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Abstract 

Here, we present a collection of publicly available 

intrinsic aqueous solubility data of 829 drug-like 

compounds. Four different machine learning algorithms 

(random forest, light GBM, partial least squares and 

LASSO) coupled with multi-stage permutation 

importance for feature selection and Bayesian hyper-

parameter optimization were employed for the 

prediction of solubility based on chemical structural 

information. Our results have shown that LASSO 

yielded the best predictive ability on an external test set 

with and RMSE(test) of 0.70 log points and 105 features 

in the model. Taking into account the number of 

descriptors as well, an RF model achieved the best 

balance between complexity and predictive ability with 

an RMSE(test) of 0.72 with only 17 features. We 

propose a ranking score for choosing the best model, as 

test set performance is only one of the factors in creating 

an applicable model. The ranking score is a weighted 

combination of generalization, number of features 

involved and test set performance. 

 

 

 

 

 

 

 

 

1. Introduction 

Solubility is a critical topic in pharmaceutical 

development as it can be a limiting factor to drug 

absorption.[1] High attrition rate problem in drug 

development has been attributed to poor water 

solubility.[2] Predictive models - so-called quantitative 

structure-property relationships (QSPRs) can be useful 

tools to determine the solubility of a bioactive 

compound starting already in early development stages. 

Llinas and Avdeef[3] initiated the second solubility 

challenge in 2019 in order to engage the scientific 

community to address these challenging problematics. 

The first solubility challenge published by the same 

authors[4] demonstrated clear room for improvement in 

predicting solubility from (molecular) structural 

information. Palmer et al [5] concluded that there is still 

room for improvement with respect to predictive 

capabilities of QSPR rather quality experimental data. 

Nevertheless, there is still a lack of public data available 

to develop quality models or at least cover a larger 

chemical space. In fact, it is the afore-mentioned 

solubility challenges that made quality data available. 

At the same time, pharmaceutical companies still own a 

large amount of unpublished data. Using such an 

unpublished dataset with experimental values of 38,841 

compounds, Montanari et al.[6], tested multitask neural 

networks for solubility prediction. The authors built a 

model that yielded a cross-validated R2 value of 0.59 

(RMSE not published). Such a data size for solubility is 

rare amongst publicly available datasets. Even though 
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one cannot be sure about the quality of proprietary data 

it might confirm Palmer’s conclusion about limitations 

in modeling capabilities. Many other authors also dealt 

with the solubility prediction problematics,[5, 7, 16–25, 

8, 26–32, 9–15] predicting both logSw and logS0. A 

comparison with the previous work is difficult since 

authors often describe the results in different manners 

(train, test, cross-validation, out-of-fold) and a 

multitude of model metrics[33]. Specifically, for the 

intrinsic solubility, on external test sets, literature values 

of the predictive performance expressed through RMSE 

appear to vary between 0.7 and 1.05 log points[7, 11, 

13, 23, 25, 27, 34] using a plethora of machine learning 

algorithms and datasets. The most recent study from 

Avdeef [7] with the largest curated database known 

(6355 logS0 entries) employed the Random forest 

algorithm showing RMSE(test) in a range of 0.75-1.05 

and with an R2 value between 0.66-0.83 across several 

models. These results outperform studies with the 

aforementioned proprietary databases which signals the 

importance of careful data curation and chemical space 

consideration which Avdeef proposes. Within the 

aforementioned challenges, additional high-quality 

solubility data is published. Furthermore, powerful, and 

more efficient machine learning methods, as well as 

computing power, available in HPC environments are 

enabling more precise and faster learning.  

Our goal in this work was to conduct a large-scale 

machine learning study to reveal how one can achieve 

robust predictions while retaining minimum model 

complexity. For this purpose, we curated a novel 

intrinsic solubility dataset from literature sources. For 

the machine learning tasks, we employed boosting and 

bagging ensemblers as well as PLS and LASSO. The 

last two being established machine learning modes 

which are often neglected over seemingly more 

powerful ensemble regressors.[35] Finally, we 

discussed the use of permutation importance for a multi-

stage feature selection, the relevancy of commonly used 

feature preprocessing/preselection and data splitting 

paradigms. 

