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Abstract

Deep learning has demonstrated significant potential in advancing state of the art

in many problem domains, especially those benefiting from automated feature extrac-

tion. Yet the methodology has seen limited adoption in the field of ligand-based vir-

tual screening (LBVS), as traditional approaches typically require large, target-specific

training sets, which limits their value in most prospective applications. Here, we report

the development of a neural network architecture, and a learning framework designed

to yield a generally applicable tool for LBVS. Our approach uses the molecular graph

as input, and involves learning a representation that places compounds of similar bi-

ological profiles in close proximity within a hyperdimensional feature space; this is

achieved by simultaneously leveraging historical screening data against a multitude of

targets during training. Cosine distance between molecules in this space becomes a

general similarity metric, and can readily be used to rank order database compounds

in LBVS workflows. We demonstrate the resulting model generalizes exceptionally
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well to compounds and targets not used in its training. In three commonly employed

LBVS benchmarks, our method outperforms popular fingerprinting algorithms without

the need for any target-specific training. Moreover, we show the learned representation

yields superior performance in scaffold hopping tasks, and is largely orthogonal to exist-

ing fingerprints. Summarily, we have developed and validated a framework for learning

a molecular representation that is applicable to LBVS in a target-agnostic fashion, with

as few as one query compound. Our approach can also enable organizations to generate

additional value from large screening data repositories, and to this end we are making

its implementation freely available at https://github.com/totient-bio/gatnn-vs

Introduction

Virtual screening (VS) has long been one of the most popular topics in cheminformatics,

with a wealth of reports on novel VS method development, benchmarking, and prospective

applications of the methodology.1–3 Despite increasing commodification of high-throughput

compound (HTS) screening, and emergence of novel hit discovery methodologies such as

DNA-encoded library selections,4 the promise of reliable computer-aided hit discovery has

made interest in VS remain high. This interest currently seems to be undergoing expansive

development, driven in no small part by advances in the field of deep learning.5–9

Deep learning has brought about considerable progress in several problem domains. Deep

neural networks (DNNs) are often described as general pattern recognition engines, and excel

in tasks facilitated by automated feature extraction,10 where they are able to outperform

expert judgment. Chemistry has been no exception to this trend; it has been shown that

contemporary deep learning architectures can extract sufficient information even from image

depictions of molecules – to yield robust predictors without any explicit information or

rules pertaining to concepts such as valence, bonding, electronegativity, etc.11 As such, deep

learning potentially removes the need for any a priori feature engineering, allowing a suitably

trained model to learn the best representation for a problem at hand.
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This strength of DNNs seems to be ideally matched to one of the biggest challenges in

ligand-based VS (LBVS), that being the optimal molecular representation to use.12,13 In

LBVS, one assumes that searching a database for compounds similar to a known active (the

query) will afford structures that are also likely active. At its very foundation, LBVS thus

leverages the “similarity-property principle” that postulates compounds similar in chemical

structure ought to have similar biological and/or physicochemical profiles. Yet similarity

in a chemical sense can have a multitude of meanings.13 What practitioners typically seek

are structurally unique and diverse starting points for further development, which means an

effective LBVS method must be able to adopt a similarity definition that highly ranks not

(only) close query analogues, but genuinely active compounds that are a “scaffold hop” away

from the already known actives.14

The pursuit for scaffold hopping in LBVS has seen many molecular representations uti-

lized, ranging from those that leverage only the information contained in the molecular

graph (2D methods),15–18 to more complex molecular embeddings derived from a ligand’s

three-dimensional structure (3D methods).19–29 Methods centered around “fingerprinting” a

molecule from its molecular graph have been particularly popular in LBVS, and can be seen

as the canonical 2D LBVS method. These are simple to use, rely on common distance metrics

in comparing two compounds (e.g. Tanimoto distance), they are agnostic to the bioactive

conformation of the molecules being compared, and feature competitive performance in VS

benchmarks when compared to their (more complex) 3D counterparts.30–32 Furthermore,

several studies have demonstrated that molecular fingerprints do feature scaffold hopping

potential,33–35 supporting their practical applicability in VS workflows.

