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ABSTRACT: The direct α-sulfidation of tertiary amides using sulfoxide reagents under electrophilic amide activation conditions is 
described. Employing readily available reagents, selective functionalization takes place to generate isolable sulfonium ions en route 
to α-sulfide amides. Mechanistic studies support the critical role of activated sulfoxides that promote the desired transformation. 
For benzylic amide substrates, a single-step protocol featuring a spontaneous dealkylation step of a sulfonium ion intermediate was 
developed. 

    New methods for the introduction of carbon–sulfur bonds 
are of interest in the synthesis and diversification of bioactive 
compounds given the existence of hundreds of sulfur-
containing structures approved by the U.S. Food and Drug 
Administration for the treatment of human ailments.1-3 Exist-
ing methods for the sulfidation of amides either rely on the use 
of basic conditions to activate the amide for nucleophilic at-
tack, or employ α-halo amides in combination with nucleo-
philic thiols (Scheme 1A).4 As an outgrowth of our studies 
concerning electrophilic amide activation for practical carbon–
carbon and carbon–nitrogen bond forming reactions,5,6 we 
recognized an opportunity to develop an orthogonal approach 
compared to contemporary methods for introduction of car-
bon–sulfur bonds. Herein, we describe the direct α-sulfidation 
of amides using sulfoxide reagents (Scheme 1B). Detailed 
mechanistic studies are consistent with carbon–sulfur bond 
formation via addition to an electrophilic sulfonium ion, ena-
bling access to α-sulfonium and α-sulfide substituted amides 
through judicious choice of sulfoxide reagents. 
    Sulfoxides can serve as ideal reagents for synthesis as they 
are readily available, easily derivatized, and bench stable.7,8 
We have previously reported that the reagent combination of 
trifluoromethanesulfonic anhydride (Tf2O) and a substituted 
pyridine5 is effective for electrophilic amide activation9 to 
enable the addition of various nucleophiles. In particular, the 
use of 2-chloropyridine (2-ClPy)10 as the base additive offered 
a range of condensative azaheterocycle syntheses5 whereas the 
use of 2-fluoropyridine (2-FPy)5e allowed the formation of 
highly reactive nitrilium ions for a modified Abramovitch 
reaction. Innovative reports continue to demonstrate the prac-
tical nature of this approach to amide derivatization.11,12  
     Inspired by our observations regarding the addition of 
pyridine N-oxides to nitrilium ions for carbon–nitrogen bond 
formation,5e and reports on the use of sulfoxides in carbon–
carbon bond formation,11j we envisioned the use of sulfoxide 
reagents for carbon–sulfur bond formation (Scheme 2). We 
anticipated the addition of dimethyl sulfoxide (DMSO, 2a) 
upon electrophilic activation of amide 1a would lead to oxy-
sulfonium ion 7aa en route to α-sulfonium amide 3aa and the 
corresponding α-sulfide amide 4a after demethylation. Under 
optimal conditions13 activation of amide 1a with Tf2O (1.05 
equiv) and 2-ClPy (3.00 equiv) with monitoring of the reaction 
mixture upon addition of DMSO (2a, 1.20 equiv) via in situ 
IR-spectroscopy revealed complete sulfoxide addition and 
conversion to α-sulfonium amide 3aa at –30 °C without ob-
servation of any persistent intermediates.14 Exposure of sul-
fonium ion 3aa to excess triethylamine in acetonitrile and 
 

Scheme 1. Methods for the α-Sulfidation of Amides 

 

 

Scheme 2. α-Sulfidation of Benzylic Amide 1a 

 
Reagents and conditions: (a) Tf2O (1.05 equiv), 2-ClPy (3.00 equiv), 
CH2Cl2, –78 à 0 °C, 15 min; (b) Sulfoxide (2, 1.20 equiv), CH2Cl2,  
–78 à 22 °C, 45 min; for 3aa: (c) Et3N (10 equiv), MeCN, 60 °C, 15 h.  
 
