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Abstract 

The global pandemic crisis, COVID-19 caused by severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) has claimed the lives of millions of people across the world. Development and 

testing of anti-SARS-CoV-2 drugs or vaccines, are not turned to be realistic in the timeframe 

needed to combat this pandemic. Thus, rigorous efforts are still ongoing for the drug repurposing 

as a clinical treatment strategy to control COVID-19. Here we report a comprehensive 

computational approach to identify the multi-targeted drug molecules against the SARS-CoV-2 

proteins, which are crucially involved in the viral-host interaction, replication of the virus inside 

the host, disease progression and transmission of coronavirus infection. Virtual screening of 72 

FDA approved potential antiviral drugs against the target proteins: Spike (S) glycoprotein, human 

angiotensin-converting enzyme 2 (hACE2), 3-chymotrypsin-like cysteine protease (3CLpro), 

Cathepsin L, Nucleocapsid protein, RNA-dependent RNA polymerase (RdRp) and non-

structural protein 6  (NSP6) resulted in the selection of seven drugs which preferentially binds 

to the target proteins. Further, the molecular interactions determined by MD simulation, free 

energy landscape and the binding free energy estimation, using MM-PBSA revealed that 

among 72 drug molecules, catechin (flavan-3-ol) can effectively bind to 3CLpro, Cathepsin L, 

RBD of S protein, NSP-6, and Nucleocapsid protein. It is more conveniently involved in key 

molecular interactions, showing binding free energy (ΔGbind) in the range of -5.09 kcal/mol 

(Cathepsin L) to -26.09 kcal/mol (NSP6). At the binding pocket, catechin is majorly stabilized 

by the hydrophobic interactions, displays ΔEvdW values -7.59 to -37.39 kcal/mol. Thus, the 

structural insights of better binding affinity and favourable molecular interaction of catechin 

towards multiple target proteins, signifies that catechin can be potentially explored as a multi-

targeted agent in the rational design of effective therapies against COVID-19. 

Keywords: SARS-CoV-2; COVID-19; multi-targeted drug; Catechin; free-energy landscape. 
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Introduction 

There are different members of Coronaviridae family of virus which often cause mild, moderate 

to severe respiratory symptoms in humans. Recently, the novel coronavirus (2019-nCoV or 

SARS-CoV-2) appears to be the deadliest and highly contagious virus of this family. This 

mysterious virus emerged in Wuhan, China in December 2019 and, within a very short time, 

rattled the world’s safety and ignited the sense of global panic. Although SARS-CoV-2 shares a 

high level of genetic similarity with SARS-CoV, the infection rate of SARS-CoV-2 is much 

higher than suspected. Declared as a pandemic in March 2020, the outbreak has already led to 

0.5M deaths worldwide (WHO, 2020). The molecular and structural organization of the virus 

includes an envelope, non-segmented, positive-sense RNA which codes for several structural 

proteins such as spike (S) protein, envelope (E) protein, membrane (M) protein and the 

nucleocapsid (N) proteins and also 16 putative non-structural proteins (nsps, encoded by 

replicase complex (orf1ab)) (Chan et al., 2020; ul Qamar et al., 2020; Zhu et al., 2020). The 

genome consists of a 5′-untranslated region (UTR), 3′-UTR, and several unidentified non-

structural open reading frames (Chan et al., 2020; Zhu et al., 2020). During the last couple of 

months, dozens of coronavirus vaccines have already been tested, approximately more than 

hundreds are either under development or in the preclinical investigation. However, the success 

of these efforts remains elusive. Therefore, the need of the hour is to identify novel and effective 

measures to control the pandemic (Cascella et al., 2020; WHO, 2020). 

The major setback in identifying drugs/vaccines against COVID-19 remains the lack of 

knowledge about the mechanism of action of the virus, molecular targets and network of 

associated molecular interactions. Recently, several targets have already been discovered that 

interact with SARS-CoV-2 such as human angiotensin-converting enzyme 2 (hACE2), 

transmembrane protease serine 2 (TMPRSS2), phosphatidylinositol 3-phosphate 5-kinase 

(PIKfyve), two pore channel subtype 2 (TPC2), and cathepsin L (CTSL) (Bhowmik et al., 2020; 
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Hasan et al., 2020; Hoffmann et al., 2020; Ou et al., 2020a). At the same time, various research 

groups have identified the effective inhibitors against some of these targets such as main protease 

M pro (3CL Pro) (Alamri et al., 2020; Dai et al., 2020), envelope (E) protein (Gupta et al., 2020b), 

RNA dependent RNA polymerase (RdRp) (Yin et al., 2020) and Spike (S) protein (Barh et al., 

2020; Tai et al., 2020). 

Since the genes of RNA viruses (including SARS-CoV-2) are genetically variable (Cao et al., 

2020; Lu et al., 2020; Phan, 2020), they can quickly accumulate genomic mutations through an 

error-prone viral reverse transcriptase, which advances their adaptation inside the human host. 

This further adds to the difficulty in designing active antiviral therapeutics against RNA viruses 

(Naik et al., 2020). Moreover, most of the antiviral drugs today are single target drugs designed 

against specific viral enzymes, which are essential for viral interaction, replication or invasion. 

Therefore, the high rate of mutations in these single viral drug targets has been main cause for 

reduced susceptibility of currently available antiviral drugs (Joshi et al., 2020). 