2. Materials and methods 

2.1. Data collection and processing 

We have collected aqueous solubility data from the 

following literature sources.[4, 22, 40–49, 25, 50–54, 

26, 27, 31, 36–39] The decision criteria on which 

literature to include for our study is initially based on 

the recommendations in the revisited solubility 

challenge.[3] Consecutively, we looked for additional 

literature sources where authors have included pH, 

temperature and inert gases in their measurements. Most 

of these sources refer to the intrinsic aqueous solubility 

(logS0), while some of them refer to the aqueous 

solubility (logSw). Most of the values were determined 

at 25 °C. For each compound, SMILES strings were 

retrieved from the name either through PubChem 

(https://pubchem.ncbi.nlm.nih.gov/), Jchem 

(Marvin/JChem v20.9.0, ChemAxon, Budapest, 

Hungary), or via their CAS numbers 

(https://cactus.nci.nih.gov/translate/). SMILES strings 

were curated [55] and standardized to isomeric 

SMILES using the ChemAxon Standardizer (v18.28.0, 

ChemAxon, Budapest, Hungary) and the 

RDKit library[56]. We filtered compounds with the 

following properties: logP in [-3.6, 7.5], molecular 

weight larger than 88 g/mol and structures with more 

than six heavy atoms. These ranges were determined 

according to the data published in the solubility 

challenges. [3] Some logSw values in the extracted data 

were converted to logS0 based on their formal charges 

as suggested in Ref. [52]. Since we had multiple values 

for intrinsic solubility per molecule, we removed values 

which were duplicated and averaged the rest. Our final 

dataset consists of intrinsic solubility values for 829 

compounds available for download at 

http://doi.org/10.5281/zenodo.3968754 .The data 

preparation pipeline is depicted in Figure 1.  

 
Figure 1. Data collection and preparation pipeline for the novel 

intrinsic solubility set. 

We employed two types of predictive features: 

fingerprints (FPs)[57] and molecular descriptors 

(calculated using DRAGON 6.0 – Talete, Milano, IT). 

We chose FPs with a comparatively short radius of 3 

bonds and large vector length of 5120 bits, to avoid bit 
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collision as suggested in Ref.[58]. From the available 

~5000 DRAGON molecular descriptors, only a few 

groups of descriptors were selected based on chemical 

intuition. Specifically, constitutional, ring, topological 

descriptors, functional group counts and molecular 

properties. All descriptors with “NaN” values were 

removed. Such a pre-selection procedure yielded a total 

of 317 molecular descriptors. A combination of FPs and 

descriptors (FPDS) was also evaluated (5444 features in 

total).  

2.2. Evaluated machine learning methods 

In this work we employed four different regression 

algorithms, different in their paradigms: (i) Least 

absolute shrinkage and selection operator 

(LASSO), [59] (ii) Partial least squares (PLS), [60] (iii) 

Random forest, [61] and (iv) Light GBM [62]. All four 

are briefly summarized in the subsequent sub-sections. 

2.2.1. LASSO 

LASSO regression is a multivariate chemometric 

method, which employs the L1-penalty for 

regularization.[59] Given the multiple linear regression 

formulation with standardized predictors X and 

response values y, LASSO aims to solve the L1-

penalized regression problem of finding β = {βj}to 

minimize: 
2

1 1

  
= =

 
− + 

 
  

pN

i ij j j

i j j

y x   (1) 

Because of the form of the L1-penalty, LASSO 

inherently performs feature selection and shrinkage at 

the same time returning an extremely sparse coefficient 

matrix. 

2.2.2. Partial least squares 

PLS regression is a chemometric method which 

aims to reduce the dimension of both the predictors (X-

space) and the dependent variables (Y-space) by 

compressing them into latent variables (LVs). LVs are 

constructed in the direction of maximum correlation 

between X- and Y-spaces, where one wants to find the 

multidimensional direction in the X-space (predictive 

variables) that explains the maximum multidimensional 

variance direction in the Y (target variable). Readers are 

referred to Ref. [60] for a more detailed overview. 

2.2.3. Random forest 

The Random forest (RF) algorithm, conceptualized 

by Breiman [63] creates a large collection of de-

correlated decision trees by employing bootstrapping 

aggregation. The final prediction results are thereby 

averaged from a multitude of decision tree regressors, 

this reduces the bias in the models, while variance can 

be controlled by carefully optimizing weak learner 

hyperparameters, such as tree depth. Besides their good 

performance, Random forests and other Decision Tree-

based learners accept many feature representations and 

are associated with reduced preprocessing efforts, 

making them convenient for use in many applications, 

including manufacturing. Being that trees in RF get 

trained in parallel, a significant advantage of RF is 

speed when comparing to boosting ensemblers. 

