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Abstract

We report a calculation scheme on water molecular dipole and quadrupole moments

in the liquid phase through a Deep Neural Network (DNN) model. Employing the the

Maximally Localized Wannier Functions (MLWF) for the valence electrons, we obtain

the water moments through a post-process on trajectories from ab-initio molecular

dynamics (AIMD) simulations at the density functional theory (DFT) level. In the

framework of the deep potential molecular dynamics (DPMD), we develop a scheme

to train a DNN with the AIMD moments data. Applying the model, we calculate the

contributions from water dipole and quadrupole moments to the electrostatic potential

at the center of a cavity of radius 4.1 Å as -3.87 V, referenced to the average potential

in the bulk-like liquid region. To unravel the ion-independent water effective local

potential contribution to the ion hydration free energy, we estimate the 3rd cumulant

term as -0.22 V from simulations totally over 6 ns, a time-scale inaccessible for AIMD

calculations.
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Introduction

The hydration free energy is of vital importance for understanding single-ion solvation in

aqueous solution. While there is no direct way to measure the single-ion hydration free

energy, extra-thermodynamic assumptions are introduced, as summarised in works by Beck

and Pollard,1–3 to estimate single-ion value from ion-pair hydration data in the bulk liquid

phase. For example, assuming that the enthalpy difference is a linear function of the inverse

of the cube of effective ion radius in the large-ion limit4 , Marcus reported the proton

hydration free energy -254.3 kcal/mol;5 Ashbaugh and Asthagiri6 revisited the Born-like

hydration free energy assumption in the LPS method7 and gave the proton hydration free

energy scale close to that reported in Marcus’s work. Alternatively, by combining the ion-

pair bulk values with single-ion small cluster (number of water n≤ 6) hydration data, the

cluster-pair approximation (CPA)8 gives proton hydration free energy -265.9 kcal/mol, which

has been revised recently by Beck as -264.7 kcal/mol. In addition, for Na+ ion, Marcus gave

-91.5 kcal/mol, CPA gave -101.3 kcal/mol. Clearly, there is a free-energy shift of the order

of -10 kcal/mol (-0.40 eV) from the bulk ion-pair data estimation. Beck showed that,1,2 the

shift arises from the large-cluster limit in CPA where there are two interface potential shifts,

one is the vapor-water interface potential (surface potential φsp) and the other one is the

water-solute interface potential (local potential φlp). The interface potential shift of cation

cancels out that of anion, resulting in the absence of interface potential contributions from

the ion-pair bulk hydration data in the Marcus’s work.5 Calculations2 with polarizable water-

model indicate that the net potential (φnp = φsp +φlp) is between -0.40 V and -0.50 V and it

is independent of identity of the solvated ion. Considering that the surface potential φsp is

a liquid water property around 3.5 V,9,10 it suggests that local potential should be a liquid

water property, too. Partitioning the hydration free energy with the quasi-chemical theory

perspectives11 shows that the φlp comes into the hydration free energy from the interaction

energy of solute ion with water molecules outside a cavity. Simulations with SPC/E water

model yields a local potential 0.42 V (9.7 kcal/mol·e)12 for a cavity of radius 6.15 Å . The

2



SPC/E water model generates the surface potential -0.6 V (-13.8 kcal/mol·e),13,14 leaving the

net potential φnp = -0.18 V. Note that the φlp is regarded as an effective potential, it is the

summation of the first and the third terms (0.35 V + 0.07 V , the linear charge-dependent

terms, see the detailed discussion in next section) of the cumulant expansion for hydration

free energy calculation.

The ab initio multipole analysis in the work by Mundy15 gives the dipole contribution

to the surface potential 0.48 V, the Bethe potential 3.84 V and thus φsp = 4.32 V. The large

difference of surface potential between classical MD and AIMD arises from that the classical

charge distributions are approximated as partial charges on each charging sites. While the

partial charge model is very computationally efficient, they fail to accurately represent the

electron density. Stitching the profile of average potential in the vapor surface vicinity

together with the potential profile in the vicinity of a cavity of radius 4 Å , they estimated

φnp = 0.08 V, and thus φlp = -0.40 V. However this should be regarded as the contribution

from the first cumulant term.