Nevertheless, finding the compounds having efficacy for multiple molecular targets, remained 

a preferable approach in disorders caused by highly mutable pathogens (Ismail et al., 2016; 

Levitzki and Klein, 2019). Targeting different molecular targets with a single drug is always a 

preferable approach over combination therapy to avoid unwanted drug interactions (Kumari, 

Bhushan Mishra, and Tiwari, 2016; Naik et al., 2020). Additionally, the drugs designed for 

multiple protein targets are extensively preferable for the treatment of both infectious, inherited 

and complex diseases due to low treatment cost, less drug dosage and minimal side effect and 

drug-drug interactions (Battah et al., 2019; Gupta et al., 2020a; Kumari, Bhushan Mishra, and 

Tiwari, 2016; Mugumbate et al., 2017; Youdim, 2013). Therefore, with the immediate 

requirement of multi-targeted strategies (Naik et al., 2020; Shi et al., 2020) against the novel 

coronavirus SARS-CoV-2, with either biologically active drug-like molecules or approved 

drugs are in pressing priority. Recent advancement in the computational techniques have 
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proven their efficiency for identifying the potential drug candidates (Chodera et al., 2011; Ou 

et al., 2020b; Prakash and Luthra, 2012; Wang et al., 2019). Considering the improvement, 

reliability, and accuracy of computational methods, it has become a suitable choice to design 

structure-based drugs (Levitzki and Klein, 2019; Luthra, Kumar, and Prakash, 2009; Luthra et 

al., 2009; Williams-Noonan, Yuriev, and Chalmers, 2018). Keeping these facts in mind, we 

adopted a multi-target drug discovery approach to hit various druggable targets of SARS-CoV-

2, which may appear highly beneficial to strike this highly mutated virus. 

Thereby, we screened 72 FDA approved antiviral drugs against known targets of SARS-CoV-

2. We have taken both human proteins as well as viral targets as a strategy. The targets were 

chosen which already have been published single drug interactions and defined PDB structure. 

Following 7 targets were identified: (1) The human angiotensin converting enzyme 2 (hACE2) 

interacting with the (2) transmembrane viral spike (S) glycoprotein at receptor-binding domain 

(RBD) that forms homotrimers protruding from the viral surface (Barh et al., 2020; Hoffmann 

et al., 2020; Ou et al., 2020a; Tai et al., 2020), (3) the highly immunogenic, antigenic and 

abundantly expressed viral nucleocapsid (N) protein, which plays essential roles in viral 

genome packaging by formation of helical ribonucleo proteins (Kang et al., 2020b), (4) main 

protease M pro (3CL Pro), an essential viral enzyme for processing the polyprotein complexes that 

are translated from the viral RNA (Zhang et al., 2020), (5) the human endosomal cysteine 

protease Cathepsin L required for viral entry (Liu et al., 2020; Ou et al., 2020a), (6) non-structural 

viral protein nsp-6 which dwells in the endoplasmic reticulum (ER) and has role in generation of 

autophagosomes (Benvenuto et al., 2020), (7) the nsp12, along with the two other cofactors nsp7-

nsp8 as a complex, aiding increased RNA-dependent RNA polymerase (RdRp) template binding 

and processivity. Firstly, the virtual screening of 72 FDA approved antiviral drugs was performed 

against these targets to select a highly potent multi-targeted agent. The best binding poses of 

antiviral drugs with target proteins display a diverse range of binding affinities (6.23 ̶ 12.43 
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kcal/mol). Among them, catechin emerged as a multi-targeted agent, effectively binding (range 

of 5.79  ̶  8.37 kcal/mol) with five target proteins: RBD, Cathepsin L, nucleocapsid protein, 

3CLpro and NSP-6.  

Catechin (flavan-3-ol) is a natural phenol and a major chemical component of sinecatechin, a 

first FDA approved herbal drug for the treatment of external genital warts caused by HPV 

infections. Topical ointment Veregen is a marketed medicine and it is a purified form of 

catechins, extracted from leaves of Chinese green tea which is comprising 80% catechins. It is 

well recognized for the anti-viral activity, anti-bacterial activity, anti-inflammatory and for the 

immunostimulatory actions (De Clercq and Li, 2016). Further, we have acquired several data 

contributing to the stable structural dynamics of the protein-ligand complex, including free-

energy landscape, which validates the efficacy of these molecules as multi-targeted agents by 

using molecular dynamics (MD) simulation. The spatial stability of ligand molecules at the 

active site of protein was estimated in terms of binding free energy using MM/PBSA. These 

studies reveal that catechin occupies quite well the binding pocket of proteins, stabilized by 

energetically favourable molecular interactions during the simulation, which offers the 

prerequisite understanding for developing the effective drug molecules. Thus, identifying the 

catechin as a novel multi-targeted agent may provide the structural basis for the designing 

strategy of potential drug molecules targeting SARS-CoV-2 in the therapy of COVID-19.  

Materials and Methods 

Protein structure retrieval  

The three-dimensional coordinates of protein structures were taken from the Protein Data Bank. 

The co-crystalized X-ray structure of SARS-CoV-2 spike receptor with ACE2 (PDB ID: 

6M0J), 3-chymotrypsin-like (3CL) cysteine protease (PDB ID: 6M2N), Cathepsin L (PDB ID: 

6F06), crystal structure of nucleocapsid protein (PDB ID: 6M3M), RNA-dependent RNA 

polymerase (PDB ID: 6M71), non-structural Protein 6 (NSP6) and Cryo–electron microscopy 
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structure of  RNA-dependent RNA polymerase (RdRp) enzyme with remdesivir and nsp12-

nsp7-nsp8 complex (PDB ID: 7BV2) were taken as the targets for the virtual screening of 

selected FDA approved antiviral agents as shown in supporting information Figure S1.  

 

Virtual Screening and Molecular Docking  

The virtual screening of FDA approved antiviral compounds against the selected SARS-CoV-

2 proteins were performed using Glide, Schrodinger, LLC (Friesner et al., 2004; Halgren et al., 

2004; Kumar et al., 2019). Glide involves three-step filtering methods, standard precision, extra 

precision and the selection of best docked compounds by integrating coulombic and van der 

Waals interaction energies and Glide scoring function. CORINA v2.64 software package 

(Sadowski, Gasteiger, and Klebe, 1994) was utilized to add the missing hydrogen atoms and 

optimize the sdf format structures of the ligands. The lowest energy three-dimensional 

structures of ligands were generated using Ligprep (Guillemette, Poitras, and Boulay, 1991). 

