
 1 

Rapid Detection of Strong Correlation with Machine 
Learning for Transition-Metal Complex High-

Throughput Screening 
Fang Liu1, Chenru Duan1,2, and Heather J. Kulik1,* 

1Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 
02139 

 2Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 

AUTHOR INFORMATION 

Corresponding Author 

*email: hjkulik@mit.edu, phone: 617-253-4584  

  



 2 

ABSTRACT:  Despite its widespread use in chemical discovery, approximate density functional 
theory (DFT) is poorly suited to many targets, such as those containing open-shell, 3d transition 
metals that can be expected to have strong multi-reference (MR) character. For discovery 
workflows to be predictive, we need automated, low-cost methods that can distinguish the 
regions of chemical space where DFT should be applied from those where it should not. We 
curate over 4,800 open-shell transition-metal complexes up to hundreds of atoms in size from 
prior high-throughput DFT studies and evaluate affordable, finite-temperature DFT evaluation of 
fractional occupation number (FON)-based MR diagnostics. We show that intuitive measures of 
strong correlation (i.e., the HOMO–LUMO gap) are not predictive of MR character as judged by 
FON-based diagnostics. Analysis of independently trained machine learning (ML) models to 
predict HOMO–LUMO gaps and FON-based diagnostics reveals differences in metal- and 
ligand-sensitivity of the two quantities. We use our trained ML models to rapidly evaluate MR 
character over a space of ca. 187,000 theoretical complexes, identifying large-scale trends in 
spin-state-dependent MR character and finding small HOMO–LUMO gap complexes while 
ensuring low MR character.  
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 High-throughput computational screening is essential in the discovery of new molecules1-

5 and materials6-9. For these efforts, density functional theory (DFT) with approximate exchange-

correlation functionals is nearly exclusively employed to ensure the low computational cost and 

ease of automation needed for the study of thousands of molecules with tens to hundreds of 

atoms. Open-shell transition-metal complexes that are useful catalysts4, 10-16 and functional 

materials17-21 exemplify both the promise and outstanding challenges for computational 

screening. The properties of these molecules can be tuned by variation of ligand chemistry, 

which in turn influences the relative stability of spin- and oxidation- states5, 22, highlighting the 

opportunities for large-scale screening in their design5, 23-24.  

 In small-scale studies, careful benchmarking of the computational method is possible25-28, 

including the detection of strong correlation that motivates the use of multireference (MR) 

electronic structure techniques.29-31 However, high-scaling methods have been limited in large-

scale screening contexts to small organic molecules.32-33 The development of machine learning 

(ML) property prediction models23, 34-38 and interatomic potentials39-43 compounds the challenges 

associated with screening, both by motivating the generation of large datasets and by magnifying 

the impact of electronic structure biases when they are learned by an ML model. 

  First-row open-shell transition-metal complexes with nearly degenerate 3d orbitals can be 

expected to exhibit strong correlation.25-27, 44-45 Here, approximate DFT will fail46-49, and the 

accurate treatment of dynamic and static correlation in larger transition-metal complexes remains 

an active area of research29-31. For small, well-studied molecules (e.g., the chromium dimer50-53), 

the effects of strong correlation are understood, but target complexes in chemical discovery lack 

literature precedent for guiding expectations of MR character. To advance large-scale screening 

in these spaces, it is necessary to develop tools to detect strong correlation that can be integrated 
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into existing DFT workflows at no greater complexity or computational cost. 

 While numerous MR diagnostics have been developed54-65, we focus on diagnostics63-65 

based on fractional occupation numbers (FONs) that can be obtained from computationally 

affordable finite-temperature DFT66 (FT-DFT). Since electron correlation can be attributed 

alternately to both dynamical and non-dynamical (i.e., MR) contributions67-69, Matito and 

coworkers63-64 have derived expressions for dynamical, ID, and non-dynamical, IND, quantities. 