In the present work, following the previous works,16–18 we use the MLWF to calculate

the dipole and quadrupole moments for each water molecule in each configuration of an

AIMD simulation trajectory. Then we calculate the moment contributions to the potential

at the center of a cavity of radius 4.1Å . As mentioned above, we should approach the third

cumulant term, which is inaccessible to the AIMD simulations considering that the classical

MD with SPC/E water approached a convergent estimate over 4 ns.12 Recent advances

in neutral network potentials (NNP) have created a new category of simulation protocols

where quantum accuracy can be achieved at the low cost of classical MD. Neural networks

are one of the most advanced techniques used to develop machine learning (ML) potentials.

These potentials must satisfy criteria of: (1) the analytic structure-energy relationship is

expressed using a ML, (2) they must use a first-principles training set of energies and forces

(3) they cannot containing any ad hoc assumptions.19 The general steps to construct a

neural network potential (NNP) are as follows. First, an initial set of electronic structure
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calculations is generated. This is often the most computationally expensive element which

establishes the bottleneck. Next, the data needs to be transformed into appropriate input

features that satisfy conditions of both rotation and translation invariant system energy

and permutation symmetry with the exchange symmetry of like atoms. Parameters are

then varied to agree with the training data energies and forces in order to construction of

Potential Energy Surface (PES). Finally the model is tested and simulations follow. One

such NNP is the DPMD potential of Car and coworkers that has been shown to accurately

represent the PES19–22 and produce accurate simulation of condensed phase systems.23,24 In

the context of the electrostatics of molecular liquids, the NNP approach is a new way to

access the time scales of interest without sacrificing the accuracy of electron density. Here,

we calculate the dipole and quadrupole moments of liquid water and the local potential φlp

at the cavity center. First we give explicit expression of the local potential contribution to

the hydration free energy; Second we describe the workflow of our procedure, utilizing the

original DPMD-kit of Zhang et al,25 as well as a slightly edited version. Finally we present

and discuss results of our calculations.

Theoretical Methodology

The excess chemical potential for an ion X is given by the Widom formula11

µexX = −kT ln〈e−εX/kT 〉0 (1)

where εX is the interaction energy of the ion with the solvent and the zero subscript indicates

the ion and waters are of no interaction. The textbook expression for the electrochemical

potential26,27 for an ion X is

µexX = µexX,bulk + qXφnp (2)
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where µexX,bulk is the free energy deep in the liquid phase. We employed the quasichemical

theory (QCT)11 to compute the hydration free energy of the Na+ ion. QCT partitions

the free energy spatially into three physical parts. The hydration free energy can then be

expressed as12

µexX = −kT ln〈e−Mλ/kT 〉0 − kT ln〈e−εX/kT 〉Mλ+εX + kT ln〈e−Mλ/kT 〉εX (3)

where Mλ is the cavity potential, and the first term (packing) is the free energy change to

grow a cavity of radius λ in the liquid, the second term (long-ranged) is the free energy

change for inserting the ion into the cavity center and the last term (inner-shell) is minus

the free energy change to grow the same cavity in the liquid around an ion. The interfacial

potential contribution to the free energy resides in the long-ranged term, for which the

cumulant expansion is

µexX,LR = −kT ln〈e−εX/kT 〉Mλ
= 〈εX〉Mλ

− 1

2kT
〈δε2X〉Mλ

+
1

6(kT )2
〈δε3X〉Mλ

(4)

εX = qφ+ εind + εdisp (5)

where φ is the cavity potential from the unperturbed molecular charge distributions, εind

is the ion-induced-dipole induction interaction, εdisp is the ion-water dispersion interaction.

