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Abstract

Calculations of free energy profile, aka potential of mean force (PMF), along a

chosen collective variable (CV) are now routinely applied to the studies of chemical
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processes, such as enzymatic reactions and chemical reactions in condensed phases.

However, if the ab initio QM/MM level of accuracy is required for the PMF, it can

be formidably demanding even with the most advanced enhanced sampling methods,

such as umbrella sampling. To ameliorate this difficulty, we developed a novel method

for the computation of free energy profile based on the reference-potential method re-

cently, in which a low-level reference Hamiltonian is employed for phase space sampling

and the free energy profile can be corrected to the level of interest (the target Hamil-

tonian) by energy reweighting in a nonparametric way. However, when the reference

Hamiltonian is very different from the target Hamiltonian, the calculated ensemble

averages, including the PMF, often suffer from numerical instability, which mainly

comes from the overestimation of the density-of-states (DoS) in the low-energy region.

Stochastic samplings of these low-energy configurations are rare events. If a low-energy

configuration has been sampled with a small sample size N , the probability of visiting

this energy region is ∼ 1/N (shall be exactly 1/N for a single ensemble), which can

be orders-of-magnitude larger than the actual DoS. In this work, an assumption of

Gaussian distribution is applied to the DoS in each CV bin, and the weight of each

configuration is rescaled according to the accumulated DoS. The results show that this

smoothing process can remarkably reduce the ruggedness of the PMF and increase the

reliability of the reference-potential method.
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Introduction

Molecular dynamics (MD) simulations are now playing a more and more important role in

the studies of thermodynamic properties in complex systems with a large number of degrees

of freedom, such as enzymatic reactions and chemical reactions in condensed phases. How-

ever, these simulations are formidably demanding even with contemporary supercomputers,

due that a quantum mechanical description of bond-forming or breaking is imperative. For

instance, it may take about 100 seconds of wall-clock time on an off-the-shelf computer node

for a single step of ab initio quantum mechanical/molecular mechanical (aiQM/MM) MD

propagation1–4 with a medium-sized molecule in the QM region, and a simulation that is

long enough to yield statistically meaningful observations may require 106 to 109 steps of

propagation to reach timescales of nanoseconds to microseconds. To reduce the computa-

tional demand, a number of enhanced sampling techniques have been proposed by either

lowering the barrier or increasing the temperature, or doing both.5–7 Since the total CPU

time equals to the number of steps of propagation multiplied by the CPU time for a single

step, the total cost can be reduced if the cost for a single step of propagation gets cheaper.

There has been a growing interest in employing the reference-potential methods, developed

independently by Gao,8 and by Warshel and co-workers.9 In this approach, the difference

in state free energies or free energy profile along a predefined collective variable (CV) under

an accurate, and usually expensive, Hamiltonian is obtained by energy reweighing of the

trajectories from an inexpensive but less reliable Hamiltonian. The latter is often referred to

as the reference Hamiltonian and the former as the target Hamiltonian. Simulations using

the reference Hamiltonian can remarkably boost the efficiency in exploring the phase space

by reducing the cost for a single step of propagation. Probabilities (or weights) of the con-

figurations are then reassigned based on single-point energy calculations under the target

Hamiltonian. Ensemble averages can be obtained for any time-independent thermodynamic

quantities, including the free energy difference between two states and the free energy profile

as a function of an order parameter, can be obtained using the nonuniform weights.
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This idea has been proved quite successful in several recent works.10–33 However, the

statistical efficiency depends on the similarity between the reference and the target Hamil-

tonians. For instance, in umbrella sampling (US),34 the reference Hamiltonians used in

simulations are the biased Hamiltonians, which are usually defined as the unbiased Hamilto-

nian plus some biasing terms. The target Hamiltonian is exactly the unbiased Hamiltonian.