The ID is computed from the occupation, n, of orbital i with spin σ as63-64:  
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1
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The non-dynamical63-64, IND, is: 
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1
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where larger IND values can be used as an indicator of MR character33, 63-64, 70. The ratio,67 rND, of 

the IND to the total correlation (i.e., ID+IND) has been proposed by Martin and coworkers as a 

size-intensive MR diagnostic: 

 rND =
IND

ID + IND
   (3) 

Although ID and IND are not strictly bounded, larger values of rND are indicative of strong MR 

character.33, 67  

 Grimme and coworkers have developed the closely related fractional occupation density 

(FOD)65, which can be integrated over all space to yield NFOD, a size-extensive FON-based 

diagnostic for quantifying non-dynamical correlation. We focus on the size-intensive rND, and we 

demonstrate our approach is general both to size-extensive, FON-based diagnostics (i.e., IND, 

NFOD) and approximately size-intensive quantities that we obtain by normalizing with the number 

of valence electrons, nve (i.e., IND/nve and NFOD/nve).  

 While FON-based diagnostics have demonstrated promise65, 70 for the quantitative 
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prediction of MR character in studies of small sets of transition-metal complexes, they have yet 

to be incorporated in large-scale, high-throughput screening. We thus first curated a diverse set 

of 4,865 mononuclear octahedral transition-metal complexes from six prior studies71-76 and 

assessed their MR character with FON-based diagnostics. We accelerated the calculation of 

FON-based diagnostics by leveraging the existing converged geometries and wavefunctions from 

fixed-occupation DFT for the FT-DFT66 calculations (see Computational Details). All complexes 

contain a mid-row transition metal in one of two oxidation states (i.e., M(II)/M(III) where M = 

Cr, Mn, Fe, or Co) in its high-spin (HS) or low-spin (LS) state (see Computational Details). Over 

all sets considered, the metals and spin states are evenly distributed, with only somewhat fewer 

Cr complexes (Figure 1). 

Figure 1. Properties of the octahedral complexes in the datasets studied in this work (MD1, 
MD2, and the two component datasets, LRX and OHLDB, included in MD2 only). (top) 
Schematic of an a transition metal complex illustrating possible unique (one equatorial, Leq, and 
up to two axial, Lax1 and Lax2) and representative ligands. Ligand atoms that coordinate the metal 
are shaded with circles colored by element: O in red, N in blue, P in orange, S in yellow, C in 
gray, F in cyan, and I in purple. (bottom, left) Bar graph of the metal identity and spin state (HS: 
dark gray, LS: light gray) of MD1 and MD2. (bottom, center) Kernel density estimation (KDE) 
of the distribution of the size of complexes in MD1, LRX, and OHLDB. (bottom, right) Clustered 
bar graph for the connecting atom identity (X indicates any halide) in MD1, LRX, and OHLDB.  
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 A 2,305-complex subset (MD1) from four of the studies71-74 consists of small to mid-

sized complexes constructed from common ligands originally to study their spin71-72, 74 or redox73 

properties (Figure 1 and Supporting Information Table S1). The MD1 complexes are around 50 

atoms in size and primarily contain first-row (i.e., C, N, or O) coordinating atoms (Figure 1 and 

Supporting Information Table S1). The larger 4,865-complex MD2 dataset consists of all 

complexes in MD1 along with: i) complexes of heuristically enumerated ligands (OHLDB76) and 

ii) large bidentate redox (LRX75) complexes (Figure 1 and Supporting Information Tables S1–

S2). The OHLDB complexes are smaller (ca. 25 atoms) and have more diverse coordinating 

atoms and bonding than in MD1, whereas the LRX complexes are much larger (i.e., up to 200 

atoms) but with fewer coordinating atom types and more uniform bonding (Figure 1 and 

Supporting Information Table S1). The diversity of size and bonding in MD2 means that we are 

less likely to have information from prior experiment or computation in comparison to the more 

common complexes in MD1. 

Over the MD1 dataset, the rND values span a large range (0.10–0.66), suggesting a 

significant variation in the extent of strong correlation, although all complexes are derived from 

common ligands (Figure 2). The MD2 dataset has a comparable rND range, despite its greater 

diversity in both ligand chemistry and complex size (Supporting Information Figure S1). The 

size-extensive diagnostics (i.e., IND and NFOD) differ significantly between MD1 and MD2, but 

the comparable behavior of rND as well as nve-normalized quantities (i.e., IND/nve and NFOD/nve) 

support our focus on a size-insensitive diagnostic (Supporting Information Figures S2–S5).    
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Figure 2. Scatter plot of the 2D distribution of HOMO–LUMO gap (eV) and rND values for MD1 
complexes. The symbols are colored by the number of atoms in the complex, as indicated in inset 
colorbar. 1D histograms are aligned with the respective axes. Vertical and horizontal dashed 
lines indicate two standard deviations around the mean. The correlation between rND and gap is 
indicated with a gray dashed line (R2=0.413). A gray shaded region (HOMO–LUMO gap = 4.48 
± 0.25 eV) is shown with the complexes with the highest (LS CrII(NH3)6) and lowest (HS 
MnII(misc)4(H2O)(CO)) rND values outlined and shown with inset structures. 

