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In the fields of functional materials, interfacial chemistry, and microscale devices, surface 
structuring provides an opportunity to engineer materials with unique tunable properties such 
as wettability, anti-fouling, crack propagation, and specific surface area. Often, the resulting 
properties are related to the feature sizes of the structured surfaces and therefore, it is necessary 
to accurately quantify these topographies. This work presents a step-by-step description of a 
method for the quantification of the size of periodic structures using 2D discrete Fourier 
Transform analysis coupled with data filtering techniques to optimize feature size extraction 
and reduce user bias and error. The method is validated using artificial images of periodic 
patterns as well as scanning electron microscopy images of gold films that are structured on 
different substrates. While image Fourier Transform has been used previously and is a built-in 
feature in some commercial and open-source image analysis software, this work details image 
pre-processing and feature extraction steps, and how to best apply them, which has not been 
described in detail elsewhere. This method can analyze engineered or natural periodic 
topographies (e.g., wrinkles) to enable the design of patterned materials for applications 
including photovoltaics, biosensors, tissue engineering, flexible electronics, and thin film 
metrology. 
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1. Introduction 

Surface structuring and patterning at the micro- and nanometer scale is of significant interest 

for applications including photovoltaics,[1–4] biosensors,[4,5] tissue engineering,[6,7] flexible 

electronics,[8,9] stimuli-responsive material fabrication,[10] and thin film metrology.[8,11–16] 

Structuring at this scale leads to interesting interfacial properties such as controlled wetting, 

tunable adhesion of cells and biomolecules, control over crack propagation in coatings, and 

increased specific surface area.[8,17,18] There are many methods to produce micro- and nanoscale 

structured materials like photolithography, soft lithography (e.g., stamping, printing, 

templating, xurography), and 3D printing.[6,19,20] Recently developed surface structuring 

methods take advantage of surface instabilities that arise from strain dissipation in rigid 

materials. Surface wrinkling is an extensively studied example of structuring based on surface 

instabilities, and has been used to produce functional materials with controllable properties, 

such as mechanical properties,[15,16,22,23] wettability,[13,20] conductivity,[4,24] cell proliferation,[25] 

adhesion,[13] anti-fouling,[25,26] stretchability,[13,24] and optical properties.[15] These structuring 

techniques make it possible to engineer materials with tunable properties, which has aided in 

the development of smaller, more cost effective, and higher sensitivity materials. These 

techniques and material properties are crucial in fabricating materials and devices for industries 

including renewable energy production and point of care diagnostics in healthcare. 

The prevalence of structured materials in research and product development presents a need for 

accurate and quantifiable characterization of periodic features. Measurement of feature size is 

useful for understanding material production and performance, as changes in the feature sizes 

are often related to changes in interfacial behavior, fabrication conditions, or composition. More 

specifically, feature sizes in “buckled” thin films supported on flexible substrates have been 

used to calculate the elastic modulus, where the ability to accurately determine the feature size 

is critical to reliably calculate the mechanical properties.[16,21-23] 
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Image analysis using techniques like object segmentation and particle counting can be useful 

when examining well-defined systems, objects that are adequately separated, or features with 

coarse edges; however, there is a need to perform similar analysis on structures that are not 

easily segmented.[27-30] Fourier Transform analysis has been previously used for determining 

feature sizes in periodic structures without well-defined edges that are observed in structured 

and patterned materials, specifically those with buckles and wrinkles.[3,16,31,32] The method 

presented in this study builds on these previous developments by incorporating several filtering 

techniques and data fitting routines to improve the accuracy of the feature size measurement 

while reducing user biases.  

Fourier analysis is a method that decomposes general functions into fundamental sinusoidal 

constituents, allowing the extraction of periodic components.[33,34] Examples of such functions 

include real, time-varying signals or images, which can be analyzed to determine the temporal 

and spatial frequencies that they contain, respectively. For the remainder of this manuscript, 

“frequency” will be used to refer to the latter. In order to provide physically significant results 

for feature size, the analyzed function, in this case the image, must contain implicit periodicity 

in the features of interest. 