The ionization/tautomeric states of the selected compounds were taken care of by Epik and a 

maximum of up to 32 conformations was generated per ligand, using the Schrodinger protocol  

(Jorgensen, Maxwell, and Tirado-Rives, 1996; Jorgensen and Tirado-Rives, 2005; Shelley et 

al., 2007). The molecular interactions of docked complexes were analysed using PyMol and 

LigPlot. 

Molecular dynamics (MD) simulation  

MD simulations were carried out on the coordinates of protein-ligand complexes using  

GROMACS-2018.1 (Kutzner et al., 2019) with protein interactions approximated using 

CHARMM36 force field (Huang et al., 2017).  The ligand parameters were generated utilizing 

CGenFF server (Vanommeslaeghe, Raman, and MacKerell, 2012). Each protein-ligand 

complex was placed in the center of a cubic simulation box with 10 Å distance to the edges 
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and solvated with TIP3P water molecules. The counterions (Na+ Cl-) 0.15 M added to neutralize 

the system. The periodic boundary condition was defined in x, y, and z directions (Darden, 

York, and Pedersen, 1993), and electrostatic interactions were evaluated using particle-Ewald 

summation, and a cut-off of 10 Å was used for calculation of vdW-interactions. The resulting 

systems were energy-minimized by steepest descent and conjugate gradient algorithms. Energy 

minimization was performed for 50000 steps. Equilibration was first performed for 500 ps in 

an NVT ensemble and subsequent 500 ps in an NPT ensemble. Temperature and pressure were 

set T=300 K and 1 bar, which was controlled by a Parrinello-Danadio-Bussi thermostat (Bussi, 

Donadio, and Parrinello, 2007) and Parrinello-Rahman pressure (Parrinello and Rahman, 

1980), respectively. The integration step of 2 fs was used. Each system was simulated for 200 

ns and the snapshots were saved every 10 ps for further analysis. All production runs were 

performed on CUDA enabled Tesla GPU machine (DELL T640 with V100 GPU), and OS 

Centos 7 (Prakash et al., 2018a; Singh et al., 2019). 

MD analysis  

The obtained MD trajectories were analyzed using GROMACS utilities. The structural order 

parameters that we measured are root-mean-square deviation (RMSD), the radius of gyration 

(Rg), solvent-accessible-surface-area (SASA), root-mean-square-fluctuation (RMSF), and 

hydrogen bond interactios. Hydrogen bonds were defined by a distance cut-off of 3.5 Å 

between the donor & acceptor atom and an angle cut-off of 30°. Similarly, a hydrophobic 

interaction was defined by the condition that the distance between two residues (i and j, with |i 

− j| > 3) is less than 4.5 Å. Principal component analysis performed using the projection of 

principal component (PCs), PC1, and PC2 along the native structure (Laberge and Yonetani, 

2008; Prakash et al., 2018a) and gmx-sham utilized for the free energy landscape (Prakash et 

al., 2020; Prakash et al., 2018b). 
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Binding free energy estimation 

The binding free energy of the protein-ligand complexes was evaluated using MM-PBSA 

(Molecular Mechanics-Poisson-Boltzmann Surface Area), which describes the structural, and 

molecular stability of the ligands in the active site of the protein (Batt et al., 2012; Prakash and 

Luthra, 2012; Sastry et al., 2013; Wang et al., 2019). The binding free energy of a protein-

ligand complex (ΔGbinding) can be written as,  

ΔGbinding = < Gcomplex> - < Greceptor > - < Gligand > 

where, Gcomplex represents the free energy of the protein-ligand complex, Greceptor, the free 

energy of protein, Gligand as the free energy of ligand and < > represents the ensemble average. 

Excluding the entropy term (TΔS), the above equation for the binding free energy can be 

approximately written as,  

ΔGbinding = ΔEMM + ΔGsolv 

where, ΔEMM is the change in the average molecular mechanics interaction energy (gas-phase) 

upon ligand binding computed as the sum of the changes in the bonded and non-bonded 

(electrostatics and Van der Waals) interactions upon ligand binding (ΔEMM = ΔEbonded + 

ΔEelectrostatics + ΔEvdw). ΔGsolv is the change in solvation free energy upon ligand binding. 

Further, ΔGsolv can be written as, 

ΔGsolv = ΔGPOL + ΔGNP 

where, ΔGPOL is the change in the polar part of the solvation free energy and ΔGNP is the change 

in the non-polar part of the solvation free energy as a result of ligand binding to the proteins. 

Poisson-Boltzmann (PB) equation was used for the estimation of the polar part of the solvation 

free energy and the non-polar part was estimated with a surface area-based approach. Binding 

free energy (ΔGbinding) for the protein-ligand complex was estimated using the MMPBSA.py 

script of the AMBER Tools (Wang et al., 2016). An ionic strength of 0.15 M and a solute 
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dielectric constant value of 2 was used for the PBSA calculations. Considering the convergence 

issues associated with the MM-PBSA calculation, only last 50 ns data was used. 