2.2.4. LightGBM 

Light Gradient Boosting Machine (LGBM) [62] is a 

framework using the decision tree as a base algorithm. 

LGBM uses the first-order derivative information when 

optimizing the loss function. The leaf growth strategy 

with depth limitation and multi-thread optimization in 

LGBM contributes to solve the excessive memory 

consumption with respect to other boosting ensemble 

machine learning methods. LGBM was selected to 

reduce the computational cost of calculations 

comparing to other boosting ensemblers.  

2.3. Feature selection 

In this work, we employed a multi-stage feature 

elimination. The strategy is based on permutation 

importance[64] for eliminating features[65]. Using each 

of the trained models, the method permutes the values 

of individual features to assess the relevance of the 

features with respect to the response vector (logS0). The 

relative decrease in RMSE in a pre-trained model 

caused by a permuted feature is considered a “weight”. 

The permutation procedure is repeated 10 times and 

averaged to a permutation importance vector. A cut-off 

value of 0.001 is chosen. The whole procedure is 

repeated in each stage during modeling. The features 

which were kept for the next stage with the same 

algorithm and dataset had either a permutation 

importance above the cut-off or the number of features 

used in the next stage were cut to one third of the 

number employed in the previous stage. The models 

from each stage are included in the performance 

evaluation. 

2.4. Hyper-Parameter Optimization 

Random and grid search commonly used for the 

hyper-parameter optimization suffer from a 

considerable computational cost even with parallel 

computing [66]. Local optima in the parameter space are 

difficult to avoid if the grid is not dense enough with 



 

 

properly set parameter ranges. In this work, we 

employed Bayesian optimization (BO) [67] for hyper-

parameter optimization with RMSE  (Validation) as a 

loss function. BO aims to construct a posterior 

distribution of functions (Gaussian process) that best 

describes the loss function. As the number of 

observations grows, the posterior distribution improves, 

and the algorithm becomes more certain of which 

regions in the parameter space are worth exploring and 

which are not. In the process of parameter optimization, 

the model is continuously trained, and the regression 

results obtained by each parameter combination are 

evaluated. Finally, the optimal parameter combination 

is obtained when a stopping criterion is reached 

(predefined number of iterations). 

2.5. Model training 

To train the models, the datasets (logS0 & the 

predictive sets) were split following two strategies: 

randomly and by means of diversity picking [68]. For 

both splits, the external test set was set to 20% of the 

whole data set, the remaining 80% are split further into 

a train (80%) and validation set (20%). We trained the 

models with three options for the predictive features, 

namely fingerprints (FP), descriptors (DS) and a joint 

data set of fingerprints and descriptors (FPDS); two 

splitting options; random or by diversity picking; four 

ML algorithms; with and without multi-stage feature 

selection. The parameters of the ML models were tuned 

using BO for each of the named combinations. The 

available parameter space (upper and lower bounds) per 

algorithm is shown in (see Supplementary file 01). The 

models were trained on the train set and validated on the 

validation set during BO. Root mean square error 

(RMSE) computed out of the testing set was employed 

as a loss function for BO. The optimization experiment 

ran for ~2 days on a 24 x Intel(R) Xeon(R) Gold 6148 

CPU @ 2.40GHz with 30GB of RAM. We also 

followed per iteration results on the external test set, to 

report the estimated generalization performance. Apart 

from LASSO, which has an internal regularization of 

the feature space, the models were trained iteratively 

with the permutation importance feature selection 

strategy multiple times, each time transferring the 

feature list to the next model sequentially. Such 

modelling pipeline is depicted in Figure 2. Finally, the 

best models were chosen based on a ranking schema, 

which we believe reflects an objective model 

evaluation. In equation (2), the weights were fixed in 

such a manner that performance on the test is given the 

largest importance, followed by complexity expressed 

through the number of features and two terms 

representing generalization all combined in the average 

rank RkM
. All ranks are sorted ascending. 