The induction energy is proportional to the q2 and thus is ignored. In a recent work where

there is Na+ ion at the center, the dispersion interactions is -0.02 kcal/mol. Therefore it

is plausible to neglect the dispersion interaction energy and only consider the dominant

electrostatic interaction for the higher cumulant terms,

µexX,LR(es) = q〈φ〉Mλ
− q2

2kT
〈δφ2〉Mλ

+
q3

6(kT )2
〈δφ3〉Mλ

(6)
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and the effective local potential is given as

φlp = 〈φ〉Mλ
+

q2

6(kT )2
〈δφ3〉Mλ

(7)

the first term 〈φ〉Mλ
is the electrostatic potential at the center of a cavity of radius λ, and

δφ is the fluctuation of the center potential. In simulations where electrostatic interactions

are evaluated using Ewald summation with conducting boundary conditions, the average

potential of the bulk liquid phase is referenced as zero.28 In the present work, we employ

this reference for our potential calculations. In the previous works13,29 the center potential

〈φ〉λ is defined as

〈φ〉Mλ
= (−1)

[
δφDr (r) + δφQ,1r (r) + δφQ,2r (r)

]
(8)

The dipole moment contribution to the center potential δφDr is determined from the dipole

moment density Pr(r)

δφDr (r) =
1

4πε0

∫ r

0

4πr′2Pr(r
′)

r′2
dr′ (9)

the quadrupole moment contribution to the center potential δφQ,1r (r) is accessible from the

simulation data via the radial dependence of the quadrupole moment density written in

spherical coordinates, Qs(r)

δφQ,1r (r) = − 1

4πε0

4πr2Qs
rr(r)

r2
(10)

where the radial element is Qs
rr(r). The second quadrupole contribution is from the broken-

symmetry of the quadrupole diagonal elements of waters in the vicinity of the cavity interface,

δφQ,2r (r) =
1

4πε0

∫ r

0

4πr′2[TrQ(r′)− 3Qs
rr(r

′)]

r′3
dr′ (11)
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Computational Methodology

In the following section we discuss the methodology on how to calculate the water molecular

dipole and primitive quadrupole moments in liquid phase at the quantum accuracy through

simulations over timescale of nano-seconds.

AIMD Simulation Setup

Both neat-water system and cavity-water system consist of 64 water molecules. The size

of each simulation cubic box is L = 12.4295 Å and L = 13.0236 Å. The cavity potential

Mλ=4.10(r) is a harmonic potential

M4.1(r) = k(r − 1.05λ)2 (12)

where k = 40 kcal/mol/Å2. With the QuickStep module in the CP2K 2.6.1 package, for

the two systems we performed DFT simulations by employing the Gaussian-type basis sets

(DZVP-MOLOPT-SR-GTH) and the Goedecker-Teter-Hutter (GTH) pseudo-potentials. We

use the functional revised Perdew,Burke and Ernzerhof (revPBE), together with a dispersion

correction, Grimme D3 and set up the plane waves cutoff at 400 Ry. We apply the Nosé-

Hoover thermostat chain of length 3 to maintain a temperature 330 K. We treat electrostatic

interaction under the periodic boundary with Ewald method. Both simulations run for 30

ps with a time step 0.5 fs in the NVT ensemble, generating 60,000 configurations along with

the total potential energy E, force on each atom Fi.

We regard water molecule as a neutral entity and use following expressions from previous

work17 to calculate the dipole moment P by

P =

∫
cell

drρe(r)(−2)r +
∑
i

ZiRi (13)

where ρe(r) is the valence electron density function, Zi is the ith atom charge, Ri is the ith
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atom position. The primitive quadrupole moments Qµν is given by

Qµν =
1

2

∫
cell

drρe(r)(−2)(rµrν) +
1

2

∑
i

ZiRi,µRi,ν (14)

and the traceless quadrupole moment by

Q′µν =
1

2

∫
cell

drρe(r)(−2)(3rµrν − δµνr2) +
1

2

∑
i

Zi(3Ri,µRi,ν − δµνR2
i ) (15)