Fourier analysis has been used in previous studies as an effective method for measuring periodic 

feature sizes in images of both simple and complex structured and patterned materials. In this 

work, we improve upon the effectiveness of Fourier analysis for the evaluation of complex 

surface structures (e.g., those presenting features with random orientation) by adding curve 

fitting and data filtering steps, as well as communicate a detailed, step-by-step guide to its 

implementation, which is lacking in current research literature and software. Test cases using 

simulated structures are used to show that features do not need to be perfectly aligned in one 

axis for the size information to be reliably extracted. As well, features aligned predominantly 

along one axis can be detected with greater intensity spectrum resolution when the power 
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spectral density (PSD) is averaged over a set range of angles, rather than averaging over all 

angles. We also highlight that this method can effectively resolve the feature size of more 

complex, randomly structured surfaces such as biaxially wrinkled materials. The results support 

that Fourier analysis is a useful approach to quantify structured and patterned materials with 

periodic features, despite minor limitations, and can be employed more accurately if additional 

image pre-treatment and feature extraction analysis steps are included. We foresee that the 

presented methodology could be a useful tool to assess how feature size is related to variations 

in processing and material parameters and to analyze surface topographies for wide range of 

applications.  

2. Results & Discussion  

2.1. Synthetic Image Test Cases for Method Validation  

In order to validate the Fourier analysis algorithm and ensure that feature periodicity could be 

accurately measured, synthetic images were generated to be used as test cases. First, periodic 

straight black and white lines with thicknesses of 100 pixels were drawn to show that the 

simplest periodic structures could be detected. Following that, periodic black and white chevron 

lines of the same thicknesses were generated to show that the periodicity and feature width were 

also accurately detected when the feature angle varied over the image. Last, jigsaw puzzle-like 

patterns of lines with the same thickness as those used in the previous examples were created 

to show that even with breaks in the image data (representing pattern “disclinations”), the 

periodicity of the line pattern can be retrieved. This jigsaw puzzle was further fragmented to 

examine the effect of increasing breaks in periodicity. The jigsaw puzzle examples are 

especially relevant when considering the potential for the analysis of cracked samples, surfaces 

with periodic domains randomly oriented, or samples with observable grain or crystal 
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boundaries. The synthetic line, chevron, and jigsaw puzzle images are shown in Figure 1A, 

from left to right.  

 
Figure 1. Fourier analysis of synthetic data test cases. Images of A) lines, chevron pattern, 

jigsaw puzzle, and fragmented jigsaw puzzle (from left to right) and B) the corresponding 

intensity spectra (from top to bottom) resulting from radially averaged PSDs over a range of 

170 to 190° for lines and chevron, and fully radially for the jigsaw puzzle and fragmented 

jigsaw puzzle. Peaks representing the spatial frequencies of interest are indicated by a red star.  

Following the 2D-DFT of the images in Figure 1A, PSDs were produced and radially averaged 

from 170 to 190° for lines and chevron patterns, and over all angles for the jigsaw puzzles, to 

give the intensity spectra as a function of spatial frequency (Figure 1B). Intensity spectra were 

cropped to spatial frequencies < 0.08 μm-1 to highlight the relevant peaks (the full intensity 

spectra can be found in Figure S1 in Supporting Information). The peak with the highest 

intensity is the peak of interest for feature periodicity, which is the leftmost peak in these spectra 

as indicated in Figure 1B by the red asterisk. These peaks correspond to spatial frequencies of 

0.01 μm-1 for all four examples. Taking the inverse of these frequency values, given a scale of 

1 pixel = 1 μm, periods of 100 pixels are obtained in a 900-pixel image basis for both images. 
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These results correspond exactly to one wavelength, which in this case represents one pair of 

adjacent black and white lines.  

It is important to note, however, that in the intensity spectrum of the jigsaw puzzle, there is a 

broadening of the peaks as compared to the straight line and chevron cases, despite their 

maximum intensities occurring at the same spatial frequency. The peak broadening in the jigsaw 

puzzle case occurs due to the boundaries that break the continuous periodicity, the varying 

orientation of the lines within the individual domains and averaging of the PSD over the full 

range of angles. The more irregular the periodicity of the features becomes, and the more 

fragmented the regions of periodic structures, the broader the peak distribution. However, as 

demonstrated by this example, extraction of feature size is reliant on a distinguishable peak 

intensity, which can still be extracted with the broader peak distribution of the jigsaw puzzle 

and fragmented jigsaw puzzle examples.  