Therefore, the stability, for most cases, is pretty satisfactory, and thus US is usually not

categorized as a reference-potential method. However, if the target Hamiltonian is very dif-

ferent from the reference Hamiltonian, the convergence of the reweighting process can be

troublesome, as discussed in our recent work.24 Further smoothing of the free energy curve,

for instance, using Gaussian process regression35 is indispensable. The numerical instabil-

ity comes from the exponential term, of which the ensemble average often shows random

fluctuations with nonnegligible amplitude. A celebrated example is the thermodynamic per-

turbation (TP) calculation of free energy difference between two thermodynamic states. To

deal with this numerical difficulty, the delta method is usually employed by expanding the

ensemble average as a series of polynomials.36 If a certain approximation can be well applied

to the distribution of this energy term that appears in the exponent, the convergence can

be considerably accelerated. Truncation after the second-order term of the cumulant series

accelerates the convergence of the TP calculations.37

In this work, we applied an assumption of Gaussian distribution to the density-of-states

(DoS) in the calculation of potential of mean force (PMF) for two chemical reactions in

aqueous solution using the reference-potential method. The results show that convergence

can be remarkably improved.

4



Methods

Multistate Bennett Acceptance Ratio Formulation for the Reference-

Potential Methods

In our previous work,24 the reweighting process, termed the weighted thermodynamic per-

turbation (wTP), was separated from the weight calculations using the Multistate Bennett

Acceptance Ratio (MBAR).38 However, these two steps can be integrated into the MBAR

formulation, which will be shown below.

Suppose K simulations have been conducted, each with a reduced potential energy func-

tion uk(r) = βkUk(r). For umbrella sampling,34 which entails the application of restraints

Wk(r) on the original Hamiltonian U0 to enforce the sampling in specific regions in phase

space, the potential energy function Uk reads

Uk(r) = U0(r) +Wk(r). (1)

The temperatures of the coupled bath for the simulations may also differ from each other,

for instance as in the temperature-replica exchange molecular dynamics (REMD).39 For

simplicity, we will use reduced potential energy functions in the following, and omit the

prefix “reduced” for simplicity. The free energy fi associated with the potential energy

function ui can be computed using the MBAR analysis

fi = − ln
N∑
n=1

exp [−ui(rn)]
K∑
k=1

Nk exp [fk − uk(rn)]

, ∀i = 1 . . . , K (2)

where Nk is the number of configurations collected from the kth simulation, and N =
∑
k

Nk.

Then these data can be used in an extrapolation to any other states, for instance, the
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unbiased state (u0(r)) in umbrella sampling, as

〈Â〉0 =
N∑
n=1

ω0(rn)Â(rn), (3)

with the normalized weight

ω0(rn) =
exp [f0 − u0(rn)]

K∑
k=1

Nk exp [fk − uk(rn)]

, (4)

where Â is an arbitrary operator dependent only on the coordinate r, and 〈·〉 denotes the

ensemble average with the state indicated by the subscript, and f0 is the free energy of the

unbiased state. The partition function Q0, aka the normalization constant, is

Q0 = e−f0 =
N∑
n=1

exp [−u0(rn)]
K∑
k=1

Nk exp [fk − uk(rn)]

. (5)

When Â is an indication function δ of some chosen CV

δ(ξm − ξ(rn)) =


1, if −∆ξ/2 < ξm − ξ(rn) < ∆ξ/2

0, otherwise

, (6)

we have the PMF

F0(ξm) = − ln
N∑
n=1

ω0(rn)δ(ξm − ξ(rn)) (7)

defined up to an additive constant. Specifically, for umbrella sampling, uk(r) = u0(r)+wk(r),

the weight can be simplified as

ω0(rn) =
exp (f0)

K∑
k=1

Nk exp [fk − wk(rn)]

, (8)
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which does not depend explicitly on the unbiased potential energy function u0(r).