Both Ri and r are referenced to the oxygen atom. We use the CRAZY method in the CP2K

package to get MLWF with a convergence of 10−8 , and then Wannier center of the nth

MLWF rn is given as

〈rn,µ〉 =
L

2π
=(ln 〈φn|ei

2π
L
rµ|φn〉) (16)

and the electron quadrupole moment elements are given as

〈rµrν〉n = 〈rµ〉n〈rν〉n +
L2

16π2
{ln |〈φn|ei

2π
L
rµe−i

2π
L
rnu|φn〉|2 − ln |〈φi

2π
L
rµ

n ei
2π
L
rν |φn〉|2} (17)

and if Ro is the oxygen position, then we get the elements with respective oxygen as

〈roµroν〉n = 〈rµrν〉n −Ro,µ〈rν〉n −Ro,ν〈rµ〉n +Ro,µRo,ν (18)

DNN Setup for Potential Energy Surface and Multipole Moments

In the DPMD framework, a local coordinate frame should be constructed to preserve tran-

sition and rotation symmetry. Permutational symmetry is preserved though ordering neigh-

boring atoms by their species first and then in order of increasing inverse distance from the

atom of interest. We set up the local coordinate system (ex, ey, ez) following the protocol

in the previous works21,22 that ex is along the O-H bond, where the atom H is the closest

to the oxygen atom; ez is perpendicular to the plane of the water molecule; ey = ez × ex.
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Within the local coordinate system, the descriptors are assembled for each atom, including

the full radial and angular information for the 24 oxygen atoms and 48 hydrogen atoms (the

number of neighboring oxygen in the hydration first shell of oxygen atom) and only radial

information for 36 oxygen atoms and 72 hydrogen atoms within Rc = 6Å. As the first layer,

the descriptors of each atoms flow into a DNN of 5 hidden layers with decreasing number of

neurons as (240, 120, 60, 30, 10), which maps descriptor into the atomic energy Ei as the out-

put. The non-linear activation function is taken to be the hyperbolic tangent, and forces on

each atom is computed as negative derivative with respect to its position. The loss function

is

L(pε, pf ) =
pε
N

∆E2 +
pf
3N

∑
i

∆|Fi|2 (19)

where ∆E and ∆Fi are the root mean squared error in the energy, forces, N is the number

of atoms, the adjustable pre-factors pε starts with 0.02 and goes for 8 as the training ends;

pf from 1000 to 1. The starting learning rate is 0.001 and as training going, it decays

with decay rate 0.95 and decay steps 20000. Optimization of loss function is done using

the Adam stochastic gradient descent method. Training data consists of energies and forces

from two AIMD simulations for neat-water and cavity-water systems. The batch-size is 4.

The training process goes for 4,000,000 steps. The two AIMD simulations generate 120,000

frames and we build 20 data sets to train. After the model is sufficiently trained, model

parameters can be frozen for use in MD simulations. We trained the two systems to obtain

a more accurate model for water molecule behavior near the cavity interface and in the bulk

liquid phase.

Recent development of DPMD package provides a module to train a DNN for estimation

of the four Wannier center (WC) coordinates (with respective to oxygen atom).25 Basing on

it, we develop modules to train DNN for direct prediction of both the 3 dipole components Px,

Py, Pz and 6 primitive quadrupole components Qxx,Qxy,Qxz,Qyy,Qyz. The training process

for each moment goes for 2,000,000 steps with a batch step of 5. All the other parameters

are the same as that of the DNN for potential energy.
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Classical Simulation Setup

DPMD-kit provides LAMMPS support through a third-party package to produce classical

MD simulations using the frozen DNN models to compute the atomic interactions. In this

way, large time-scale simulations are accessible at the quantum accuracy. We run NVT

simulations in LAMMPS for systems of 64, 128, 256 waters with a cavity of radius 4.1

Å at the center. We apply the Nosé-Hoover thermostat chain of length 3 to maintain a

temperature of 330 K. The system size L = (N
ρ

+ 4π
3
r3c )

1
3 , where N is water number, number

density ρ = 33.3285 (nm)−3 (or 0.997 g/cm3),rc = 4.1 Å . The DPMD simulation runs for

1500 ps, where the first 500 ps for equilibration and 1000 ps for data production. The time

step is 0.5 fs and trajectory is recorded every 0.01 ps (20 steps).