These three case results show that the Fourier analysis algorithm can be used to detect and 

calculate feature sizes for simple periodic cases. The number of periodic features and their 

density is linked to the peak intensity and width and is an obvious limitation of the current 

method as discussed further later on. Although peak broadening occurs with the introduction of 

randomly oriented domains, the same feature size is retrieved regardless of local variations in 

the feature angle or breaks in the periodicity. This is exemplified in Figure 1A, where the jigsaw 

puzzle has been fragmented with more boundaries (fourth image) than the original (third 

image). The intensity spectra shown in Figure 1B show that there is more peak broadening as 

the image is further fragmented, however the feature periodicity can still be identified. This 

becomes more important for the validity of this method as more irregularity and boundaries are 

introduced in the periodicity of the structures, as is often the case in real structured samples in 

contrast to artificially generated images.  
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2.2. Fourier Analysis of Mechanically Buckled Gold 

After validation with simple test cases, the Fourier analysis algorithm was then used to measure 

feature size periodicity on real structured samples. Whereas the synthetic data was composed 

of black and white pixels, representing the highest and lowest intensities, real images have a 

range of pixel intensities. This intensity range can result in broadened, less regular peaks, 

making the relevant data more difficult to discern from noise. To circumvent this limitation in 

real images, Canny edge detection was performed on the images as described in the 

Experimental Section.  

Samples structured via mechanical buckling were analyzed to show that feature periodicity can 

be detected in real images of highly regular structures. A 760 × 760 pixel image of a gold film 

(45 nm thick) structured on PDMS via mechanical buckling is shown in Figure 2A, with the 

Canny edge detection mask of the image shown in Figure 2B. A median filter with a radius of 

2 pixels was found to be the most effective to reduce speckle noise and was applied to all 

analyses using edge detection. A 2D-DFT was performed on the edge detection mask and the 

resulting PSD was averaged along one axis (angles from 170 to 190°) to obtain the intensity 

spectrum shown in Figure 2C. The peak corresponding to the frequency of the structures is 

0.13 μm-1 (red asterisk in Figure 2C). The inverse is taken to obtain a period of 7.6 μm, which 

is the thickness of an adjacent dark line (trough) and light line (crest). This value was validated 

by manually measuring the wavelength at 10 sampling locations (Table S1 of Supporting 

Information), to obtain a period of 7.3 ± 0.3 μm. The peak with the second highest intensity, at 

0.41 μm-1, corresponds to 2.5 μm, which is the thickness of the light lines in Figure 2A, or the 

peaks of the sinusoidal wave patterns. 
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Figure 2. Fourier analysis of mechanically buckled gold films (45 nm-thick) on PDMS. A) 

SEM image of buckled gold and B) the corresponding Canny edge detection masks. Fourier 

analysis is performed on the edge detection mask to produce a PSD that is radially averaged 

over a range of 170 to 190°, giving the C) intensity spectra for the sample. The peak representing 

the spatial frequency of interest is indicated by a red star.  

2.3. Fourier Analysis of Thermally Structured Gold  

Finally, Fourier analysis was performed on 100 nm-thick gold films deposited on polystyrene 

substrates and structured through biaxial and uniaxial thermal shrinking. Images of both 

biaxially and uniaxially structured gold are shown in Figure 3A, with their respective edge 

detection masks shown in Figure 3B. These structured samples demonstrate that feature 

periodicity can be measured in more complex structures. The uniaxially structured samples are 

more regular, demonstrating that PSD averaging within a confined range of angles is still 

effective for these more complex features. Biaxially structured samples represent the highest 

complexity of structured surfaces analyzed in this work, as they are the most irregular and 

randomly oriented. However, these features still present repeating features (e.g., wrinkle width) 

and thus Fourier analysis can still be used.  
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Figure 3. Fourier analysis of biaxial and uniaxial thermal structuring of 100 nm thick gold films 

on polystyrene using A) SEM images of biaxial (top) and uniaxial (bottom) thermally structured 

gold and B) the corresponding Canny edge detection masks. This yields C) the intensity spectra 

for both samples. The peak of interest is indicated by a red star. These peaks are D) fit to a 

Gaussian for biaxial (top) and uniaxial (bottom) structured samples, over the spatial frequency 

range shown in the plots.  