If we are interested in another (the target) Hamiltonian ut(r) other than the unbiased

Hamiltonian, the normalized weight function becomes40

ωt(rn) =
exp [ft − ut(rn)]

K∑
k=1

Nk exp [fk − uk(rn)]

, (9)

with ft being the free energy associated to this Hamiltonian

ft = − ln
N∑
n=1

exp [−ut(rn)]
K∑
k=1

Nk exp [fk − uk(rn)]

. (10)

By subtracting the unbiased potential energy function u0(r) from the exponential terms on

both the numerator and denominator, it can be rewritten as

ωt(rn) =
exp [ft −∆ut(rn)]

K∑
k=1

Nk exp [fk − wk(rn)]

, (11)

where ∆ut(r) = ut(r) − u0(r) is the energy difference between the target Hamiltonian and

the unbiased Hamiltonian.

By defining the PMF in the mth CV bin as the state free energy corresponding to the

Hamiltonian ut(r) with a screening factor δ(ξm− ξ(r)) on the configurations, the covariance

matrix can be computed as38

Θ̂ = WT
(
IN −WNWT

)+
W, (12)

where IN is the N ×N identify matrix with N =
K∑
k=1

Nk being the total number of samples

from all the simulations, W is the weight matrix with a dimension of N × (K +M) with M

being the number of CV bins, N = diag(N1, N2, . . . , NK , 01, 02, . . . , 0M), and the subscript +
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denotes the pseudoinverse. The variance of the PMF for the mth bin can be calculated as

δ2F (ξm) = Θ̂K+m,K+m + Θ̂K+1,K+1 − 2Θ̂K+1,K+m, (13)

if F (ξ1) is fixed to zero. The reweighting entropy22 for the samples collected in the mth bin

is defined as

S(ξm) = −

N∑
n=1

δ(ξm − ξ(rn))ωt(rn) lnωt(rn)

ln
N∑
n=1

δ(ξm − ξ(rn))

, (14)

which serves as another reliability metric for the MBAR calculations.

Gaussian Smoothing of the Density-of-States

The normalized weight function can be rewritten as the product of three terms

ωt(rn) = P (rn) · exp [−∆ut(rn)] · exp (ft), (15)

in which

P (rn) =
1

K∑
k=1

Nk exp [fk − wk(rn)]

, (16)

and only depends on the Hamiltonians {uk} used in configuration sampling. The partition

function associated with the target Hamiltonian is

Qt =
N∑
n=1

P (rn) · exp [−∆ut(rn)]

=

∫ ∞
−∞

N∑
n=1

δ(∆u−∆ut(rn))P (rn) · exp (−∆u) d∆u. (17)
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Therefore,

Ω(∆u) =
N∑
n=1

δ(∆u−∆ut(rn))P (rn)

=
N∑
n=1

δ(∆u−∆ut(rn))
K∑
k=1

Nk exp [fk − wk(rn)]

(18)

is analogous to DoS. Equation 17 serves as a conversion from the work-based expression for

the partition function to the DoS-based one.41 In the same way, the potential of mean force

under the target Hamiltonian becomes

Ft(ξm) =− ln
N∑
n=1

ωt(rn)δ(ξm − ξ(rn))

=− ln

∫ ∞
−∞

N∑
n=1

δ(∆u−∆ut(rn))
K∑
k=1

Nk exp [fk − wk(rn)]

δ(ξm − ξ(rn)) exp (−∆u) d∆u+ C

=− ln

∫ ∞
−∞

Ω(∆u)ξm exp (−∆u) d∆u+ C (19)

where C is an arbitrary constant and

Ω(∆u)ξm =
N∑
n=1

δ(∆u−∆ut(rn))
K∑
k=1

Nk exp [fk − wk(rn)]

δ(ξm − ξ(rn)). (20)

Asymptotically with an infinite number of configurations, Ω(∆u)ξ follows a Gaussian

distribution. However, with a limited number of samples in each bin, usually
∑N

n=1 δ(ξm −

ξ(rn)) is on an order of 103 to 104, the distribution may deviate more or less from being

perfectly Gaussian. It can be easily seen from Eq. 19 that configurations with more negative

∆u may have large contributions to the integrand, due to the existence of the exponential

term exp (−∆u). Their contributions are attenuated by the DoS Ω(∆u)ξm .