Results and Discussion

We first list the dipole and quadrupole moments to compare with experimental values and

previous reports. Next we display that the DPMD with good accuracy reproduces the

distributions of moment elements in comparison with that are determined by AIMD. Last we

show that the DPMD gives reasonable agreement with the local potential through multipole

contributions from the AIMD calculations, allowing for the 3rd-cumulant term calculation

over 6 ns through the DPMD.

Listed in Table 1 are the moment properties for both water monomer and water molecule

in the liquid phase. In accord with the previous calculations, we report moment properties

in the water molecular local coordinate system with the center of mass ( COM ) as the

origin. As for the monomer in the box with L=12.4295 Å , the oxygen atom O position

is at (2.9340,2.0000,3.0000), the first hydrogen H1 at (3.5292,1.2320,3.0000) and the second

hydrogen H2 at (3.5292,2.7680,3.0000). As for the monomer local coordinate system, ex is

the interior bisector of the angle H1-O-H2; the norm direction of the water molecular plane ez

= OH1×OH2; ey = ez×ex. Correspondingly, the atomic dipole moment contributes 3.16 D,
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and the 8 valence electrons contribute -1.32 D to the total dipole moment 1.84 D, which is in

agreement with value 1.86 D from both MP2 calculation30 and experimental observation.31

The DFT theory with BLYP functional in box of L = 10.6 Å in the work by Silvestrelli16

gives 1.87 D. Roland reported the finite-size effect18 that the dipole moments decreases from

1.87 to 1.81 D as the box size L increases from 10.58 Å to infinite. Analogously, when we

calculate in a larger box L = 16.00 Å , we obtain a smaller dipole moment 1.82 D. In the liquid

phase, the average water dipole moment over 60,000 configurations of 64 waters is 2.72 D, in

agreement with the value 2.70 D estimated by combining far-IR vibration-rotation-tunneling

spectroscopy and ab initio calculation up to the largest cluster limit. It was reported16 that

for 64 waters system, the average value over 12 configurations from AIMD on DFT level is

2.95 D. The distribution was broad with a peak at 2.80 D. However both the average value

and maximum value is within our first-sigma confidence interval.

For the monomer water, our eigenvalues of traceless quadrupole moment are in good

agreement with both previous DFT calculation17 -0.13, 2.58, -2.45 D·Å and experiment

values (shown in the parentheses in Table 1).32 For the water molecule in liquid phase,

our average eigenvalues over 360 configurations are close to the previous calculations -0.22,

3.38, -3.16 D·Å by DFT over 12 configurations. Having established that our calculation is

satisfactory in comparison with previous work and experiments, we are confident to display

how the water molecule is polarized by the surrounding molecules in the liquid phase. To

this end we give the three diagonal elements of primitive quadrupole Q in the local frame,

because in the lab frame all of them would exhibit the similar distribution as well as close

average values due to the thermodynamic averaging process. The dipole ex element increases

by 46.7% when water molecule goes into the liquid phase. This is attributed primarily to

the significant compression of the valence electron cloud in this direction by the surrounding

molecules, since the average length of O-H bond increases slightly by 2.0% ( 0.02Å ) and

average H-O-H angle by 0.8% as reported.16 The less negative average Qxx and Qyy of water

in the liquid also suggest that of the neighboring molecule compress each other in the these
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two directions, while the more negative Qzz indicates that electron cloud is stretched in the

normal direction.