Results and discussion 

Targeting SARS-CoV-2 proteins for identifying multi-target agents  

The ability of a chemical compound to work as a drug lies in its competency to bind efficiently 

to a druggable target. While there exist plenty of methods to evaluate the binding affinity of a 

ligand towards a target starting from very reliable and accurate alchemical free energy methods 

(computationally very costly) to less accurate docking methods, molecular docking and virtual 

docking remains the first choice to screen chemicals as they offer reasonable accuracy with 

modest computational efforts (Chodera et al., 2011; Williams-Noonan, Yuriev, and Chalmers, 

2018). Considering this, we have first performed molecular docking study to screen the efficacy 

of 72 FDA approved drugs against various important druggable targets of SARS-CoV-2.  Our 

docking study revealed that some of the FDA approved drugs have excellent interactions with 

particular target displaying satisfactory docking scores. Docking scores of the top 10 anti-viral 

drug molecules corresponding to each protein are enumerated in supporting information Table 

S1. Results indicate that among all, ritonavir, dolutegravir, tenofovir, tinofoviralafenamide, 

boceprevir, catechin, and zanamivir were found to be the most promising inhibitor against SARS-

CoV-2 proteins: 3-chymotrypsin-like cysteine protease (3CLpro), RNA-dependent RNA 

polymerase (RdRp), Angiotensin-converting enzyme 2 (ACE2), Cathepsin L, Non-Structural 

Protein 6 (NSP6), Nucleocapsid protein and receptor-binding domain (RBD) of Spike (S) 

protein, respectively. The molecular interactions of antiviral agents having the best dock score 

shown in supporting information Figures S2 and S3. Interestingly, the naturally derived 

polyhydroxy molecule catechin showed multi-targeted action against all seven targets; however, 

its promising binding capability (with the cut off range > 5.0 kcal/mol) was noticed against the 

five important targets engaged in invasion and survival of SARS-CoV-2 in to the human cells. 
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We found that catechin effectively binds to 3CLpro, Cathepsin L, NSP-6, nucleocapsid protein, 

and RBD of S protein, showing the docking scores in the range of -5.79 to -8.34 kcal/mol.  

Molecular interaction of catechin as multi-targeted agent  

The structure-based virtual screening protocol bestowed catechin as the effective multi-

targeted agent which effectively hits 3CLpro, Cathepsin L, NSP-6, nucleocapsid protein, and 

RBD (Figure 1 and supporting information Figure S3).  The SARS-CoV-2 protein, 3CLpro 

plays a critical role in the replication of the virus particles and is a potential target for anti-

coronaviruses inhibitors screening. The active site of 3CLpro consists of Cys-His catalytic dyad 

(Cys145 and His41), which is highly conserved in the CoVs family,  also referred to as the 

main protease, Mpro (Muramatsu et al., 2016). The molecular docking result shows that catechin 

nicely fits in the active site of 3CLpro with the highest docking score -8.34 kcal/mol among all 

selected five target proteins. It displays H-bonds with Thr26, Met49, Arg188, and Gln189, 

whereas, Leu27, His41, and Leu58 are involved in hydrophobic interactions. 

Benzopyran moiety of catechin is oriented towards Met49, Arg188, and Gln189, noticeably, 

di-hydroxy phenyl occupied at the Cys145 and His41 catalytic dyad, crucial for ligand binding.  

An excellent interaction of this compound was also seen with Cathepsin L, a crucial human 

protease that promotes SARS-CoV-2 entry by S protein activation (Jaimes, Millet, and 

Whittaker, 2020; Ou et al., 2020b). Indeed, catechin occupied the active site of this protease, 

stabilizing through hydrogen bond interactions as well as hydrophobic interaction. Phenolic 

hydroxy participate in hydrogen bonding with Ser216, and hydroxy at benzopyran moiety 

showed hydrogen bonding with Met161. Benzopyran ring was stabilized by hydrophobic 

interaction with Trp26, His163 and Ala214.   

In the CoVs family, nucleocapsid acts as a multifunctional RNA-binding protein and plays an 

indispensable role in regulating viral RNA transcription/replication and the modulation of host 

cell metabolism (Tan et al., 2006). The recently solved N-terminal domain of SARS-CoV-2 
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nucleocapsid consists of antiparallel β-sheets at the core, protruding β-hairpin and short 310-

helix (Kang et al., 2020a).  The molecular interaction of catechin with nucleocapsid shows that 

phenolic hydroxy formed hydrogen bond interaction with Ala108, and phenyl moiety imparted 

hydrophobic interaction with Trp5, Ala109, and Ile110. Hydroxy group at benzopyran moiety 

was stabilized by hydrogen bond interaction with Asn28 and Ser31. Additionally, this 

benzopyran moiety was stabilized through hydrophobic interactions with His98 and Ile99. 

Another important CoVs protein, non-structural viral protein 6 (NSP6), plays an essential role 

in viral RNA synthesis by sequestering the membrane of endoplasmic reticulum of the host 

cell (Baliji et al., 2009). A strong affinity of catechin with NSP6 was also discerned. Indeed, 

catechin contoured well in the active site of NSP6, displaying satisfactory docking score (-6.68 

kcal/mol). It was noticed that catechin forms tight interactions in the active site through three 

hydrogen bond interactions and several hydrophobic interactions. Hydroxy groups of catechin 

are found to be involved in hydrogen bonding with Leu239, Tyr242, and Asn232. Phenyl 

group, as well as benzopyran moiety, were well steadied by hydrophobic interactions with 

His62, Ala65, Tyr175 and Phe228. The configuration and orientation of catechin was also 

found to be favourable, showing convincing interactions with virus surface S glycoprotein 

which mediates entry into host cells, adhering at the host receptor (hACE2). Evidently, catechin 

also effectively inhibits the interaction of receptor-binding domain (RBD) of S protein with 

ACE2. Docking result indicates that the scaffold of catechin is well stabilized in the active site 

of RBD through four hydrogen bonding interactions. These hydrogen bonds are seen between 

hydroxy groups and active site amino acids such as Tyr453, Tyr495, Gly496 and Asn501. 