Fourier transforms were performed on the edge detection masks. The resulting PSD from the 

2D-DFT was averaged over the full range of angles (biaxially structured films) and from a range 

of 70 to 110° (uniaxially structured films) to obtain the intensity spectra in Figure 3C. The peak 

of interest for the feature periodicity, or characteristic frequency, of each sample, is indicated 
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by the red asterisk in Figure 3C. The second, less intense peak for each case corresponds to 

single wrinkles that are transformed into double line segments following edge detection. This 

was confirmed through visual inspection and manual length measurement. Since the data in 

both thermal structuring cases are more irregular and have less ideally periodic structures 

compared to the sinusoidal wave patterns (Figure 2) and synthetic images (Figure 1), the 

intensity spectrum peaks have a larger spread. Thus, the peaks of interest were fit to a Gaussian 

curve as discussed in the Experimental Section.  

The curve fits were performed over the spatial frequency ranges shown in Figure 3D, for 

biaxially (top) and uniaxially (bottom) structured gold films. From the Gaussian fits (Equation 

4) 𝑘" is the spatial frequency of interest that gives the reciprocal of the relevant feature 

wavelength. For biaxially and uniaxially structured gold, 𝑘" was 1.26 and 1.65 μm-1, which 

translates into feature periodicities of 0.8 ± 0.2 and 0.6 ± 0.1 μm, respectively. These values 

were validated by measuring the characteristic wavelength manually using the original images 

at 10 sampling locations, to obtain 0.8 ± 0.2 and 0.6 ± 0.2 μm, for biaxial and uniaxial structures, 

respectively. These manually measured values are provided in Table S1 of Supporting 

Information. 

The broad peaks in the intensity spectra exhibited by the biaxially and uniaxially structured 

materials arise from the irregularity and distribution in wrinkle size across the sample, similar 

to what occurred in the jigsaw puzzle test case. Although there is a characteristic feature size 

that can be extracted from the spatial frequency at the peak intensity of the spectra, the broad 

distribution arises from polydispersity in the wrinkle widths. This method uses the mean of the 

Gaussian curve fit of the peak of interest, so there is the inherent assumption that even with a 

broad peak distribution, the mean represents the characteristic and most dominant feature size. 

This represents a limitation, whereby too broad of a peak would render the mean of the Gaussian 

an ineffective representation of the dominant feature sizes. However, we make the overall 
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assumption in using this method that there exists one dominant feature size in which case the 

peak should be sufficiently narrow for accurate feature size extraction.  

We have shown with this work that using Fourier analysis, feature sizes can be successfully 

extracted from synthetic image test cases, as well as the highly periodic mechanically buckled 

and more irregularly structured biaxial and uniaxial thermally structured gold films. These cases 

show that Fourier analysis is a viable method for measuring feature size for structured and 

patterned materials that have periodically occurring features. We have also addressed that 

although irregularity in feature size as well as boundaries that break periodicity exist, especially 

in real structured and patterned materials, and that this causes peak broadening, this method is 

still effective for the extraction of the underlying and most frequently occurring feature size. 

While Fourier Transform analysis has previously been employed for topographical 

characterization of structured surfaces, the algorithm presented in this work introduces an image 

pre-processing step and a PSD peak fitting step, which combined lead to improved accuracy in 

the extracted feature size and periodicities.  

The determination of feature periodicity through Fourier analysis is a useful characterization 

tool whereby changes in feature size can be related to variations in material properties, 

fabrication, or composition. For example, if the gold sputtered film used here was not uniform 

in thickness, or if there were other contaminant metals, then the structures would be different 

sizes and non-uniform across the film surface (because the feature size is proportional to the 

film mechanics and a change in thickness/composition affects this). This work also serves as a 

useful guide for the application of this analysis method for materials scientists and engineers to 

accurately quantify and characterize feature sizes of structured and patterned materials. The 

application of Fourier analysis for periodic feature size determination could be used to quantify 

how changes in material preparation parameters affect resulting properties including but not 

limited to elastic modulus, hydrophobicity or hydrophilicity, conductivity, adhesion, fouling, 
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stretchability, and optical properties. Specifically, accurate characterization of periodic feature 

size could be applied to many areas of study including the extraction of mechanical moduli 

from buckled films;[15,16,22,23] assessment of how drying or crosslinking parameters affect the 

topography of wrinkled hydrogel systems;[43] analysis of cell growth, proliferation, and 

alignment as a function of surface topography;[44,45] quantification of the effect of structure size 

on anti-fouling properties;[26] and the characterization of current and resistance of stretchable 

electronics as a function of wrinkle size.[24] 