Notwithstanding the solid performance of existing 2D LBVS methods, most currently uti-

lized molecular fingerprints are the result of algorithms involving some degree of knowledge-

guided, or manual feature engineering. The heuristics integrated in fingerprinting algorithms

typically embody some high-level chemistry principles, attempting to maximize the infor-

mation content of the resulting feature vector, so as to consequently boost its performance
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in a variety of chemical similarity-related tasks. While these approaches can clearly be suc-

cessful, they always feature a trade-off in assigning importance to certain molecular features,

while neglecting others, with this choice hard-coded in the algorithm, and not amenable

to problem-specific tuning. As described above, this can ideally be addressed with DNNs,

as a bespoke representation can be learned during model training, offering the prospect of

improved performance over generic methods.

Here, we report the development of a deep learning architecture and a modeling frame-

work designed to learn an optimal representation of a molecule for its application in LBVS

and scaffold hopping. Our approach involves training a neural network once, utilizing large-

scale historical HTS data, so that the learned molecular representation optimally discrimi-

nates compounds active against the same target – from those that are not. We then apply

this network to “fingerprinting” any molecule from its graph representation, and use the

resulting vectors for similarity-based searches leveraging common distance metrics. When

evaluated on a variety of benchmark datasets, we show our method generalizes to novel

targets and novel compounds exceptionally well, outperforming algorithms commonly used

in LBVS both in terms of overall enrichment and scaffold hopping potential. The fact our

method does not require any additional training to address novel targets makes it a gen-

erally applicable alternative to existing LBVS methods, and can be of particular utility in

generating additional value from large public and private screening data repositories.

Related work

There have been several contributions published over the past 5 years that are related to

the work reported here, either through the methodology employed, or the problem being

addressed. We will provide a brief overview of the relevant publications in this section.

Two of the earliest reports of deep learning architectures applied to generating molecular

representations from a molecular graph as input were published by Duvenaud et al.36 and

Kearnes et al.37 Both groups introduced the concept of molecular graph convolutions as a
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means to learn a representation, tailoring it for property predictions and LBVS, respectively.

Although the reported models did not significantly outperform standard fingerprinting ap-

proaches, they set the stage for several contributions that would leverage molecular graph

convolutions in tackling cheminformatics problems.38–41 Further frameworks for supervised

learning from molecular graphs subsequently emerged, including a generalization of the afore-

mentioned models in the form of message passing neural networks;42,43 and additional re-

finements involving inclusion of adaptive attention weights,44 and combining attention with

edge message passing.45 These models form a relatively diverse family to which our own

contribution is closely related.

Although a variety of deep learning applications in cheminformatics have been reported,

relatively few deal directly with LBVS. One major reason for this can be found in the fact

that deep learning models typically require significant amounts of training data (thousands

of data points, at least), which is incompatible with the overall LBVS paradigm. Namely,

since any prospective application of LBVS would only be able to benefit from a few known

actives, the requirement for a large training set presents a significant limitation. Still, some

authors have described methods which involve training or refining a model for target-specific

recall of novel hits leveraging datasets of known actives.46 Others have attempted to ad-

dress the large training set limitation and improve the applicability of deep learning models

in several ways. Altae-Tran et al.40 leveraged the “one-shot learning” framework, to carry

out virtual screening supported by anywhere between 1 and 10 known actives and decoys,

each, per target. Srinivas et al.47 described an alternative approach based on collaborative

filtering. Although technically not a deep learning model, but rather an extension of the

HTS fingerprint methodology,48,49 the described method was also reported to facilitate LBVS

without the need for a large, target-specific training set. Jaeger et al.50 reported Mol2vec,

an unsupervised approach to generating molecular embeddings inspired by the field of nat-

ural language processing. Though Mol2vec requires no additional training to “fingerprint”

compounds, every specific task, such as LBVS, requires additional machine learning, with
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the aforementioned limitations pertaining to size of available training sets. Finally, Winter

et al.51 reported an encoder-decoder architecture whose internal molecular representation

was shown to be useful for a variety of cheminformatics tasks, including LBVS.