Additionally, hydrophobic interactions between catechin scaffold and amino acids: Arg403, 

Tyr453, Tyr495, Gly496 and Phe497 are also observed. Interestingly, catechin is also 

supported by π-π interactions, which can be noticed with Tyr453, Phe497 and Tyr495.  
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Thus, our molecular docking study evidently indicates that catechin strongly interacts with 

these five crucial targets associated with SARS-CoV-2, which clearly designates the multi-

targeted action against SARS-CoV-2.  However, considering the approximations made in 

molecular docking (lack of receptor flexibility and conformational entropy, lack of information 

about the number and free energy of water molecules in the binding site of the protein, etc.) to 

allow fast screening of chemicals, the dynamics of the protein-ligand interactions are 

overlooked and therefore, might not explain the stability of the ligands in the active site of the 

protein. In the cellular system, biomolecular interactions are dynamic in nature and the 

conformational flexibility is an intriguing property of proteins which triggers the biological 

functions and molecular recognitions (Amaral et al., 2017; Luthra, Kumar, and Prakash, 2009; 

Prakash and Luthra, 2012). A better understanding of protein-ligand interactions requires an 

accurate description of the spatial orientation of ligands at the active site of the protein, 

conformational dynamics which modulates the drug binding, interaction energy and molecular 

stability (Horoiwa et al., 2019; Lionta et al., 2014; Prakash et al., 2013). To understand the 

biomolecular interactions at atomic resolution, MD simulation is an efficient and well-

established method which mimics the flexible nature of bio-molecules, protein conformational 

changes, protein-ligand interactions, structural perturbation and provide a more realistic picture 

with atomic details in reference to time (Koul et al., 2011; Prakash et al., 2018a; Wang et al., 

2017). Thereby, to gain a deeper insight into the structural dynamics and stability of catechin 

binding with SARS-CoV-2 proteins, multiple MD simulations were performed for the period 

of 200 ns (Panda et al., 2020; Xu et al.). Additionally, the energetic contribution of binding 

pocket residues to accommodate the drug molecule, catechin is estimated using MM-PBSA 

(Pandey, Lynn, and Bandyopadhyay, 2017; Wang et al., 2019). 
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Conformational stability of protein-ligand complexes  

We accessed the conformational stability of the protein-ligand complexes by measuring various 

structural order parameters like RMSD, Rg, SASA, RMSF, as shown in Figure 2. On 

comparing the Cα-RMSD of RBD, Cathepsin L and nucleocapsid protein complexed, we 

observed that catechin achieved stability in the active site of the protein very quickly (Figure 

2A). These systems attained equilibrium in 0-5 ns and remained stable throughout the 

simulation time. The RMSD plot of 3CLpro shows an initial rise in RMSD ~0.2 nm, which 

settles gradually, and a stable equilibrium can be seen up to 90 ns. We find a slight drop in the 

RMSD of ~0.1 nm around ~100 ns and the undisrupted trajectory is seen up to 200 ns, 

suggesting stable interaction of catechin in the binding pocket of Cathepsin L. The trajectory 

of NSP6 with catechin shows slightly large deviations in RMSD during 0-80 ns; thereafter, a 

gradual drop in RMSD can be seen which attains an equilibrium around ~120 ns. Notably, the 

stable conformational dynamics of NSP6-catechin is observed up to 200 ns. Thus, the shorter 

equilibration time taken by RBD, Cathepsin L, nucleocapsid and 3CLpro to achieve a steady 

equilibrium suggests a better equilibrated and stabilized protein-ligand complex structure 

compared to NSP6. However, the stable trajectory of the NSP6-catechin complex during 120-

200 ns signifies that the ligand is spatially well occupied and stabilized with the molecular 

interactions at the binding pocket of NSP6.  

To further understand the structural stability of the protein-ligand complexes, we determined 

the compactness of protein structure by computing the radius of gyration (Rg). The Rg plots 

represented in Figure 2B show that the structural dynamics of RBD, Cathepsin L and 

nucleocapsid protein and 3CLpro remain quite stable throughout the simulation time. The 

structural integrity of these four proteins was observed to be intact with the average Rg values, 

1.83 ± 0.01 nm, 1.64 ± 0.01 nm, 1.50 ± 0.01 nm and 2.19 ± 0.01 nm, respectively. The slight 

deviations in the Rg plot of NSP6 can be seen during 0-80 ns; after that, the steady equilibrium 
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is noted till the end of simulation at 200 ns, which signifies the stable structural dynamics of 

NSP6-catechin complex with an average Rg value 2.23 ± 0.03 nm. The initial perturbation in 

the Rg trajectory may indicate the spatial adjustment of the ligand in the binding site of NSP6.  

Another important quantity that we measure and analyse to probe the conformational stability 

of the protein-ligand complex is the solvent-accessible surface area (SASA). The solvent 

environment around the protein plays a key role in maintaining the protein fold and govern the 

protein-ligand interaction processes, orientation and stability. Interestingly, we find that the 

SASA plots of all five protein-ligand complexes (RBD, Cathepsin L, nucleocapsid protein, 

3CLpro and NSP6) remain fairly equilibrated during the entire simulation period (0-200 ns) 

which provides clear evidence of the stable conformational dynamics of protein-ligand 

interactions (Figure 2C). The average values of structural order parameters, RMSD, Rg, and 

SASA are shown in supporting information Table S2.  

Next, we investigated the binding stability of the catechin at the active site of the respected 

proteins by monitoring the time evolution plots of the average distance from the centre of 

binding pocket to the ligand, as shown in supporting information Figure S4. During the period 

of 200 ns simulation, the average distance of catechin from the binding site of all five proteins 

ranges between 0.33 and 0.40 nm. Although, the peaks of sharp drifts appeared transiently at 

~80 ns and 140 ns for RBD and Nucleocapsid protein, respectively, the overall distance of 

catechin to the active site remains favourable for the stable molecular interaction. It is worth 

noting that the average distance plots of Cathepsin L, 3CLpro and NSP-6 remain stable 

throughout simulation time. Thus, this analysis provides elegant evidence of the spatially well-

fitted catechin orientation in binding sites of proteins.  