2.4. Implications & Limitations of Fourier Analysis for Feature Periodicity and Size 

Determination 

We have shown that the analysis method presented is robust, straightforward in its use, and 

streamlines the analysis of structured systems such as those discussed above. In addition, as 

seen in Figure 3C and 3D, Fourier analysis can be used to extract the statistical distributions 

that govern feature sizes in materials structured via surface instabilities. However, due to the 

inherent properties of Fourier transformations, there are limitations because of the information 

density present in real images.  

Information density in the context of Fourier analysis refers to the number of repeats of the 

periodic features present in a single image as well as how closely packed they are from one 

another. There are two distinct limitations in this regard. First, and more inherent to the 

mathematical definition of the Fourier transform, the magnification and field of view of the 

image must be such to capture enough periodic features. This is due to the prerequisite of 

implicit periodicity in the features of interest discussed in the Introduction. Second, there is a 

trade-off between the number of features captured in a single image and the ease of detecting 

or distinguishing their edges.  
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To demonstrate this, recall the definition of frequency dynamic range n/2 and frequency 

resolution (1/2)(1/Dn) as presented in the Experimental Section. Assuming a constant image 

size (and a constant dynamic range), an image with an insufficient number of features within a 

field of view (a Dn which is too small for a given feature size) would cause the peak of interest 

in the PSD to be shifted towards the origin of frequency space. This, compounded with the 

sources of noise discussed above, leads to a characteristic peak that is indistinguishable from 

the background noise signal. Conversely, a large field of view (large Dn) would cause the peak 

of interest to shift away from the origin and occupy more of the dynamic range. Although this 

is the more ideal case, limitations in edge detection algorithms would consequently make it 

difficult to distinguish highly dense features.  

Both limitations in information density are further exacerbated due to practical limitations in 

sample imaging (SEM or related modalities), where it may be difficult to acquire data with an 

ideal field of view and/or magnification. Overall, this means that the experimentalist must 

exhibit some degree of a priori knowledge of their system in order to select a dynamic range 

and field of view that adequately frames the peak of interest within the frequency space.  

Future work with the Fourier analysis method could focus on various improvements to 

overcome the aforementioned limitations. Focus can be placed on the investigation of additional 

filtering techniques and refinement to enable the consistent extraction of relevant information 

without introducing user bias from the inputs at these steps. Additionally, machine learning 

models such as convolutional neural network-based regression could be used to automatically 

analyze systems such as those presented above, therefore drastically reducing the need for a 

priori knowledge. The large dataset of previously characterized images required to train such a 

model could therefore be built using our Fourier analysis method due to the efficiency 

improvements over manual feature detection.  
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3. Conclusions  

Fourier analysis has been applied as a method for characterizing feature sizes of periodic 

structures and patterns, as shown with examples of synthetic images and images of wrinkled 

gold films on compliant substrates. We have shown that the use of Fourier analysis in 

conjunction with filtering and data fitting techniques gives reliable and accurate measurements 

of feature sizes of periodic structures for all cases tested. Most notably, if properly employed, 

Fourier analysis can be effective for extracting accurate feature sizes of even highly irregular 

and complex structures, as demonstrated with biaxial thermally structured gold. Manually 

measuring the feature sizes of structures with such irregularity is tedious, inefficient, and can 

lead to large error ranges in the measured value. Thus, reliable Fourier analysis is especially 

valuable for measuring feature sizes of these types of irregularly structured materials.  

The application of Fourier analysis to feature size detection is limited, however, by information 

density within the images used for analysis. These limitations are exacerbated by imaging 

instrumentation resolution and sample preparation requirements. In future iterations of this 

method, focus could be placed on the investigation of additional filtering techniques and on 

reducing user bias and required a priori knowledge of the system for feature size 

characterization.  