warming to 60 °C led to quantitative demethylation15 and 
afforded α-sulfide amide 4a (67% yield, 2-steps). We further 
anticipated that a single-step procedure using an appropriately 
substituted sulfoxide reagent 2 (Scheme 1B) would enable 
spontaneous dealkylation of α-sulfonium amide 3 to directly 
afford sulfide 4. Under optimal conditions,13 the use of tert-
butyl methyl sulfoxide (TBMSO, 2b) as the sulfidation rea-
gent led to direct conversion of amide 1a to α-sulfide amide 
4a in 54% yield (Scheme 2).  
    The application of this chemistry to α-sulfidation of α-aryl 
amides was examined as illustrated in Table 1. Sulfide 4a 
could be prepared on a 5.00-mmol scale without compromis-
ing reaction efficiency via either a two-step procedure using 
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DMSO (2a, Method A: 70% yield, Table 1) or a single-step 
procedure employing TBMSO (2b, Method B: 56% yield, 
Table 1). A variety of α-aryl acetamides, including versatile 
morpholine-derived amides (Table 1, 4a, and 4h–o),16 in addi-
tion to N-phenyl (Table 1, 4e–f) and N-benzyl (Table 1, 4d, 
and 4g) substituted amides, served as substrates for this α-
sulfidation reaction.17,18 α-Sulfide amide 4c was prepared from 
the corresponding Weinreb amide in modest yield (Table 1).19 
When the demethylation step of Method A with DMSO (2a) 
was omitted, dimethylsulfonium trifluoromethanesulfonates 
3aa and 3ba derived from morpholine and pyrrolidine amides 
1a and 1b could be isolated in 61% and 68% yield, respective-
ly.13 

 
Table 1. α-Sulfidation of Benzylic Amides with DMSO (2a) 
and TBMSO (2b)a 

 
aReagents and conditions: Method A (2-steps, sulfonium ion 3 isolated): 
Tf2O (1.05 equiv), 2-ClPy (3.00 equiv), CH2Cl2, –78 à 0 °C, 15 min; 
DMSO (2a, 1.20 equiv), CH2Cl2, –78 à 22 °C, 45 min; Et3N (10.0 equiv), 
MeCN, 60 °C, 15 h. Method B (sulfonium ion 3 not isolated): Tf2O (1.05 
equiv), 2-ClPy (3.00 equiv), CH2Cl2, –78 à 0 °C, 15 min; TBMSO (2b, 
1.20 equiv), CH2Cl2, –78 à 22 °C, 45 min. Yields are reported: Method 
A, Method B. 

 
    A wide-range of substituents was tolerated on the α-aryl 
acetamide substrates to give the corresponding sulfide amides 
(Table 1, 4h–4o). However, substituents that may compromise 
the stability of the α-sulfonium ion intermediate 3 (Scheme 
1B) led to low isolated yields of desired product (Table 1, 4i 
and 4j). While the use of DMSO (2a) generally affords higher 
yields after one-pot demethylation, TBMSO (2b) forms α-
thiomethyl amides more directly via spontaneous dealkylation. 
Additionally, the use of TBMSO (2b) enables the sulfidation 
of substrates where the α-sulfonium ion intermediate is sub-
ject to hydrolysis (e.g. sulfidation of α,α-diphenyl acetamide 
S1 to α-thiomethyl amide S4).13  

    Motivated by the success of the single-step sulfidation of 
amides using TBMSO (2b; Table 1, Method B), we next ex-
amined the use of tert-butyl sulfoxides 2c–2e with amide 1a to 
give the corresponding α-sulfide amides 4p–4r (Table 2).13 In 
each case, the primary alkyl substituent of the tert-butyl sul-
foxide was preserved, owing to the relative stability of the 
cation derived from the tert-butyl substituent in the spontane-
ous dealkylation. Complimentarily, α-sulfide amide 4r could 
also be formed with methyl sulfoxide 2f after regioselective 
dealkylation (62% yield), leaving the homobenzylic substitu-
ent intact. 
 
Table 2. α-Sulfidation of Amide 1a with Sulfoxides 2c–2fa 

 
aReagents and conditions: Tf2O (1.05 equiv), 2-ClPy (3.00 equiv), CH2Cl2, 
–78 à 0 °C, 15 min; sulfoxide 2c–2e (1.20 equiv), CH2Cl2, –78 à 22 °C, 
45 min; bUse of sulfoxide 2f with Method A, Table 1. 