We further performed RMSF analysis to evaluate the positional fluctuation of each amino acid 

around its average mean position (Figure 2D). This analysis provides a clue about the mobility 

of atomic fluctuations related to the structural stability of molecular interaction during the 
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simulation. Usually, the higher values of RMSF are often associated with loops or may be the 

terminal residues, whereas, the lower RMSF values indicate the rigid conformation of stable 

secondary structures of α-helices and β-sheets. The result indicates that all the complexes show 

equilibrium fluctuations, except NSP-6. The plot shows that the values of RMSF significantly 

vary for all residues of NSP-6 in comparison to the other proteins, RBD, Cathepsin L, 

Nucleocapsid protein and 3CLpro, respectively. The RMSF plots of these proteins show an 

average atomic fluctuation <0.15 Å for amino acid residues, which belongs to the stable 

secondary structure and the regions which displayed high fluctuations represented the atomic 

flexibility of loops. The structure of NSP6 consists of a helical structure at the core, capped by 

antiparallel β-sheets and two small helices. The binding pocket is characterized by α-helix-2-4 

and α-helix-6-7 and antiparallel β-sheets (β1 and β2) which is enclosed by hydrophobic loop 

(Phe235-Tyr242) connecting helices and β-sheets. The RMSF plot shows on average, high 

fluctuations for the residues belonging to longest loop (Val84-Leu110) connecting α-helix-3 

and α-helix-4, loops (Gln257-Ser262 and Leu275-Pro282) connecting to small two helices (α8 

and α9) with β-sheets, respectively. The average residual fluctuations observed reasonably 

lower for terminal residues of  α-helix-2 (Phe42-Phe59), α-helix-3 (Lys63-Met86), α-helix-4 

(Lys109-Arg129), α-helix-6 (Ala157-Thr196), α-helix-7(Tyr175-Tyr196) and N-terminal of 

connecting loop (Phe235-Tyr242) and β1 (Asp243-Val246) which are actively involved in 

molecular interactions with drug molecules. Further, we also established the conformational 

stability by analysing the secondary structural contents, which were observed intact during the 

simulation (supporting information Figure S5). The structural snapshots of protein-ligand 

interactions captured at time interval of 20 ns described in supporting information Figure S6.  

Thus, the overall results clearly indicate the stable conformational dynamics of the target 

proteins complexed with antiviral drug, catechin.  
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Another parameter, hydrogen bonds (H-bonds) interaction is one of the major players in 

governing the ligand stability at the active site of the protein. Thus, we further investigated the 

time evolution plots of H-bonds involved in the molecular interaction of catechin with proteins 

(Figure 2E). The average occupancy of H-bonds (donor and acceptor), excluding ionic 

interactions were examined during the last 50 ns of simulation time and are summarized in 

supporting information Table S3. We find the maximum occupancy of five H-bonds between 

the catechin and RBD; however, four H-bonds remain consistent up to ~50 ns. Out of these, 

two H-bonds vanished at ~60 ns, which are regained at ~100 ns. Nevertheless, three H-bonds 

observed stable during the last 50 ns of simulation. The result shows that catechin formed H-

bond interaction with residues, Tyr451 (OH) with ligand (H7 and H8) and Asp442 (O) with 

ligand (H7). 3CLpro shows six H-bond interactions with catechin which can be seen up to ~150 

ns, but only three remains stable during the last 50 ns which are formed between the residues, 

Asp187 (O) –  ligand (H7), His164 (HE2) – Ligand (O2) and Thr26 (O) – Ligand (H14). 

Cathepsin L form three H-bonds, which are observed consistent up to 170 ns. It shows 

maximum occupancy with Asp162 (OD2) – Ligand (H7), Asp160 (OD1) – Ligand (H8) and 

Asp160 (OD2) – Ligand (H8). Three H-bonds are formed between Nucleocapsid–catechin, 

which are observed with Arg46 (HN) – Ligand (O1), Asp56 (OD1) – Ligand (H7) and Thr44 

(HG1) – Ligand (O2). NSP-6 shows the possibility of three-four H-bonds, however, two H-

bonds between Thr238 (O) – Ligand (H14) and Thr130 (HG1) – Ligand (O1), having 

maximum occupancy during the last 50 ns of simulation. These results indicate that catechin is 

stabilized by an average of two-three H-bonds at the binding pocket of proteins. 

 

Essential dynamics  

Protein function is regulated by switching between various conformations. The modular nature 

of proteins to switch between various states is governed by the collective motion of protein, 
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which is intrinsic to many biological processes and plays a crucial role in the transmission of 

biological signals. For a protein to be functional, a reasonable amount of flexibility, as well as 

rigidity is required, specifically for the residues in the binding site. Essentially, a tighter 

interaction would restrict the motion of the protein, thereby not allowing it to sample some 

conformations required for its activity. Therefore, in order to understand the collective motion 

of protein occupied in the conformational space during the simulation, we applied the 

dimension reduction method, essential dynamics (ED) analysis by the projection of the first 

two principal components (PCs), PC1 and PC2. The PC1 and PC2 were calculated by 

diagonalizing the covariance matrix of eigenvectors to define the essential subspace in which 

most of the protein dynamics occur. The dynamic motion of proteins obtained through the 

projection of PC1 and PC2 are shown in Figure 3. It is apparent from these plots that the 

collective motion of proteins, RBD, Cathepsin L and Nucleocapsid protein is localized in a 

small conformational space in comparison to 3CLpro and NSP-6, which revealed consistent 

results corresponding to the structural order analyses, RMSD, Rg and SASA as described in 

Figure 2A-C. The well-defined small clusters of RBD, Cathepsin L and Nucleocapsid protein, 

clearly indicate the reliability and stability of complex structure with catechin. The ED plot of 

3CLpro displays a slight increase in the conformational phase space, which can be seen along 

the PC2, which suggests that protein navigated the broad conformational space before 

achieving the ensemble of dynamically equilibrated state. Contrary to this, NSP-6 experiences 

a wide region of phase space. In fact, it explored a large conformational space in comparison 

to the other four proteins, which represent the overall higher flexibility of the protein. Thus, we 

observed a significantly compact structure of RBD, Cathepsin L and Nucleocapsid protein and 

3CLpro as compared to NSP-6, which may facilitate the vital interactions with catechin.  