This work shows a few examples of different types of structured surfaces and feature 

morphologies that can be analyzed with Fourier analysis, and gives an overview of how this 

might be used for other structured and patterned surfaces for topographical characterization. In 

general, this analysis method proves useful in quantifying feature size for the purpose of relating 

observed and measured material properties to feature size. This is especially relevant for 

optimizing material fabrication for different applications and developing materials with tunable 

surface properties. Although Fourier analysis is a well-known method for image analysis, the 



  

15 
 

algorithm and specific methods presented will aid in the accessibility and accuracy of the 

method for a wider range of studies. We envision that this method will be applicable in 

quantifying feature sizes for material characterization in many research areas. These areas 

include stretchable electronics, structured electrodes for point of care diagnostics, structured 

hydrogels, nanowire arrays, measurement of thin film elastic moduli through strain induced 

mechanical buckling, and many more emerging areas in structured and patterned materials on 

the micro- and nanoscales.  

4. Experimental 

4.1. Polystyrene Substrate Preparation 

Pre-stressed polystyrene shrink films (Graphix Shrink Film, Maple Heights, OH, USA) were 

used as substrates for the deposition of thin gold films for thermal structuring methods (i.e., to 

prepare structured samples for image analysis). The substrates were cut into 2 × 2 cm squares 

and 2 × 5 cm rectangles for biaxial and uniaxial thermal structuring, respectively.  The 

polystyrene was cut with a RoboPro CE5000-40-CRP cutter (Graphtec America Inc., Irvine, 

CA, USA) with a CB15UB ceramic blade using parameters of 30, 1, and 1, for force, quality, 

and speed, respectively. The cut substrates were cleaned in consecutive baths of isopropanol, 

ethanol, and ultrapure water (Milli-Q A10 Purification System, Millipore, Etobicoke, CA) for 

5 minutes each under 50 rpm of orbital agitation. The substrates were then dried with 

compressed nitrogen and stored in sealed containers on the benchtop until further use.  

4.2. Polydimethylsiloxane (PDMS) Substrate Preparation 

PDMS (SYLGARD® 184 Silicone Elastomer Kit, Dow Corning Corporation, Midland, MI, 

USA) substrates were prepared using a 10:1 mass ratio of elastomer base to curing agent. The 

base and curing agent were mixed for three minutes using a stirring rod. The mixture was 
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degassed using a vacuum pump for 30 minutes, then immediately poured into a rectangular 

mold of 6 × 1 × 2 cm (l × w × h). The elastomer substrates were left to cure at room temperature 

for 48 hours before removing them from the mold for use.  

4.3. Gold Film Deposition 

Gold (99.999% purity, LTS Chemical Inc., Chestnut Ridge, NY, USA) films of 100 nm 

thickness were deposited onto polystyrene substrates using a Torr Compact Research Coater 

CRC-600 manual planar magnetron sputtering system (Torr International, New Windsor, NY, 

USA) using a deposition rate of 0.5 Å/s. Gold films were deposited onto PDMS substrates via 

an Edwards Sputter Coater S150B (Edwards, Crawly, UK) using an argon gas plasma chamber 

to obtain a thickness of ~45 nm (gold deposition rate is rated at 15 nm min-1, and sputtering was 

performed for 3 minutes).  

4.4. Gold Film Structuring 

Gold films were structured using three different approaches to highlight the range of features 

that can be resolved by the Fourier analysis method described in this work. Gold films were 

deposited onto 2 × 2 cm and 2 × 5 cm polystyrene substrates at 100 nm thicknesses, and onto 6 

× 1 × 2 cm (l × w × h) PDMS substrates at a thickness of 45 nm. Gold films on polystyrene 

were thermally structured, by heating the sample to 135°C, above the glass transition 

temperature of polystyrene, which caused the substrates to shrink. Because of the elastic 

modulus mismatch between the thin film and substrate, as the pre-stressed polystyrene shrinks 

the gold film buckles, resulting in a wrinkled morphology. Thermal structuring can be 

performed on samples which are unconstrained (biaxial structuring) or constrained along one 

axis via clamps (uniaxial structuring), only allowing wrinkling to occur perpendicular to the 

clamping axis.[35] PDMS was placed between the sample and the metal clamp for uniaxial 

structuring to ensure that the sample remained securely clamped (avoiding slippage) during 
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shrinking. The biaxial and uniaxial thermal structuring methods are demonstrated in the 

schematic representations shown in Figure 4A and 4B, respectively.  

 

Figure 4. Schematic representations of gold film structuring through A) biaxial thermal 

structuring, B) uniaxial thermal structuring, and C) mechanical buckling methods.  