One might expect it to be straightforward to predict MR character from fixed-occupation 

DFT calculations, e.g., by the size of the gap between the highest-occupied and lowest-

unoccupied molecular orbitals (HOMO–LUMO gap). The HOMO–LUMO gaps span a wide 

range (0–7 eV) over the MD1 set, but they only have a weak correlation (R2=0.41) with the rND 

diagnostic (Figure 2). Still, the relationship follows expectations, with the smallest HOMO–

LUMO gap complexes having more MR character (i.e., higher rND) than the complexes with the 

largest HOMO–LUMO gaps. Nevertheless, this relationship worsens over the diverse MD2 set 

(R2=0.17), despite HOMO–LUMO gap and rND ranges comparable to MD1 (Supporting 

Information Figure S1). We might expect this to be due to greater size-dependence of the 

HOMO–LUMO gap than rND, but correlations for both sets are still weak (R2 < 0.6) with size-

extensive (i.e., IND, NFOD) MR diagnostics (Figure 2 and Supporting Information Figures S2, S4, 
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and S6 and Table S3).  

Given the weak relationship between the HOMO–LUMO gap and MR character, we 

investigated what gives rise to low or high MR character in MD1 for small (i.e., 0.88 ± 0.25 eV) 

and large (i.e., 4.48 ± 0.25 eV) gap values. Many of the 276 large-gap complexes have 

expectedly low rND, including a HS MnII(misc)4(H2O)(CO) with an rND value (0.13) in the 

bottom 2% for MD1 (Figure 2). Conversely, LS CrII(NH3)6 has the highest rND (0.66) in all of 

MD1, despite its large HOMO–LUMO gap, suggesting that LS Cr complexes might have 

especially high MR character (Figure 2). For the 66 small HOMO–LUMO gap MD1 complexes, 

both the expected high rND values are observed (i.e., LS MnIII(H2O)5(furan), rND = 0.60) but 

unexpectedly low MR character is as well  (i.e., LS MnIII(pisc)6, rND = 0.27, Figure 2). Given the 

higher diversity of MD2, distinct deviations are observed, including low rND and gaps (e.g., in an 

LRX O-coordinating bidentate homoleptic HS MnIII complex, rND = 0.22 and gap = 0.3 eV) even 

for complexes with similar metal and coordinating atoms to much higher rND MD1 points 

(Supporting Information Figure S1). Despite the intuitive link between MR character and 

HOMO–LUMO gap, metal identity (e.g., Cr), or spin state (e.g., LS), exceptions are apparent, 

motivating the development of ML models capable of encoding these complex relationships. 

We trained ML (i.e., artificial neural network, ANN, and kernel ridge regression, KRR) 

models to independently predict FON-based diagnostics (e.g., rND) and frontier orbital energetics 

(i.e., the HOMO level and HOMO–LUMO gap, see Computational Details and Supporting 

Information Text S1). We used revised autocorrelation (RAC)77-78 functions as input features, 

which have previously been demonstrated for predictive, geometry-free estimation of frontier 

orbital energies to good (ca. 0.1–0.2 eV) accuracy (Supporting Information Text S2).73, 77 RACs 

are products and differences on the molecular graph of heuristic properties (i.e., topology, 
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identity, nuclear charge, covalent radius, or electronegativity) of pairs of atoms a fixed number, 

d, of bonds apart (see Computational Details and Supporting Information Text S2). For the ML 

models trained on the MD2 dataset with RAC features, ANN model test mean absolute errors 

(MAEs, HOMO: 0.26 eV and HOMO–LUMO gap: 0.31 eV) are similar to those for MD1 or 

prior work10, 14 on MD1 subsets, increasing only slightly despite being obtained on a much more 

diverse dataset (Figure 3 and Supporting Information Table S4 and Figures S7–S8). As shown in 

prior work75, 79, the greater diversity in size and ligand chemistry of MD2 complexes means a 

model trained only on MD1 would not be expected to be predictive on MD2.  