Table 1: Electrostatic dipole moment P of water molecule in unit of Debye (D), three
eigenvalues of traceless quadrupole moment Q′ in D·Å and three diagonal element of primitive
quadrupole moment Q. The experimental values are shown in parentheses. The eigenvalues
are in local frame with center of mass as origin. As for the primitive diagonal elements, the
local coordinate system origin is on oxygen atom.

ex ey ez

Monomer P 1.84 (1.85) 0.00 0.00
Liquid P 2.70 0.00 0.00
Monomer Q′ -0.13 (-0.13) 2.56 (2.63) -2.43 (-2.50)
Liquid Q′ -0.15 3.13 -2.98
Monomer Q -3.00 -3.76 -2.10
Liquid Q -2.83 -1.92 -3.95

Having calculated the dipole and quadrupole moments with good accuracy, we feed the

DNN with these data to train models for potential and moments. In the DPMD framework,

the accuracy is quantified in terms of the root-mean-square error, and our potential model

gives energy accuracy with 0.3 meV and forces with 56 meV/Å ; our moments model gives

dipole with 0.04 D and primitive quadrupole with 0.01 D·Å . As shown in Fig.1, the excel-

lent agreements of atomic radius distribution function (RDF) between DPMD and AIMD

trajectories suggest that DPMD reproduces the trajectories sufficiently. Also, the diffusion

constant D of neat water system, is found to be 0.539 Å2/ps in the AIMD and 0.512Å2/ps for

the DPMD trajectory, showing the dynamics is modeled as well. Particularly, the oxygen-

center RDF indicates that the we can approach a bulk-like region at a distance of 9.9 Å away

from the center of cavity of radius 4.1 Å . Consequently, it suggests that it need 256 waters

( at least ) to provide us a good zero-reference for electrostatic potential calculations.

To assess the moments agreement between DPMD and AIMD, we plot the distributions

of dipole moment in Fig.2 and that of quadrupole moment in Fig.3. Note that since the

moment distributions in the lab frame should be of no significant difference, we display

the distributions of moment in the local coordinate system established as mentioned above
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Figure 1: Radius distribution function (RDF) from AIMD and DPMD simulations. The
circle symbols are for the RDF of oxygen atom referenced to cavity center from DFT 30 ps
simulation. The squares are for the DFT oxygen-oxygen, up-triangles for the DFT hydrogen-
hydrogen and left-triangles for the DFT oxygen-hydrogen. The solid lines are for the 256
water system from the DPMD (1000 ps) for 64 water system

for monomer water. Since it is the origin of the local coordinate system, the oxygen atom

contributes nothing to moments. As displayed, the distributions are well approximately

Gaussian. Dipole moment distributions show that the average water dipole moment is almost

along the interior bisector of the H1-O-H2 angle. As for the primitive quadrupole, the average

values of off-diagonal elements are zero. The most negative Qzz is attributed to the lone pair

orbitals. The excellent agreement for both dipole moments and primitve quadrupole element

calculations between AIMD and DPMD allows us to explore the local potential contribution

to the ion hydration free energy. Applying DPMD simulation over several nano-seconds

makes us assess a convergent 3rd cumulant term with ab initio accuracy.

In table 2, We list the dipole moment contribution δφD, non-symmetrical primitive mo-

ment contribution δφQ2 and symmetrical primitive moment contribution δφQ1 for different

systems. Comparison of results from AIMD and DPMD suggests that with reasonable agree-

ment DPMD reproduce the δφD and δφQ2 contributions. And it is shown that these two

contributions get convergent within the first hydration shell (r ≤ 6.5Å ). The sum of two
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short-range contributions by DPMD is -0.39 V. As for the net potential, the Bethe potential

contributions cancels out exactly when the ion go across two interfaces from vapor phase to

the cavity center. The dipole contribution to the surface potential φsp is 0.48 V (referenced

to the vapor phase) reported in the previous DFT work.15 Therefore the center potential

〈φ〉Mλ
= 0.09 V , which is close to the estimation 0.08 V in that work.15 However these result

is only from the first cumulant term as mentioned in the theoretical section.