 
    In evaluating the scope of the transformation, we found that 
optimal conditions described in Table 1 were not compatible 
with amides other than α-aryl acetamides. With non-benzylic 
aliphatic amides, the addition of DMSO (2a) to the activated 
amide intermediate led to recovery of the starting amide de-
spite successful amide activation, as evidenced by in situ reac-
tion monitoring. We therefore pursued a series of mechanistic 
experiments to inform our efforts to expand the substrate 
scope of our amide sulfidation methodology.  

 
    While the use of DMSO-d6 (2a-d6) for the α-sulfidation of 
benzylic amide 1b led to α-sulfide amide 4b-d3 in 71% yield 
(eq. 1), when DMSO-d6 (2a-d6) was used with aliphatic amide 
1t, we observed only recovery of the tertiary amide 1t-d1 (85% 
yield) with 88 atom% D-incorporation at the α-position (eq. 
2).13 We attributed these observations to a retro-ene reaction 
from intermediate 7ta-d6 that is preferred for aliphatic sub-
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strates, rather than the desired α-sulfidation as seen for ben-
zylic amides.20,21  
    Toward our goal of mechanism-guided expansion of the 
scope of our α-sulfidation chemistry, it was necessary to de-
velop a detailed understanding of the underlying reaction 
pathway. We envisioned that oxysulfonium ion intermediate 7, 
derived from addition of sulfoxide to keteniminium 6, could 
either undergo an intramolecular rearrangement as in our 
modified Abramovitch reaction (Scheme 3, pathway A),5e or 
intermolecular sulfidation with an electrophilically-activated 
sulfoxide ion 8 to give the α-sulfonium amide product (path 
B). Rather than undergoing productive sulfidation however, 
aliphatic amides (e.g. 1t, R=CH2Ph) react through pathway C 
under the conditions of Table 1, regenerating the starting am-
ide and methylthiomethyl trifluoromethanesulfonate 9, which 
could be detected in the crude reaction mixture by 1H and 13C 
NMR analysis. 
 
Scheme 3. Possible Reaction Pathways 

 
 
    Distinguishing intra- and intermolecular sulfidation path-
ways was accomplished by means of a crossover experiment 
employing an equal mixture of DMSO (2a) and doubly la-
beled DMSO-18O-d6 (2a-18O-d6).13 When amide 1b was sub-
jected to standard reaction conditions using this sulfoxide 
mixture, we observed substantial formation of crossover sul-
fonium ion products 3ba-18O/3ba-d6 and DMSO (2a-18O/2a-
d6), in addition to non-crossover products 3ba/3ba-18O-d6 and 
DMSO (2a/2a-18O-d6) by Q-TOF mass-spectrometry of the 
crude reaction material (Scheme 4).22 Based on our computa-
tional studies, and the observation of all possible crossover 
and non-crossover products, we concluded that intermolecular 
sulfidation predominates over an intramolecular pathway.23,24 
An alternative intermolecular sulfidation pathway involving 
dimethyl sulfide addition to an α-electrophile was also consid-
ered,25 however our DFT calculations identified a relatively 
high barrier for sulfur–oxygen cleavage from oxysulfonium 
ion 7 (ca. 18 kcal/mol vs. 3 kcal/mol for Scheme 3, pathway 
B). Additionally, we observed unsubstantial deuterium incor-
poration into the sulfonium product 3aa upon addition of 
dimethyl sulfide-d6 (1.00 equiv) to the reaction mixture at –78 
°C.13,26 

 
 
 
 

Scheme 4. Crossover Experiment with amide 1b and an 
equal mixture of DMSO (2a) and DMSO-18O-d6 (2a-18O-d6)a 

 
aReagents and conditions: Tf2O (1.10 equiv), 2-ClPy (2.00 equiv), CDCl3, 
–78 à  0 °C, 15 min; DMSO (2a) and DMSO-18O-d6 (2a-18O-d6) mixture 
(1:1, 2.00 equiv), CDCl3, –78 à 22 °C, 45 min. 