 
Figure 3. ANN model performance for predicting rND (upper) and HOMO–LUMO gap (lower) 
for the MD2 data set. (left) Parity plots of actual vs predicted values for train (red filled circles) 
and test (blue filled circles) data points along with a black dotted parity line. (right) Distribution 
of absolute test set model errors for rND (unitless, bins: 0.005) and HOMO–LUMO gap (in eV, 
bins: 0.1 eV) with the MAE annotated as green vertical bars and the cumulative count shown in 
blue according to the axis on the right. 
 

It is not evident a priori if FON-based diagnostics that are derived from temperature-

dependent properties obtained with FT-DFT are as easily learned quantities as the fixed-

occupation DFT frontier orbital energies. The ML model trained on MD2 to predict rND does 

exhibit as good performance as that for the HOMO–LUMO gap, with the ANN test MAE for rND 
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(0.018) corresponds to a smaller mean absolute percent error (3%) over the rND range than for the 

HOMO–LUMO gap (4%, Figure 3). The rND MAE represents a modest error in comparison to 

the variation between diagnostic values associated with low (e.g., rND < 0.3) or high (e.g., rND > 

0.5) MR character (Figure 3 and Supporting Information Table S4 and Figure S7). In comparison 

to predicting rND with a linear mapping from the HOMO–LUMO gap, the ANN performance is 

vastly superior (linear: R2 = 0.456 vs ANN: R2 = 0.942) and test MAEs are significantly lower 

(Supporting Information Figures S9–S10 and Table S5).  

Interpretation of the character of informative RACs provides insight77, 80 into why MR 

character (i.e., rND) and HOMO–LUMO gap differ among these transition-metal complexes. To 

identify the most informative features77, 80, we pair feature selection with the training of KRR 

models73, 77 with similar performance to that obtained with ANNs (Supporting Information 

Tables S4, S6–S12, and Figures S11–S12). Analysis of feature sets selected by training on MD1 

confirms that distinct properties are important for predicting rND (i.e., rND-28) versus predicting 

the HOMO–LUMO gap (gap-28) or HOMO level (Figure 4 and Supporting Information Figure 

S13 and Tables S7–S8, S13–S15). Although the rND-28 and gap-28 feature sets are the same size, 

the gap subset contains a higher portion of global features (43%) than the rND subset (32%, 

Figure 4 and Supporting Information Tables S14–S15). Electronegativity-based RACs are more 

crucial for predicting MR character (25% of rND-28 vs 11% of gap-28) as is the metal nuclear 

charge, whereas global, covalent-radius-based features present only in gap-28 highlight the 

greater size-dependence of the HOMO–LUMO gap (Figure 4 and Supporting Information Tables 

S14–S15). Qualitatively similar trends are observed for models trained on MD2, although the 

size of the gap-selected feature set grows significantly due to greater diversity of ligand 

chemistry in the set (Supporting Information Tables S10–S11).  
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Figure 4. (upper) Pie charts of the features selected by random-forest-ranked recursive-feature 
addition (RF-RFA) on the MD1 data set for HOMO–LUMO gap (gap-28, left) and the rND 
diagnostic (rND-28, right). Features are grouped by the most metal-distant atoms: metal in blue, 
first coordination sphere in red, second coordination sphere in green, third coordination sphere in 
orange, or more distant, global features in gray (a black outline is used to group the first three 
categories). Within each distance category, the property (i.e., 𝜒, S, T, Z, or I) is also indicated, 
with oxidation/spin state (O) assigned as metal-local and ligand charge (L) assigned as global. 
(lower) HOMO–LUMO gap (eV) and rND values (unitless) illustrating the larger effect of metal 
identity on rND (left) and of non-local features on gap (right). Vertical and horizontal dashed 
lines indicate two standard deviations around the mean gap or rND for MD1. The representative 
complex structures are shown along with their symbol legends above the plots. 
 