 

 
Figure 2. The model pipeline for the optimization experiment. 

 

𝑅𝑘𝑀 = 0.5𝑅𝑅𝑀𝑆𝐸(𝑡𝑒𝑠𝑡) + 0.3𝑅𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 0.1𝑅𝛥𝑣𝑎𝑙 + 0.1𝑅𝛥𝑡𝑟𝑎𝑖𝑛  (2) 

 

where, Rfeatures is the rank of the number of features 

employed in the model, RRMSE(Test) is the rank of RMSE 

of the respective test set whereas Δval and Δtrain are 

defined with equations (3) and (4), respectively.  Both 

terms account for the generalizability of the models. 

 

( ) ( ) = −val RMSE test RMSE val   (3) 

( ) ( ) = −train RMSE train RMSE val   (4) 

3. Results and discussion 

3.1. Model optimization results 

Models originating from all permutation importance 

stages are listed. Overall, just looking at the RMSE(test) 

is LASSO the best performing model (RMSE(test) = 

0.69) with 105 features (fingerprints + descriptors, 

FPDS) involved. RMSE(train) and RMSE(val) for 

LASSO were 0.66 and 0.96, respectively. This model, 

ranked by RMSE(test), was followed by five RF models 

with some of them comprising as few as 16 features. 



 

 

The first PLS model appeared on the 7th place 

comprising 33 features. The best LGBM model by 

means of RMSE(test) was ranked 15th comprising 47 

features. Figure 3 depicts the contributions of the 

choice of predictors, algorithm and the splitting method. 

It can be observed that the fingerprint (FP)-based 

solubility models have generally underperformed when 

compared to the models built out of molecular 

descriptors or their combination. The models based on 

FP also exhibit a large spread in regard to RMSE(test). 

This outcome could have been expected being that none 

of the 4 algorithms (PLS, LASSO, LGBM, RF) creates 

metavariables out of the FPs like neural nets do in the 

hidden layers which contribute to their predictive 

ability.[69] 

 
Figure 3. Distribution of testing set errors for the four evaluated 

machine learning algorithms. Differences between random 

train/test/validation split and diversity picking are depicted with 

green ascending, and red descending line patterns, respectively. 

 

Also, with the addition of fingerprints to descriptors 

(FPDS), only marginal improvements can be observed. 

The PLS algorithm shows a small spread over all 

combinations (Figure 3), which can be explained by 

only one hyperparameter to be optimized (the number 

of latent features). LGBM shows a notably larger spread 

comparing to other algorithms (Figure 4), which can be 

explained by evident overfitting on the train set, and 

lower predictive ability on the test set. Such 

performance decrease is not caused by the optimizer 

being stuck in local optima, which was evident from 

model results where optimal hyper-parameters of 

LGBM vary considerably in each run. Even though the 

LGBM is a powerful algorithm, it has a large variety of 

hyperparameters and finding the right set of those can 

appear troublesome. The spread of RF tends to be 

smaller than LGBM, which can be explained by the 

bagging + decorrelation paradigms which can help in 

avoiding any local optima during BO. In our previous 

work, we observed boosting ensemble methods also 

underperforming when compared to the bagging 

ensemblers.[35, 70] Overall, the spreads per algorithm 

in Figure 4 are larger for the FP and FPDS predictive 

sets. This might be explained by randomness which 

fingerprints can introduce by having a train or test bit 

with all zero values impeding convergence. Splitting the 

data either at random of via diversity picking did not 

exhibit notable differences in predictive ability on the 

test set. RMSE(val) values for models with datasets split 

via diversity picking, can be as low as 0.53. 

Nevertheless, the highest ratios of 

RMSE (Test / Validation) (above 1.2) are all 

originating from diversity-picked data splits. 

 
Figure 4. Generalization ability and robustness for all the models 

trained in this work. The color codes represent the three sets of 

predictive variables for the four employed methods. Differences 

between random train/test/validation split and diversity picking are 

depicted with green ascending, and red descending line patterns, 

respectively. 