Kofke et al realized the bias in the free energy may come from the tail-truncation error,
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and proposed a Π-metric for estimating the reliability of the free energy.42–45 In their model,

they assumed a perfect sampling beyond an energy threshold, below which no samples have

been obtained. However, there is another possibility, which is exactly opposite to Kofke’s

concern, i.e., a low energy configuration has been harvested among a limited number of

samples leading to an overestimated DoS (∼ 1/N). It is detrimental to the smoothness

of the free energy profile, and frequently emerges in the calculations using the reference-

potential methods, especially when the target Hamiltonian is relatively far away from the

reference Hamiltonian.

In this work, the configurational weights under the target Hamiltonian are scaled to

generate a smooth Gaussian distribution in energy space, and the smoothing is performed

in each configuration bin. For the samples falling in the mth CV bin [ξm− 1
2
∆ξ, ξm + 1

2
∆ξ],

the average energy difference ∆uξm and the variance σξm can be calculated as

∆uξm =

N∑
n=1

∆u(rn) δ(ξm−ξ(rn))
K∑

k=1
Nk exp [fk−wk(rn)]

N∑
n=1

δ(ξm−ξ(rn))
K∑

k=1

Nk exp [fk−wk(rn)]

(21)

and

σξm =

√√√√√√√√√√
N∑
n=1

(
∆u(rn)−∆uξm

)2 δ(ξm−ξ(rn))
K∑

k=1
Nk exp [fk−wk(rn)]

N∑
n=1

δ(ξm−ξ(rn))
K∑

k=1
Nk exp [fk−wk(rn)]

. (22)

In a narrow range
[
∆u− 1

2
δ∆u,∆u+ 1

2
δ∆u

]
in energy space (e.g. δ∆u = 0.2 in this

work), the cumulative probability of the Gaussian distribution of the density-of-states is

ρG

([
∆u− 1

2
δ∆u,∆u+

1

2
δ∆u

])
=

1√
2πσm

∫ ∆u+ 1
2
δ∆u

∆u− 1
2
δ∆u

exp

[
−
(
∆u−∆uξm

)2

2σ2
m

]
d∆u. (23)

By summing up the density-of-states of the pooled configurations, the cumulative probability
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is

ρS

([
∆u− 1

2
δ∆u,∆u+

1

2
δ∆u

])
=

N∑
n=1

δ(ξm−ξ(rn))δ(∆u−∆u(xn))
K∑

k=1
Nk exp [fk−wk(rn)]

N∑
n=1

δ(ξm−ξ(rn))
K∑

k=1
Nk exp [fk−wk(rn)]

, (24)

which unnecessarily agrees with ρG exactly. To smooth the density-of-states, scale factors

are thus defined as

α

([
∆u− 1

2
δ∆u,∆u+

1

2
δ∆u

])
=
ρG
([

∆u− 1
2
δ∆u,∆u+ 1

2
δ∆u

])
ρS
([

∆u− 1
2
δ∆u,∆u+ 1

2
δ∆u

]) , (25)

and the weights are modified by this factor as

ω′t(rn) =
exp [ft −∆ut(rn)]

K∑
k=1

Nk exp [fk − wk(rn)]

· α
([

∆u− 1

2
δ∆u,∆u+

1

2
δ∆u

])
, (26)

if the configuration rn falls into the mth CV bin [ξm − 1
2
∆ξ, ξm + 1

2
∆ξ] and the energy

bin
[
∆u− 1

2
δ∆u,∆u+ 1

2
δ∆u

]
. The potential of mean force is then computed with the new

weights

Ft(ξm) = − ln
N∑
n=1

ω′t(rn)δ(ξm − ξ(rn)) (27)

up to an additive constant.