Although over our datasets we had observed a weak correlation between the gap and MR 

character, these feature-selected subsets provide explicit design principles over MD1, i.e., to 

separately tailor the gap and MR character by focusing ligand-size-based versus metal-based 

properties. For example, the LS FeIII(CO)4(H2O)(misc) and CrII(CO)4(H2O)(misc) complexes 

differ only in their metal center and have comparable HOMO–LUMO gaps (Fe(III): 2.73 eV, 

Cr(II) 2.87 eV, Figure 4). This difference instead has a profound effect on MR character, with 
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the CrII complex having a high rND (0.55), whereas the FeIII complex rND (0.33) is lower (Figure 

4). Conversely, replacing water ligands with larger furan ligands in HS homoleptic FeIII or MnIII 

complexes has a modest effect on MR character (rND from 0.34 to 0.40 in FeIII) because the 

immediate coordinating environment is unchanged, whereas the increased ligand size reduces the 

gap substantially (FeIII: by 3.44 eV, Figure 4).  

To demonstrate the value of our approach in a context representative of chemical 

discovery efforts, we applied the gap and rND ANN models trained on MD2 to a space of 187,200 

transition metal complexes. This space of theoretical complexes contains HS and LS M(II/III) 

(M = Cr, Mn, Fe, or Co) centers in complex with 36 unique ligands derived from the original 

MD1 dataset. Although all ligand identities were in the ANN training data, only 1% (1,836) of 

the complexes were, and thus the theoretical complexes have distinct properties (e.g., size and 

charge) from the original dataset (Supporting Information Tables S16–S18 and Figures S14–

S15).  

Over this large theoretical complex space, we investigate what the ML model has learned 

about how MR character is influenced by transition-metal complex chemistry (i.e., spin state, 

metal, and ligand). Spin-state ordering calculations in particular are known to be sensitive to 

method choice80-86, especially due to the lack of error cancellation when the degree of correlation 

recovery differs between spin states30, 86-89. It has been observed, for example, in small-scale 

studies of organic molecules68, 90 and some first-row transition metal complexes86 that LS states 

are more degenerate and thus have higher MR character than HS states. 

Although some metal centers in our large-scale set follow this trend, others do not. The 

Cr and Mn complexes exhibit an increase in MR character from HS to LS for both rND and other 

FON-based diagnostics, whereas Fe and Co complexes have limited spin-state dependence 
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(Figure 5 and Supporting Information Figures S16–S21). For the HS complexes in either 

oxidation state, all metals have comparable diagnostic (e.g., rND) distributions, suggesting the 

HS–LS MR character difference for Cr/Mn arises primarily from increased LS MR character 

(Figure 5 and Supporting Information Figures S17–S21). Indeed, for the Cr/Mn complexes with 

the greatest HS–LS MR character difference, the LS rND is very high while the HS rND is 

somewhat lower than the overall average (Supporting Information Figure S22). The ligands that 

most frequently appear in these complexes are small, sometimes charged species (e.g. NH3, OH-, 

and S2-, CN-) with intermediate field strengths (Supporting Information Figure S17). Although 

MR character is strongly spin-state- and metal-dependent, subtle differences in chemistry are 

apparent between ligands that frequently occur in low-MR character complexes (e.g., NH2CH3) 

and those (e.g., NCO-) in complexes with high MR character (Supporting Information Figures 

S23–S24). 

 
Figure 5. Normalized probability density distribution of rND (unitless, bin size 0.0167) as 
predicted by the ANN for the 93600 M(II) complexes (M=Cr, Mn, Fe, Co) in the full compound 
space. There are 11700 complexes for each M(II) spin state. The histograms are colored by spin 
(red for low spin, LS, and blue for high spin, HS). The median of each distribution is indicated 
by a vertical line with the same corresponding color.  
 

Within the space of theoretical complexes, independent ML models also make it possible 
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to target optimal DFT properties (e.g., for the HOMO–LUMO gap) while identifying DFT-safe 

portions of chemical space by avoiding complexes with high MR character. ML-model-predicted 

MR character and HOMO–LUMO gap vary widely but are, as in the training data, weakly 

correlated (Supporting Information Figures S25–S29). These trends are expected to be robust 

because ANN model test errors are modest, but we focus our analysis on low uncertainty points 

in the theoretical space as quantified by those with the smallest distances in ANN model latent 

space79 (Supporting Information Text S3 and Figures S30–S31). 

Given the expectation68, 91 that small HOMO–LUMO gap complexes will have strong 

MR character, we sought to identify chemical motifs that break this relationship (Figure 6). For 

the complexes with confidently-assigned small HOMO–LUMO gaps (< 1 eV) and below-average 

MR character (rND < 0.3), clear patterns emerge (Figure 6).  One in three (134 of 403) of these 

target complexes are from the same family of HS CoIII or MnIII complexes with equatorial 

substituted-pyridine ligands and axial weak-field ligands that thus reside in a narrow region of 

the complex space (Figure 6 and Supporting Information Tables S19–S20 and Figures S32–S33). 