 

Table 1. Results of model optimization sorted by the scoring 

method RkM. 
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RF FPDS FALSE 0.72 17 0.47 0.94 21.6 

LGBM FPDS FALSE 0.84 2 0.82 1.01 25.1 

RF FPDS TRUE 0.74 8 0.57 0.98 25.2 

LGBM DS FALSE 0.74 15 0.46 0.96 25.8 

LASSO DS FALSE 0.73 92 0.70 0.97 26.2 

RF FPDS FALSE 0.72 51 0.47 0.94 26.5 

LASSO FPDS FALSE 0.70 105 0.66 0.96 26.6 

RF DS FALSE 0.74 19 0.53 0.96 26.7 

LGBM DS FALSE 0.73 47 0.30 0.92 27.1 

LGBM DS TRUE 0.84 3 0.82 1.04 28.0 



 

 

Diversity-picking leads to similar train and validation 

set which points to an overestimation of the model 

quality on any external set. Therefore, the validation or 

other cross-validation metrics for models with diversity-

picking-based splitting can point to lower 

generalization / robustness. Based on Δtrain (Eq. (4)) 

LASSO is overall the best performer. PLS performs 

well in terms of both generalization metrics. RF models 

exhibited overfit, but in a lesser extent than LGBM. 

Overall LASSO and PLS appear to be algorithms with 

much better generalization capabilities for QSPR 

modelling of intrinsic solubility. Table 1 summarizes 

the ten best models according to the RkM metric only for 

random splits, since we have shown that diversity-

picking can deviate the impression in generalization. 

The RkM metric was chosen in such a manner as to create 

a simple model by means of the number of features and 

a good result on the (external) test set but still taking 

into account generalization/ robustness (see Equation 

1). By means of RkM, a Random forest model using 17 

features was ranked as best. The predictive ability of the 

two best models based on RMSE(test) and RkM is 

depicted in Figures 5A, and 5B, respectively. 

 

 
Figure 5. Predictive ability of the two best intrinsic solubility 

QSPR models. A) LASSO model, B) RF model. 

 

Out of the ten best models by RkM, four are RF and 

four are LGBM, the rest being LASSO. Interestingly, 

there are two LGBM models using two and three 

features for training. Even though not ranked as the best, 

they exhibited reasonable generalization. Eight out of 

these ten models are not using preprocessing which 

shows that ensemble methods work well with the 

original data as preprocessing can remove valuable 

information. None of the best models were based on 

FPs. The models in Table 1 were either based on 

descriptors or the combined with FPs. 

3.2. Feature importance 

The analysis of the employed features for all the models 

in this study showed some interesting patterns. The PLS 

models in general did not reduce to as few features 

during the feature selection as RF or LGBM. LASSO 

mostly converged with subsets of 50-100 features. The 

multi-stage feature selection was not used in the case of 

LASSO as feature selection is inherent to this technique. 

RF models have overall exhibited a reasonable model 

quality with a smaller number of features. This points to 

a fact that RF seems more efficient in removing features 

due to its bagging and decorrelation paradigms. The best 

model by means of RkM was re-fitted with the resulting 

features and the resulting parameters. The re-trained 

model was subjected to permutation importance, the 

results of which are depicted in Figure 6. Detailed 

descriptions of all the descriptors found in Todeschini 

and Consonni.[71] 

 

 

Figure 6. Mean permutation importance for 1000 random 

resampling runs of the best model with 17 features. 

4. Conclusions 

In this work, we tested multiple factors affecting 

machine learning outcomes in order to return the best 

prediction for intrinsic solubility. Besides the four 

regressors; LASSO, Random forest, LightGBM and 

Partial least squares, we tested the effect of feature 

selection by means of permutation importance, the data 

set (fingerprint and molecular descriptors), Bayesian 

optimization and data splitting options. The intrinsic 

solubility data employed here is a novel collection of 

curated values and structures obtained from literature 

with 829 “drug-like” compounds. The best result by 

means of performance was a LASSO regressor. 



 

 

Nevertheless, we propose a ranking schema for 

choosing the best models by not solely the measure’s 

performance on a fixed test set, but also by taking the 

number of features and the estimated generalization 

performance into account. The rankings reveal a clear 

dominance of the Random forest algorithm since it can 

predict well with less features involved. Even though 

LightGBM is a powerful algorithm, it has complex 

hyperparameter space hard to optimize and overfits 

most of the time. We show that there is no single 

criterion, data set nor algorithm which can cover it all, 

but rather a multiverse of possibilities and decision to 

be embraced for building robust models with strong 

generalizability. 
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