 

Free energy landscape 
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Free energy landscape (FEL) provides an accurate description of the minimum energy 

conformational ensembles of biomolecules, which is undoubtedly essential to understand the 

conformational transition underlying protein-ligand interactions (Boehr, Nussinov, and 

Wright, 2009). Thus, FEL plot is constructed using Boltzmann inversion (F = −RT ln P), where 

P is the two-dimensional probability distribution of the first two PCs, PC1 and PC2, as reaction 

coordinates. Figure 4 shows that the binding of catechin with proteins occurs through the 

minimum free energy pathway. The structural ensemble derived from FEL shows that the 

catechin bound complex with RBD navigated the broad conformational space, clustered in the 

different energy basins, distributed along the PC1. However, these energy minima separated 

through the low transition barrier < 2.0 kcal/mol indicates that with the small excursion, the 

ensemble states of RBD can easily move out from one energy basin to another. This may be 

the reason we observed a small and consolidated cluster of stable populations in ED analysis. 

The FEL plot of 3CLpro shows the appearance of two distinct populations confined to two 

different energy basins, separated with high transition barrier >4.0 kcal/mol, which signifies 

the population of loosely and tightly ligand bound conformation of the protein. The 

conformational ensemble occupying the small energy basin represented the population of the 

equilibration phase, which readily achieved a stable equilibrium. These equilibrated ensembles 

of stable complex transverse to a broad and deep energy basin. The complex with Cathepsin L 

shows single but elongated energy minima, which depicts the heterogeneous population of 

different sub-states, but the very less transition barrier <1.0 kcal/mol between ensemble states 

suggested the stable conformation of protein-ligand complex confined to energy basin 

interplays between the subspace. Whereas, the rugged FEL with segmented small energy 

minima of Nucleocapsid protein suggested the population of loosely bound complex (Fu et al., 

2019). The low transition barriers (~1.5 kcal/mol) between the small energy basins indicate a 

more prolonged equilibration phase of complex structure. During the progression of 



20 
 

simulation, the protein underwent structural modifications to accommodate ligand and adopted 

a stable conformation; thus, the equilibrated ensemble smoothly shifted to broad and deep 

energy minima. Remarkably, The FEL of NSP-6 shows that the stably bound conformation of 

the protein-ligand complex is widely populated to a single consolidated energy minimum, 

which provides the elegant evidence of interactions inducing the stable conformational 

transition of NSP-6–catechin complex. Thus, the comparison of FEL results indicates the 

different binding stability of catechin bound protein-ligand complexes.  

 

Binding free energy and ligand-residue interaction decomposition 

In order to understand the molecular interaction and stability associated with the binding of 

catechin to five different proteins of SARS-CoV-2, a detailed analysis of the binding free 

energy is executed through the molecular mechanics Poisson–Boltzmann surface area (MM-

PBSA). MM-PBSA provides the best prediction accuracy in terms of energy components of 

bonded, polar and non-polar solvation free energy, electrostatic and van der Waals interactions. 

In addition, it supplies the residue decomposition plot, which helps to probe the contribution 

of amino acid residues involved in the spatial interaction to stabilize ligands at the binding 

pocket of the protein. This analysis was performed on the fully converged trajectory of the last 

50 ns with a solute dielectric constant value of 2 and an ionic strength of 0.15 M (supporting 

information Figure S7). Results show that catechin favourably binds to all five proteins, 

however, it shows a wide range of the total binding free energies (ΔGbind), as enumerated in 

supporting information Table S4. As illustrated in Figure 5, catechin possesses highest binding 

affinity towards NSP-6 with a maximum value of ΔGbind = -26.09 kcal/mol, whereas lowest 

towards Cathepsin L (ΔGbind = -5.09 kcal/mol). Results show relatively more favourable 

contribution of van der Waals energies (ΔEvdW) -37.39 kcal/mol and -24.76 kcal/mol for NSP-

6 and 3CLpro, as compared to Nucleocapsid protein (-16.34 kcal/mol) and RBD (-15.8 
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kcal/mol), respectively. Whereas, the less contribution of van der Waals interaction (-7.59 

kcal/mol) is observed for Cathepsin L. Another binding energy component, electrostatic (ΔEeel) 

energy, which describes ligand-protein interactions is a critical factor in determining the 

binding stability of ligand. The interaction of catechin with Cathepsin L shows the major 

contribution of electrostatic energy -29.61 kcal/mol, however, the lowest values of ΔEvdW = -

7.59 kcal/mol  and ΔGbind = -5.09 kcal/mol, signifies that the electrostatic energy contribute 

relatively less as compared to the other energies in the binding stability of catechin. Thus, the 

binding free energy analysis revealed that the binding of catechin at the active site of proteins 

are predominantly stabilized by hydrophobic interactions.   

