metrics are of 574.5 pN and 57.9 kcal mol-1, 
respectively. Moreover, the predicted binding free energies 
between ligands and the SARS-CoV-2 Mpro were calculate by 

using Eq. (1). The value ∆𝐺FPL
Pre  was thus obtained and shown 

in Table 3 and Table S2 of the SI file. It may be argued that a 

ligand with estimated bining free energy, ∆𝐺FPL
Pre , less than -

9.00 kcal mol-1 may be able to inhibit the activity of the SARS-
CoV-2 Mpro. Therefore, we expect that twenty such 
compounds to be potential inhibitors for SARS-CoV-2 Mpro 
activity (Table 3) because of their strong binding affinity. In 
addition, it may argue that the other compounds, described in 
in Table S2 of the SI file, probably adopt less effects on the 
structure of SARS-CoV-2 Mpro.  

Table 3. The obtained values of the docking and FPL simulations. 

N0 ZINC ID Name ∆𝐆𝐃𝐨𝐜𝐤a 𝑭𝐌𝐚𝐱b 𝑾c ∆𝑮𝐅𝐏𝐋
𝐏𝐫𝐞 d 

1 ZINC000256110404 Periandrin V -9.1 782.7 ± 39.0 94.1 ± 4.7 -10.76 

2 ZINC000085537131 Penimocycline -9.0 798.3 ± 51.2 92.8 ± 7.0 -10.69 

3 ZINC000100783644 cis-p-Coumaroylcorosolic acid -8.9 822.4 ± 40.0 89.5 ± 4.1 -10.51 

4 ZINC000253527863 Glycyrrhizin -9.3 598.4 ± 43.2 86.2 ± 8.2 -10.32 

5 ZINC000256105139 Uralsaponin B -9.7 690.6 ± 33.7 83.6 ± 3.0 -10.17 

6 ZINC000100783815 3-trans-Caffeoyltormentic acid -8.9 731.8 ± 53.0 77.5 ± 4.1 -9.83 

7 ZINC000004214527 Triamcinolone Benetonide -8.9 664.0 ± 21.6 74.8 ± 2.3 -9.68 

8 ZINC000028642721 Sennidin A -9.5 779.7 ± 58.8 74 ± 5.2 -9.64 

9 ZINC000100783890 23-trans-p-Coumaroyloxytormentic acid -9.2 566.7 ± 15.1 72.9 ± 3.4 -9.58 

10 ZINC000098052857 Evans Blue -8.9 670.2 ± 56.1 72.7 ± 6.8 -9.56 

11 ZINC000100783691 Sanguisorbin B -8.9 616.9 ± 32.9 71.6 ± 3.2 -9.51 

12 ZINC000095619992 Licoricesaponin C2 -8.9 616.3 ± 44.2 69.9 ± 7.0 -9.41 

13 ZINC000118937488 Withangulatin A -9.0 703.5 ± 31.5 68.5 ± 3.7 -9.33 

14 ZINC000100783660 trans-3-Feruloylcorosolic acid -9.2 654.9 ± 23.3 67.3 ± 2.5 -9.26 

15 ZINC000100777487 Physalin D -8.9 682.3 ± 32.9 65.8 ± 2.8 -9.18 

16 ZINC000004879678 Guamecycline -9.6 565.2 ± 24.8 64.7 ± 4.8 -9.12 

17 ZINC000150354128 
Bis(4-methoxybenzoyl)-3a,29-dihydroxy-
8-multifloren-7-one 

-8.9 564.8 ± 39.4 63.8 ± 3.1 -9.07 

18 ZINC000004215464 Cortisuzol -9.2 579.3 ± 38.9 63.5 ± 4.2 -9.05 

19 ZINC000100774273 Rubroskyrin -8.9 696.1 ± 51.3 62.9 ± 5.1 -9.02 

20 ZINC000073224787 Tirilazad Mesylate -9.1 573.8 ± 46.7 62.7 ± 3.4 -9.01 

aThe docking affinity was calculated using the Autodock Vina package. bThe obtained value of the mean rupture force 𝑭𝐌𝐚𝐱 and 
cthe recorded metric of the pulling work 𝑾. dThe predicted binding free energy ∆𝐺FPL

Pre was attained using Eq. (1). The computed 
error was the standard error of the average. The unit of energy and force are in kcal mol-1 and pN, respectively. 

CPU Time Consumption 
 Each SARS-CoV-2 Mpro + inhibitor complex was simulated 
over 8 independent FPL simulations, which started from same 
initial conformation but different random velocity. One FPL 
trajectory includes 0.1 ns of NVT, 2.0 ns of NPT, and 0.5 ns of 
SMD simulations. 20.8 ns of MD simulations was thus 
performed to estimate the ligand-binding affinity of the SARS-
CoV-2 Mpro with 8 various FPL trajectories. It should be noted 

that one personal computer with AMD Ryzen 9 3950X CPU 
and RTX 2060 Super acceleration can perform ca. 80 ns of MD 
simulation per day for the SARS-CoV-2 Mpro + inhibitor 
system. Therefore, the binding affinity of a ligand to the SARS-
CoV-2 Mpro is able to compute 8 times during ca. 6.24 hours. 
The low CPU requirement permits us to rapidly calculate the 
binding affinity of many ligands to the SARS-CoV-2 Mpro 
without any professional computing system. 



 

 

CONCLUSIONS 

 We have demonstrated that a combination of molecular 
docking using Autodock Vina and FPL simulations is able to 
efficiently estimate the binding affinity of a ligand to the 
SARS-CoV-2 Mpro. In particular, over eleven available 
inhibitors for preventing the activity of the SARS-CoV-2 Mpro, 
Autodock Vina formed a good consistent with the respective 
experiments.11-13 The correlation coefficient and RMSE are 
measured as 𝑅Dock = 0.72 ± 0.14 and 𝑅𝑀𝑆𝐸 = 2.42 ± 0.22 
kcal mol-1, respectively. Moreover, the FPL simulations also 
adopted results that is in good agreement with these 
experiments.11-13 The correlation coefficient and RMSE with 
linear regression are 𝑅W = −0.76 ± 0.10 and 𝑅𝑀𝑆𝐸W =
1.03 ± 0.14 kcal mol-1, respectively.  

 The combination of two approaches is thus employed to 
predict potential inhibitors for the SARS-CoV-2 Mpro. A 
shortlist consisting of sixty-one compounds was found after 
36089 compounds were docked to the active site of the SARS-
CoV-2 Mpro. The obtained results were then refined by 
utilizing the FPL calculations. Twenty compounds were finally 
suggested that they are able to inhibit the activity of the SARS-

CoV-2 Mpro because they have low ∆𝐺FPL
Pre, which is smaller 

than -9.00 kcal mol-1. Further investigation using in vitro 
and/or in vivo studies should be carried out to validate the 
obtained results. 

 In addition, as discussed above, the requirement of CPU 
time is quite low. The combination of the Autodock Vina and 
FPL simulations are efficient way to rapid screening a large 
number of trial ligand for the SARS-CoV-2 Mpro. Especially, 
the computations can be carried out at home using an 
affordable PC with AMD CPU and Nvidia RTX GPU card 
acceleration. 
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