It is worth emphasizing that Gaussian smoothing for the weights ω0(r) under the unbiased

Hamiltonian u0(r) is unnecessary because ∆u(r) = 0 for all the configurations, which can be

inferred by comparing Eq. 8 and 11.

Setup of the Simulations

Two reactions were studied. One is glycine intramolecular proton transfer reaction from

the neutral form to the zwitterion form (see Fig. 1), and the other is Claisen rearrange-

ment reaction of allyl vinyl ether to 4-pentenal (see Fig. 4). The simulation details have
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been introduced in our previous work,24 and here we only provide a brief description. For

each system, the solute molecule was surrounded by a TIP3P46 water sphere with a ra-

dius of 25 Å. The water sphere was restrained by a soft half-harmonic potential with a force

constant of 10 kcal ·mol−1 · Å−2 to avoid evaporation. The quantum mechanical regions con-

tained the solute molecules only. The nonbonded interactions were fully counted without

any truncation. The van der Waals (vdW) parameters were taken from the general AM-

BER force field.47 The low-level (reference) and the high-level (target) Hamiltonians were

PM348 and B3LYP/6-31G(d),49,50 respectively. Phase space samplings were enhanced by

US. The one-dimensional collective variable was defined as ξ = dOH − dNH for the glycine

intramolecular proton transfer reaction, where H is the hydrogen atom to be transferred.

To ensure sufficient overlap between neighboring simulations, 61 windows centering on ξ

ranging from −1.5 to 1.5 Å were applied. Force constant of the restraint ranged from 100

to 1350 kcal ·mol–1 · Å–2
. For the Claisen rearrangement reaction, 95 windows simulations

were carried out with the collective variable ξ = dOC5 − dC2C3 ranging from −2.2 to 1.7 Å.

The force constant of the restraint ranged from 100 to 1600 kcal ·mol−1 · Å−2. For each

US window simulation, the system was optimized for 500 steps using the steepest decent

optimization method followed by 500 steps of the conjugate gradient method. The system

was heated to 300 K in 50 ps and was equilibrated for 100 ps. Finally, a 1-ns production

simulation was conducted in each window for free energy analysis. The integration time step

was set to 0.5 fs for simulations of glycine protein transfer, and 1 fs for the simulations of

the Claisen rearrangement reaction. The configurations were saved every 0.1 ps. The tem-

perature was regulated at 300 K with the Andersen temperature coupling scheme.51 All the

simulations were performed by the AmberTools 16 program package52 interfacing with the

Q-Chem 4.3 package.53 The MBAR analysis was carried out using our own code, which can

be downloaded from https://github.com/samuelymei/MBAR. The Gaussian process regres-

sion35 with a squared-exponential kernel was carried out using the scikit-learn package.54

12



Results and Discussion

Glycine Proton Transfer Reaction
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Figure 1: Free energy profiles of glycine proton transfer without (blue) and with (orange)
Gaussian smoothing on the DoS of ∆u.

The potential of mean force (PMF) at DFT level computed from the unsmoothed weights

is shown in Fig. 7.(a) of Ref. 24, and is replotted in Fig. 1 for convenience. It clearly shows

that sudden drops may occur somewhere along this curve, making the potential of mean

force much lower than the neighboring values. For instance, the PMFs of the first and the

third bins, with ξ centered at −1.475 Å and −1.377 Å, are 0 (which are fixed to zero) and

−1.2 kcal/mol. While the PMF of the second bin, with ξ = −1.426 Å, is −3.8 kcal/mol. As

shown in Fig. S13, the reweighting entropy S for the second bin is 2.0 × 10−3, indicating

that the PMF of this bin is determined by a small number of samples while contributions

from other samples (ωt(rn)) are negligible. This observation also applies to the bins at

ξ = −0.590, −0.443, 0.148, 0.443 and 0.836 Å.