Conversely, nearby complexes (e.g., with strong-field equatorial carbonyl ligands) also have 

small gaps but instead have relatively high MR character (Figure 6 and Supporting Information 

Figure S34 and Table S21). In the future, these ANN models could be paired with optimization 

strategies72, 75, 92-93 for the continued discovery of DFT-safe islands of complexes with optimal 

properties along with low MR character and high ML model confidence from even larger spaces 

of theoretical transition-metal complexes. 
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Figure 6. Properties of the theoretical complex space colored by ANN predicted rND (left, 
unitless) and HOMO–LUMO gap (right, ΔEg in eV). (top) The 1D histograms of rND and 
HOMO–LUMO gap are aligned with their respective color bars and target zones (rND <0.307, 
HOMO–LUMO gap < 1 eV) shaded in green. (bottom) The t-distributed stochastic neighbor 
embedding plots are shown and colored as indicated in top inset color bar. The convex hull of a 
family of 3744 octahedral complexes with functionalized pyridinyl ligands is indicated by a 
green outline. Inset circles show a zoom of this convex hull with discrete complexes in circles 
(representative complexes shown in top middle of plot): the 134 complexes within target ranges 
of rND and HOMO–LUMO gap and low (bottom 10%) distance in latent space to training data.  
 

In summary, we have demonstrated a low-cost approach that can be integrated into 

current DFT high-throughput screening workflows for open-shell transition-metal complexes and 

materials. Over a curated set of nearly 5,000 open-shell transition-metal complexes from prior 

high-throughput DFT studies, we evaluated MR character from FON-based diagnostics. Because 

intuitive measures of strong correlation (i.e., the HOMO–LUMO gap) were not predictive of 

these FON-based diagnostics, we trained ML models to separately predict frontier orbital 

energies (i.e., the HOMO–LUMO gap) and FON-based diagnostics. Models trained to predict 

finite-temperature-derived FON-based diagnostics were as predictive as models trained to predict 

fixed-occupation DFT properties. Analysis of the important features for model prediction 

revealed that MR character is more metal-sensitive, whereas the HOMO–LUMO gap is more 

ligand-sensitive. We used these principles to identify opportunities for tailoring the two 



 16 

quantities independently. We demonstrated the promise of our ANN models for chemical 

discovery efforts by evaluating MR character over a space of over 187,000 theoretical 

complexes, identifying large-scale trends in spin-state-dependent MR character, and discovering 

small HOMO–LUMO gap complexes with low MR character. We expect this approach to be 

valuable both for the practical goal of identifying where DFT-level workflows are sufficiently 

robust and in discovering strongly correlated molecules as test cases for more advanced 

electronic structure methods.  

 Computational Details 

 Datasets and calculations. We curated a dataset of 4,865 mononuclear octahedral transition-

metal complexes generated in six prior studies71-76 using fixed-occupation DFT geometry 

optimizations in TeraChem94-95 automated with molSimplify96-97. All sets used the same high-

spin (HS) and low-spin (LS) multiplicity definitions in mid-row M(III)/M(II) complexes as 

follows: quintet-singlet for both d4 Mn(III)/Cr(II) and d6 Co(III)/Fe(II), sextet-doublet for d5 

Fe(III)/Mn(II), and quartet-doublet for both d3 Cr(III) and d7 Co(II).  

 We automated the calculation of FT-DFT66 MR diagnostics63-65 (e.g., rND and NFOD) with 

MultirefPredict67 and the QCEngine98 interface to TeraChem94-95 on the curated structures from 

prior work. For consistency, all DFT calculations employed the B3LYP99-101 hybrid functional 

with LANL2DZ102 effective core potentials for the transition metals, I, or Br and the 6-31G* 

basis for the remaining atoms. Level-shifting103 was used in unrestricted (i.e., non-singlet) 

calculations with a uniform 0.25 a.u. value for FT-DFT and most prior fixed-occupation DFT 

calculations (Supporting Information Table S22). The FT-DFT calculations employed the 

recommended104 temperature for B3LYP (9000 K) with Fermi–Dirac smearing and were 

initiated from fixed-occupation DFT wavefunctions71-76 when available (Supporting Information 
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Text S4 and Tables S22–S23).  