The other structuring approach, called mechanical buckling in this work, uses PDMS as a 

compliant elastomeric substrate for mechanical compression and buckling of a gold film based 

on the strain-induced elastic buckling instability for mechanical measurements method 

described by Stafford et al.[15] Buckling was induced using an in situ tensile device (SEMTester 

DAQ 8000-0014, MTI Instruments Inc., Albany, NY, USA) that couples to a JEOL 6610LV 

(JEOL, Tokyo, Japan) scanning electron microscope (SEM). Compression, or strain, was 

applied to the sample while inside the SEM through software (MTESTQuattro-Materials-

Testing-System by ADMET Incorporated, V3-07-01, Norwood, MA, USA) that interfaces with 

the tensile device. Strains between 0.5 and 1% were applied to the sample to compress the 

substrate sufficiently to cause the gold film to buckle into a sinusoidal wave pattern. A 

schematic representation of the mechanical buckling method is shown in Figure 4C.  
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4.5. Scanning Electron Microscopy (SEM) 

Thermally structured gold films on polystyrene were prepared for SEM imaging by mounting 

the samples onto 1” stainless steel stubs using carbon tape and nickel paint to establish contact 

between the stub and sample and reduce charging during imaging. Uniaxially structured 

samples were cut to size at the ends to fit within the stub dimensions, ensuring that the center 

of the sample remained intact. Images were taken using a JEOL 7000F SEM (JEOL, Tokyo, 

Japan) at acceleration voltages of 1.5 or 2 kV and working distances between 3 and 6 mm.  

Mechanically buckled gold films on PDMS were imaged using a JEOL 6610LV (JEOL, Tokyo, 

Japan). Images were taken while the samples were buckled using an in situ tensile device inside 

the SEM. No conductive coating or additional sample preparation was required to obtain the 

SEM images. Images were taken using an acceleration voltage of 2 kV and a working distance 

of 25 mm.  

4.6. Fourier Transforms 

The Fourier transform of an image is defined by the two-dimensional discrete Fourier transform 

(2D-DFT). This treatment considers the discrete nature of the pixels which make up the image 

space, as opposed to data points in a continuous, closed-form signal. The 2D-DFT, F(kx,ky) of 

a square n × n image f(x,y), is given by: 

𝐹(𝑘! , 𝑘") ≡ ∑ ∑ 𝑓(𝑥, 𝑦)𝑒#
!"#
$ $%%&'%&"()#*

"+,
)#*
&+,      (1) 

where x and y are the pixel coordinates in image space, kx and ky are the reciprocal pair of 

coordinates in frequency space, and i is the imaginary number. It should be noted that it is a 

common convention for the resulting 2D-DFT to be shifted such that the origin, or a frequency 

of 0, is at the center of the frequency space as opposed to the upper left corner as is the case in 
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image space. Therefore, an n × n image that has a real side length of Dn will have a usable 

frequency range from (-√2/2)(n/Dn) to (+√2/2)(n/Dn). 

In order to extract information regarding the periodicity of structures (such as wrinkles and 

arrays of features) from an image, the power spectral density (PSD) must be examined. The 

PSD of an image or signal represents the power content of each frequency. This spectrum is a 

real-valued function which contains physical information regarding the strength of any given 

signal as a function of frequency. The PSD, P(kx,ky), of an image is given by the magnitude of 

the DFT, calculated as the product of the transform F(kx,ky) by its complex conjugate F*(kx,ky) 

in frequency space. Peaks or areas of high intensity in the PSD can be interpreted in polar 

coordinates such that the radius and angle correspond to the frequency and direction of periodic 

features existing in image space, respectively.  

4.7. Digital Image Processing & Analysis 

Images from SEM as well as images generated from synthetic data were used for digital image 

processing and data analysis. Images taken at different magnifications were cropped using 

ImageJ 1.52a[36] (National Institutes of Health, US) to 900 × 900 pixels or 760 × 760 pixels for 

thermal structuring and mechanical buckling, respectively. The images were also adjusted for 

contrast and brightness in ImageJ to improve feature detection. Synthetic images of 900 × 900 

pixels were generated using Adobe Illustrator (Adobe, San Jose, CA, US) to use as test cases 

for the accuracy and robustness of the Fourier analysis algorithm.  