The distribution of ∆U for the second bin, which contains 10002 configurations, is shown
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Figure 2: Density of state (blue) and its Gaussian interpolation (orange) in the bin centered
at ξ = −1.426 Å for the glycine proton transfer. Inset: Enlarged view on the low energy tail
of this distribution.

in Fig. 2. The distribution is generally Gaussian, which has a center at ∆U = 20.8 kBT

and scale σ of 5.9 kBT. However, at ∆U = −8.2 kBT, the sampled probability is 9.3× 10−5,

which is more than 3 orders larger than the predicted cumulative probability (9.5 × 10−8)

for a bin width δ∆u = 0.2 kBT from the fitted Gaussian distribution. This is the main

cause for the local ruggedness of the sampled free energy profile. After Gaussian smoothing

on the weights using Eq. 26, the PMF curve is shown in Fig. 1 as the orange curve with

markedly suppressed ruggedness. The PMF of the second bin increases from −3.8 kcal/mol

to −0.5 kcal/mol, and the reweighting entropy S increases to 0.25, indicating a more reliable

ensemble average. Similar observations can be seen for the energy distributions for the bins

centered at ξ = −0.590, −0.443, 0.148, 0.443 and 0.836 Å, which can be found in Fig. S8

to S12 in SI. After Gaussian smoothing, the potential of mean force of these bins also increase,

and stand well between their neighbors.

It will be interesting to investigate how these configurations with very negative ∆U

are sampled. They should have relatively high energies under the reference Hamiltonian
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(unbiased PM3) and, at the same time, relatively low energies under the target Hamiltonian

(B3LYP/6-31G(d)). If the molecule under the target Hamiltonian is represented as coupled

displaced-oscillators relative to the reference Hamiltonian in a simplified view, it is not

unexpectedly some of the configurations may have very negative ∆Us. Besides, when the

difference between these two Hamiltonians increases, the probability of encountering these

configurations also increases. Some might assume that if we reduce the number of samples

used in the MBAR analysis, these pathological configurations may disappear. However, this

is not the case. It can be seen from Fig. S1 to S6 that low-∆U configurations may appear

randomly during the simulation. Even with 100 samples evenly extracted from the 10,000

samples of each window simulation, sudden drops in the PMF still occur. Moreover, when

the number of samples from each window simulation increases from 2000 to 5000, the PMF

at ξ = 0.148 drops by over −4.2 kcal/mol. Therefore, this numerical instability is inherent,

and the discontinuity in the free energy profile is unavoidable with finite number of samples.

We then further smoothed the free energy profile curves by running Gaussian process

regression on the unsmoothed and smoothed data. As shown in Fig. 3, Gaussian smooth-

ing can accelerate the convergence of the PMF from GPR with respect to the number of

samples. When 500 configurations were used per window simulation, the PMF undergoes

large-amplitude fluctuations if Gaussian smoothing was not applied, and these is no definite

location of the reactant and product states. In comparison, the counterpart with Gaussian

smoothing has a single minimum at both of the reactant and the product states, and it is

much closer to the PMF when larger number of configurations were used for analysis. In

addition, Gaussian smoothing on the DoS can also shrink the 95% confidence interval of

the PMF, although it does not significantly change the reaction barrier or the free energy

difference between the product and the reactant when 10000 samples were used for analysis.

The cumulative distributions ρG and ρS in Eq. 23 and 24 depend on the resolution of

δ∆u. In Fig. S14 and S15, the differences in the free energy profiles are negligible with δ∆u

ranging from 0.1 kBT to 1.0 kBT, indicating that the impact of Gaussian smoothing on free
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Figure 3: Free energy profiles for glycine proton transfer reaction after Gaussian Process
Regression, with 95% confidence interval also presented, using 500, 1000, 2000, and 10000
samples (a) without and (b) with Gaussian smoothing on the DoS.

energy profiles is insensitive to the exact value of δ∆u, if it is below 1.0 kBT.

Claisen Rearrangement Reaction

The PMF at DFT level computed from the unsmoothed weights, shown in Fig. 9.(a) of Ref.