All complexes were filtered prior to analysis and ML model training in a four-step 

process. Complexes for which FT-DFT calculations did not converge were first eliminated 

followed by those with positive (i.e., unbound) or unreported majority-spin HOMO levels from 

fixed-occupation DFT (Supporting Information Text S4 and Table S24). Geometries were next 

checked73 for preserved connectivity and quality, and, lastly, highly symmetry-broken fixed-

occupation DFT (i.e., with <S2> deviations from S(S+1) > 1) results were excluded (Supporting 

Information Table S25 and Table S24).  

ML models. KRR and ANN models were trained on all 151 RACs (i.e., 42d+30 with a cutoff of 

d = 3 after elimination of invariant RACs) along with three overall (i.e., oxidation state, denticity 

and total charge)77 complex features as well as feature-selected subsets (Supporting Information 

Text S2). Hyperparameter optimization for all models was carried out with Hyperopt105 using a 

random 80% train/20% test split, with 20% of the training set (16% overall) set aside as the 

validation subset for hyperparameter selection. Input features and outputs were normalized over 

the training set to have zero mean and unit variance. As in prior work73, KRR model feature 

selection was carried out with random forest106-ranked recursive feature addition (RF-RFA)107. 

With each feature addition, the KRR model was trained (i.e., to select regularization strength and 

kernel width) and judged on the KRR model R2 for the validation set. RF-RFA was stopped 

when no improvement of R2 was observed. Final KRR models were implemented in scikit-

learn108, trained on the full (80% overall) training set, and tested on the 20% test set (Supporting 

Information Table S26). 

Fully connected ANN models were trained using Keras109 with TensorFlow110 as the 

backend and Hyperopt105 for hyperparameter selection (Supporting Information Table S27). Each 
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ANN model was trained with batch optimization for 1000 epochs with early stopping when no 

more performance improvement was observed, and we included dropout regularization111-112 to 

avoid overfitting (Supporting Information Table S28). The optimal ANN topology for all models 

consisted of 512 nodes per layer with either two (e.g., for the HOMO level) or three (e.g., for 

HOMO−LUMO gap and rND) three hidden layers (Supporting Information Table S28).  
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28 feature sets; ligands used for building the theoretical complex space; allowed ligand 
combinations and spin/oxidation combinations in the theoretical complex space; distribution of 
sizes in the theoretical complex space; distribution of theoretical space M(III) rND values; 
difference of theoretical space HS and LS rND values; distribution of theoretical space 
M(II)/M(III) IND, IND/nve, NFOD, and NFOD/nve values; contributions to high HS-LS rND difference 
complexes; ligand types in the top 5% and bottom 5% of rND in the theoretical complex space; 
correlation between gap and MR diagnostics (rND, IND, NFOD, IND/nve, NFOD/nve) for 187k 
theoretical complexes; details of latent space distance evaluation; distribution of gap latent space 
distances and rND latent space distances over theoretical space; ligands in the target leads inside 
the convex hull of theoretical space; metals in the target leads inside the convex hull of 
theoretical space; the rND distribution and HOMO-LUMO distribution of target leads inside the 
convex hull; convex hull compounds with large rND; attributes of ligands in convex hull 
compounds with large rND; summary of size of data sets after each stage of refinement; 
additional details about finite-temperature calculations; number of core orbitals for different 
elements; summary of wavefunction related information for each dataset; geometry check cutoffs 
for data refinement; optimal hyperparameters for KRR models in this work; hyperspace for ANN 
hyperparameter optimization; optimal hyperparameters for ANN models in this work. (PDF) 
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Total energies in fixed-occupation and finite-temperature DFT, MR diagnostics, and orbital 
energies in fixed occupation-DFT of all molecules in the six raw datasets and the refined datasets 
MD1 and MD2; list of molecules eliminated during MD2 set curation; list of molecules in MD2 
lacking fixed-occupation DFT wavefunction information from previous studies; ANN predicted 
MR diagnostics and orbital energies for the design space; list of unique ligands in MD1 and 
MD2; the ANN and KRR models trained on MD1 and MD2 training set; geometries of all 
molecules in MD2 (ZIP) 
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