Canny edge detection was performed using ImageJ to detect “edges” or areas that exhibit sharp 

spatial intensity gradients in the image.[37] However, to remove false edges and reduce 

additional spurious, high-frequency noise from over-thresholding in the edge detection, median 

filtering was performed on the edge masks in MATLAB (MATLAB R2014b, MathWorks, 



  

20 
 

US).[38] A filtering window of 2 pixels was found to be most effective at removing individual 

speckle pixels while preserving edges.  

Fourier transform analyses were then performed on the filtered edge masks using an 

implementation of the Fast Fourier Transform.[39] This and all subsequent steps were also 

performed in MATLAB using a graphical user interface. The full MATLAB script and step-

by-step guide to using the graphical user interface (Figure S2 – S7) are included in Supporting 

Information. The PSD was then calculated and averaged across all angles specified, around the 

origin of the frequency space, to obtain a 1D intensity spectrum. The angular averaging was 

done for all radii, kr, from 𝑘- ≡ -𝑘&. + 𝑘". = 0*
.
*
/$
0 to 0*

.
)
/$
0. Although the origin of the 

frequency space is located at the center of the image, the slight offset in kr was introduced to 

account for the even number of pixels in the side length of the images. The dynamic range in 

frequency space, or the ratio of maximum to minimum resolvable frequency, is therefore given 

by n/2. In addition, the averaging was done for all angles from 0 to 360° or within a specified 

range for randomly oriented structures or those aligned along a single axis, respectively.  

The resulting intensity spectra were then filtered to reduce noise and artifacts. This allowed the 

straightforward extraction of the frequencies that corresponded to the feature sizes of interest. 

A common  artifact in many physical systems, known as “pink noise” or “1/f noise,” manifests 

as an increased background signal in PSDs that is proportional to 1/kr.[40] This noise was 

reduced by dividing the intensity spectrum by an artificial signal that followed this same 

characteristic form across the appropriate frequency range mentioned above.  

Lastly, Gaussian and inverse Gaussian windows were used as multiplicative low- and high-pass 

filters, respectively. The high-pass filter was used to remove the background (mean-level) 

component of each image while the low-pass filter was used to lessen the amplification of high 

frequency components that occurs following edge detection. The tapering nature of the 
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Gaussian curve was used to mitigate discontinuities and additional artifacts in the resulting 

intensity spectra. The low-pass and high-pass filter windows, GL and GH, respectively, of 

independent size d were defined by Equation 2 and Equation 3, respectively.  

𝐺0 = 𝑒#
'(
!

)*!          (2) 

𝐺1 = 1 − 𝑒#
'(
!

)*!          (3) 

For all cases, a window size of d = 0 to 10 pixels was used. Within frequency space, this 

corresponds to a bandwidth of (dn/2)(1/Dn).  

For thermally structured (and thus more irregular) samples, the characteristic feature size was 

extracted from fully filtered intensity spectra through a curve fitting routine based on the 

Nelder-Mead simplex minimization algorithm.[41] This routine determines the optimum fitting 

parameters required to match the intensity spectra data to a closed-form function by following 

a least-squares approach. In this work, the closed-form function was taken to be a Gaussian 

curve of the form: 

𝑔 = 2
3√.5

𝑒#
+
!6
'(,'-
. 7

!

         (4)  

Where the fitting parameters are the spatial frequency of the characteristic feature, k  , the 

standard deviation of the distribution, σ, and a scaling factor, A. A Gaussian function was used 

to capture the statistical distribution of feature sizes in wrinkled structures. Gaussian 

distributions were used because, unlike other distributions such as the Cauchy distribution,[42] 

they have a mathematically defined mean which is the parameter of interest in this analysis 

method. In the case of synthetic images and samples prepared via the mechanical buckling 

method, the resulting intensity spectra exhibited sharp peaks and could therefore be 
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characterized by the first (fundamental) peak or extracted via visual inspection. Mathematically, 

these sharp peaks are defined by the Dirac-delta, or the limit of Equation 4 as σ→0. Because 

the intensity spectra are functions in reciprocal space, the characteristic feature size was 

calculated by taking the inverse of k  . 
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Synopsis: The topographical characterization of material interfaces is key to determining 
structure-function relations for a variety of applications including biosensors, flexible 
electronics, or implant materials. This work presents a step-by-step method for the accurate 
quantification of structured surface topography that optimizes feature size extraction while 
reducing user bias and error.  
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