24, is replotted in Fig. 4 for convenience. Although the smoothness of the free energy profile

looks much better than that of the glycine proton transfer, it still shows discontinuities in

multiple bins along the CV. For the bin ξ = −0.492 Å near the peak of the free energy profile,

the PMF is 26.0 kcal/mol, while those of its neighboring bins are 29.0 and 28.5 kcal/mol,

respectively. This large decrease in PMF also comes from the overestimated probability

of low-energy configurations, which can be seen from Fig. 5. The DoS distribution in this

bin, by histogramming over 14196 configurations, is also approximately Gaussian, which

centers at ∆U = −3.3 kBT and has a scale σ of 5.5 kBT. However, the figure shows that

at ∆U = −28.7 kBT, where the fitted Gaussian-distributed probability should be around

3.0× 10−7, the DoS has a cusp with a value of 1.3× 10−4, which is overestimated by nearly

3 orders. Similar observations are also seen for bins with ξ = −1.573, −0.343, 0.440, 0.626,

and 0.961 Å (See Fig. S16 and S18 to S21 in SI for the energy distributions). Then the

Gaussian smoothing was applied to the DoS in each bin, and the new free energy profile is

much smoother as shown in Fig. 4. The PMF for the bin ξ = −0.492 Å is now 28.5 kcal/mol,
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Figure 4: Free energy profiles of the Claisen rearrangement reaction without (blue) and with
(red) Gaussian smoothing on the DoS of ∆u.

jointing well with its neighbors. The reweighting entropy increases from 6 × 10−3 to 0.346,

as shown in Fig. S22.

The GPR interpolated free energy profiles are shown in Fig. 6. Because the unsmoothed

data show only small deviations from the smoothed data, these PMF curves have only small

differences, with the Gaussian-smoothed ones converges slightly faster than the unsmoothed

ones. This result shows that for numerically stable sampling Gaussian smoothing on the

DoS does not deteriorate the ensemble average.

Conclusions

Free energy profiles calculations using reference-potential methods can significantly enhance

computational efficiency. However, when the overlap in phase space between the reference

Hamiltonian and the target Hamiltonian is small, numerical difficulties may arise and cause

discontinuities in the free energy profiles. This numerical instability mainly comes from
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Figure 5: Density of state (blue) and its Gaussian interpolation (orange) in the bin centered
at ξ = −0.492 Å for the Claisen rearrangement reaction. Inset: Enlarged view on the low
energy tail of this distribution.

the overestimated density-of-states in some low-energy regions, which may introduce large

noise into the potential of mean force via the exponential term in the working equations of

Multistate Bennett Acceptance Ratio. In this work, Gaussian smoothing is applied to the

density-of-states in each bin along the chosen collective variable (CV), and the results show

that the numerical stability can be improved and the ruggedness in the free energy profile

can be significantly suppressed. It is worth emphasizing that this smoothing process was

carried out in all the bins one-by-one, not just the bins showing discontinuities along the free

energy profiles. We also noticed that this Gaussian smoothing process is numerically robust

in terms of the resolution δ∆u in computing the discrete density-of-states.

In this work, the free energy profiles are computed in a nonparametric way by summing up

the weights of the configurations falling into each CV bin (or histogramming) independently

and are further smoothed using Gaussian process regression. The numerical difficulty arises

in the nonparametric summing-up step and may have an impact on the second step. We

noticed some recent progress in Bayesian interference for free energy calculations.55–59 The
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Figure 6: Free energy profiles for Claisen rearrangement reaction after Gaussian Process
Regression, with 95% confidence interval also presented, using 100, 200, 1000, and 10000
samples (a) without and (b) with Gaussian smoothing on the DoS.

output free energy profiles are guaranteed to be smooth since continuous basis functions are

used. How this Gaussian smoothing process will affect the free energy profile from these

parametric fitting methods will be investigated in our future studies.
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