As shown in Fig. 4, the potential increment of DPMD agrees well with that of AIMD

and in the bulk-like region of the system with 256 waters where distant r > 9.9 Å , the

average Bethe potential is 3.48 V. This is a little off the 3.63 V in the neat water system and

previous report of 3.84 V15 and of 3.50 V10 . The difference of Bethe potential is primarily

attributed to the different water number density, since Bethe potential is proportional to

the water number density ρ. Having calculated the stable center potential 〈φ〉Mλ
, the third

cumulant term contribution q2

6(kT )2
〈δφ3〉Mλ

to the local potential is +0.22 V obtained from

simulations totally over 6 ns, and thus the local potential φlp = −3.87 + 0.22 = −3.65 V

Table 2: Dipole moment contribution δφD and non-symmetric quadrupole moments con-
tribution δφQ2 and Bethe potential contribution δφQ1 the center potential 〈φ〉Mλ

. The last
column is the 3rd cumulant contribution to the local potential φlp. The rmax is the upper
limit of the cumulative sum of dipole and quadrupole contributions, for which the bin size
is 0.1 Å .

System running time (ps) rmax (Å) δφD(V ) δφQ2(V ) δφQ1(V ) 3rd cumulant (V)
DFT 64 30 6.50 -0.22 -0.14
DPMD 64 1000 6.50 0.24 0.15
DPMD 128 1000 8.00 0.23 0.16
DPMD 256 1000 9.90 0.23 0.16 3.48 -0.31
DPMD 256 6000 9.90 0.22 0.16 3.48 -0.22

Conclusion

First, Beyond the limits of both size and time scale of previous calculations by AIMD, the

water molecular dipole and quadrupole moments in the water local coordinate are calculated,
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Figure 2: The distributions of water molecular dipole moment magnitude and three elements
in the water molecular local frame. The solid lines are from DFT 30 ps simulation of 64
waters; the dashed lines are from DPMD 1000 ps simulation of 256 water system. The
vertical dashed lines are the mean values from DFT simulation, and for the magnitude pm,
with standard deviation in parentheses, is of 2.72(0.26) D, for the px of 2.70(0.26) D; py of
0.00(0.20) D; pz of 0.00(0.23)D.The red dotted line is the Gaussian distribution with same
mean(sigma) as that of magnitude distribution from AIMD.
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Figure 3: The distributions of water molecular quadrupole moment elements in the water
molecular local frame. The solid lines are from DFT 30 ps simulation of 64 waters; the
dashed lines are from DPMD 1000 ps simulation of 256 waters. The mean value and standard
deviation (in the parenthese) from the DFT simulation, and for the Qxx are of -2.83(0.14)
D·Å , the Qyy of -1.92(0.14) D·Å , the Qzz of -3.95(0.09) D·Å , the Qxy of -0.00(0.10) D·Å ,
Qxz of 0.00(0.05) D·Å and Qyz of 0.00(0.04)D·Å .
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Figure 4: Cavity center potential −〈φ〉Mλ
= δφD + δφQ1 +δφQ2 as function of distance to

the center. The open circles are from DFT 30 ps simulation of 64 waters; the open squares
are from DPMD 1000 ps simulation of 256 waters, which δφ is convergent to 3.87 Volt at
distance of 9.9 Å .
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unraveling how the water molecule is polarized in the liquid phase. It is that the valence

electron cloud are stretched along the norm direction of the water molecular plane, and are

compressed in the other two orthogonal directions. Second, the Deep Neural Network models

reproduce moments with a good accuracy, indicating that it is a powerful tool to approach

the environment dependence of the multipole moment, allowing us to compute electrostatic

potential that play a crucial in chemical process at low cost and with AIMD accuracy. Third,

as an illustration of the possible applications, we calculate the local potential contribution to

the ion hydration free. As high as the 3rd cumulant term we get a potential scale as -3.85 V.

This result would be more robust and insightful if we go for larger system to include a vapor-

water surface so that we can obtain and compare the net potential with the experimental

scale -0.40 V derived from ion hydration data.
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