To further quantify the contribution of binding pocket residues to the molecular interaction of 

catechin with five different proteins, the free energy decomposition per residue was employed 

(Figure 6). The plot of free energy decomposition analysis shows that the active site residues, 

Agr346, Phe347, Leu441, Asp442, Lys444, Tyr449, Asn450 and Try451 energetically favour 

the binding stability of catechin to RBD. Remarkably, it is noted that Agr346 contributed the 

highest binding free energy, ΔEvdW (-2.10 kcal/mol), ΔEeel (-1.73 kcal/mol) and ΔGbind ( -2.10 

kcal/mol) which indicated the favourable electrostatic and van der Waals interaction with 

catechin (Figure 6A). The protonated (-NH3+) Agr346 shows the electrostatic interactions, 

whereas the side chain guanidinium (-C(NH2)2) facilitated the hydrophobic interaction with 

ligand. The binding interaction with 3CLpro shows that the amino acid residues: Leu27, His47, 

Ser46, Met49, His164, Met165, Asp187 and Gln189, contributed the most to the total ΔGbind 

(-16.98 kcal/mol). Although the van der Waals interaction primarily stabilizes the catechin at 

the binding pocket of 3CLpro, the electrostatic interaction also contributes towards the observed 

stability by His164 (-3.80 kcal/mol) and Asp187 (-3.10 kcal/mol), respectively (Figure 6B). 

Indeed, the catechin is predominant stabilized in the binding pocket of Cathepsin L through the 

electrostatic interaction which is mostly contributed by residues: Asp71 (-11.31 kcal/mol), 
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Asp114 (-11.36 kcal/mol), Asp160 (-7.61 kcal/mol) and Asp162 (-7.89 kcal/mol), respectively 

(Figure 6C). Figure 6D showing the free energy decomposition plot of Nucleocapsid protein 

indicates the substantial contribution of amino acids, Thr44, Arg45, Arg46, Asp56, Arg60 and 

Tyr62 to energetically hold catechin at binding pocket. Surprisingly, it is noted that Arg45 

contributed to both electrostatic (-3.07 kcal/mol) and van der Waals interaction (-1.88 

kcal/mol), but Arg46 contributed only van der Waals interaction (-2.83 kcal/mol). This may be 

the reason we observed a moderate range of total binding energy (ΔGbind) value -14.15 

kcal/mol. The favourable binding of catechin with NSP-6 shows the significant contribution of 

residues, Lys61, His62, His64, Ala65, Asp133, Asp134, Phe228, Leu237, Thr238, Leu239 and 

Gln290 (Figure 6E).  Interestingly, it is noted that Thr238 contributed the higher electrostatic 

energy (-5.0 kcal/mol), whereas the maximum van der Waals energy (-2.22 kcal/mol) 

contributed by Phe228. However, the binding pocket of NSP-6 mostly consist of hydrophobic 

residues; thus, we observed the major collective contribution of van der Waals energy for 

stabilizing the ligand interaction.  

Conclusion 

In summary, using molecular docking and classical molecular dynamics simulation, we have 

explored the possibility of 72 FDA approved antiviral drugs for their potential of being used as 

an effective therapeutic strategy to control SARS-CoV-2 infections. The virtual screening 

results showed that seven chemicals: ritonavir, dolutegravir, tenofovir, tinofoviralafenamide, 

boceprevir, catechin, and zanamivir could efficiently bind to SARS-CoV-2 proteins: 3CLpro, 

RdRp, ACE2, Cathepsin L, NSP6, Nucleocapsid protein and RBD of Spike (S) protein, 

respectively. Of these, catechin has the potential to act as a multi-targeted agent, as it has the 

highest binding affinity towards the five crucial proteins of the virus: RBD, Cathepsin L, 

nucleocapsid protein, 3CLpro and NSP-6, which are essential for the invasion and infection of 

the host cell. Further, molecular dynamics simulation, free energy landscapes and binding free 



23 
 

estimation of catechin with the five target proteins explained the stable interactions of catechin 

with the critical residues in terms of occupancy of hydrogen bonds and residue contributions 

to the binding free energy. Thus, our investigation bestowed promising multitargeted agent 

catechin which can be explored as an effective therapeutic agent against SARS-CoV-2 virus to 

control the COVID-19 pandemic. 
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Figures: 

 

Figure 1. Molecular interactions of FDA approved antiviral drug, catechin at the binding 

pocket of potential target proteins: Receptor binding domain (RBD) of S protein, 3CLpro, 

Cathepsin L, Nucleocapsid and non-structural protein 6 (NSP6), using LigPlot. The bar chart 

showing the target proteins specific antiviral drugs binding affinity (kcal/mol) obtained through 

virtual screening (represented by green bars) and the comparative binding affinity (kcal/mol) 

with catechin shown in red bars.  
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Figure 2. Time evolution plot of the structural order parameters of the antiviral drug, catechin 

docked complex with target proteins: RBD, 3CLpro, Cathepsin L, Nucleocapsid and NSP6, (A) 

The root-mean square deviation (RMSD) of backbone Cα- atoms (B) radius of gyration (Rg) 

(C) solvent accessible surface area (SASA) plots (D) root-mean square fluctuation showing the 

average fluctuation of amino acid residues and (E) the propensity of H-bonds interaction 

between the proteins ad catechin during the period of simulation (200 ns), at 300 K.  
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Figure 3. Essential dynamics plots. The conformational landscape of target proteins complexed 

with FDA approved antiviral drug, catechin. The projection of the collective motion of proteins 

in the essential subspace along the principal components (PCs), PC1 and PC2. The target 

proteins are represented with different color code as shown in schema.  

 

 

 

Figure 4. Free energy landscape (FEL) of target proteins complexed with catechin (A) RBD 

(B) 3CLpro (C) Cathepsin L (D) Nucleocapsid and (E) NSP6. The free energy is given in 

kcal/mol and indicated by the color code, from lower to higher energy in the right panel.  
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Figure 5. The binding free energy terms obtained from MM-PBSA calculations relative to the 

binding of catechin with five target proteins as labelled in plot and the color code for different 

energy components shown in schema.     
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Figure 6. The residue decomposition plot (MM-PBSA), representing the binding energy 

contribution of active site residues of five target protein energetically stabilizing the catechin 

at binding pockets, (A) RBD (B) 3CLpro (C) Cathepsin L (D) Nucleocapsid and (E) NSP6. 