 
    Based on these insights suggesting an intermolecular mech-
anism for the sulfidation step involving an activated sulfoxide 
species, we recognized that the unproductive retro-ene path-
way (Scheme 3, pathway C) may be outcompeted by increas-
ing the concentration of trifluoromethanesulfonyloxysul-
fonium ion 8.27 Indeed, α-sulfidation of aliphatic amide 1t 
with DMSO (2a) proceeded in 79% yield by increasing the 
amount of sulfoxide used and adding supplemental Tf2O after 
amide activation. Successful acceleration of the desired sulfi-
dation pathway by increasing the quantity of activated sulfox-
ide intermediate 8 is consistent with the involvement of this 
species in an intermolecular sulfidation process and in turn 
supports the mechanistic hypothesis illustrated in Scheme 3, 
pathway B.23  
    Further evaluation of conditions for sulfoxide activation 
revealed that the addition of trifluoroacetic anhydride (TFAA) 
after amide activation offered the sulfidated aliphatic amides 
in higher yield compared to use of Tf2O.13,28 This modified 
condition, rationally identified through our mechanistic stud-
ies, provide access to a variety of α-sulfidated aliphatic amides 
(Table 3). Homobenzylic morpholine and pyrrolidine amides 
1s and 1t gave the corresponding α-sulfide amides 4s and 4t 
respectively.29,30 The α-sulfide amide 4s could be prepared on 
5.00-mmol scale without compromising reaction efficiency 
(83% yield, Table 3). Saturated morpholine α-sulfide amide 
4u could also be prepared with similar efficiency (77% yield). 
The transformation was successfully conducted with the ter-
minal alkyne 1v and alkene 1w. Ester- and ketone-containing 
substrates 1x and 1y could be chemoselectively sulfidated 
adjacent to the amide group in the presence of other unprotect-
ed carbonyl-groups. Aliphatic amide 1aa was sulfidated using 
methyl sulfoxide derivative 2f in 64% yield after regioselec-
tive dealkylation. For amide 1z, single crystals suitable for X-
ray diffraction were obtained of intermediate 3za31 en route to 
α-sulfide product 4z, revealing a non-covalent interaction32 
between the sulfonium-cation and trifluoromethanesulfonate 
anion that underlies its high solubility in organic solvents and 
resistance towards elimination and hydrolysis.33 
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Table 3. α-Sulfidation of Aliphatic Amidesa 

 
aReagents and conditions, Method C: Tf2O (1.10 equiv), 2-ClPy (3.00 
equiv), CH2Cl2, –78 à 0 °C, 15 min; sulfoxide 2a (2.50 equiv), TFAA 
(1.00 equiv), CH2Cl2, –78 à 22 °C, 45 min; Et3N (10.0 equiv), MeCN,  
60 °C, 15 h. bSulfoxide 2f (2.50 equiv). cFor the ORTEP representation of 
3za, the thermal ellipsoids are shown at the 50% probability level and 
hydrogen atoms are omitted for clarity. Selected bond lengths and angles: 
S(1)–C(2) 1.831 Å, S(1)–O(2) 3.558 Å, and C(2)–S(1)–O(2) 163.79°. 

 
    In conclusion, we have identified a direct procedure for the 
chemoselective α-sulfidation of amides. This transformation is 
applicable to a wide range of tertiary amides with high func-
tional group tolerance. The use of simple and easily accessible 
sulfoxides enhances the practicality of this strategy, in which 
benzylic amides were functionalized in single step procedures 
featuring a spontaneous dealkylation. Mechanistic studies 
supported the role of electrophilically activated sulfoxide 
intermediates as promoters for the sulfidation, and guided 
extension of the methodology to aliphatic tertiary amide sub-
strates by rational modification of the reaction conditions. This 
methodology offers a valuable alternative to existing solutions 
for α-sulfidation of amides by introducing an orthogonal strat-
egy under mild conditions, and provides direct access to func-
tionalized amides for fine chemical synthesis.1-3 
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