To the best of our knowledge, thus, our contribution is one of very few where a transferable

molecular representation is learned during training to yield a model that can subsequently

be utilized to fingerprint any molecule; and where the resulting fingerprints are directly

comparable and applicable to LBVS in a target-agnostic fashion.

Results and discussion

Inspired by the successes of fingerprint-based LBVS, and strident advances of deep learning

in problem domains involving automated feature extraction, we set out to design a framework

and DNN architecture that would enable learning an optimal molecular representation for

the problem of 2D LBVS. Our key requirement was that the trained model should serve as

a generally applicable fingerprinting tool, such that no additional model training would be

required to apply the model to novel targets, thus rendering it equally applicable to LBVS

scenarios as the popular circular fingerprints.

The model we developed is founded on the graph attention network,52 and will be re-

ferred to as GATNN in the remainder of the manuscript. The basic building block of the

model (Fig. 1) are multi-head attention blocks, each of which yields a feature vector encod-

ing properties of a node (i.e. atom), and its immediate neighborhood. This feature vector

is produced by an aggregation of embeddings from all nodes of the respective substructure,

whereby the aggregation is performed by weighing each node’s “message” by an “attention

coefficient”, allowing the model to differentially treat every atom neighbor. To illustrate

the utility of this approach, one could consider the atomic environment centered at an aro-

matic carbon substituted with a halogen. While e.g. chlorine and bromine substituents

start with different atom embeddings, the attention mechanism assures that the learned
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node representation of the central aromatic carbon can end up being very similar for both

substructures, provided this is the optimal representation given training data. From a high

level perspective, this architecture thus provides prerequisites for learning isosteric replace-

ments, without the need to define feature abstractions a priori (e.g. hydrogen bond donor or

acceptor, positively ionizable center etc.). However, since attention coefficients are trained,

it is pertinent to recognize one set of these weights would be insufficient to capture the

complexity of substructures requiring differential weighing. Therefore, the attention blocks

feature multiple “heads”, each with its own set of attention weights and node embedding

transformation functions; the final output of a multi-head attention block is subsequently

generated by concatenation. Deviating from the original implementation of the graph at-

tention network, our model also takes into account properties of edges (i.e. bonds), whose

embeddings are treated by analogy to that described for nodes, and incorporated into the

incrementally updated node feature vector (Fig. 1). For implementation details, the reader

is referred to the Experimental section.

While a single multi-head attention block yields node feature embeddings that capture

neighborhood information one bond away from every atom, embedding larger and more spe-

cific substructures can be accomplished by stacking multiple attention blocks. Similar in

spirit to the incremental algorithm underlying extended connectivity circular fingerprints,

GATNN features a stack of graph attention layers, with every higher layer integrating incre-

mentally larger substructures in its output. To mitigate issues associated with diminishing

gradients and loss of accuracy in such a deep architecture, the connections between layers

are implemented as gated residual connections.53 After the last attention block, the node

features are pooled (Fig. 1), resulting in a final molecular embedding consisting of 2,048

floats.

To train the GATNN model, we chose to leverage multitask learning in order to expose

the model to a variety of target classes and isoactive chemotypes, maximizing its trans-

ferability to novel targets and compounds. However, for this strategy to be efficient, one
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Figure 1: A summary representation of the neural network architecture underlying the
model developed in this study.

typically needs to leverage a dense activity table where a given compound library has been

evaluated across a range of different targets. Publicly available historical HTS data lend

itself as the optimal choice, having been previously demonstrated as useful in engineering

biological activity fingerprints.48,49 In the training regime we used, the model was tasked

with predicting a biological activity vector across 235 assays, equivalent to 235 classifier

tasks. This approach essentially favored learning a molecular representations that embeds

isoactive compounds (i.e. compounds active at the same target or targets) close in the hy-

perdimensional embedding space that we sought to use as the GATNN fingerprint. This is
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illustrated in Fig. 2, which shows a clear shift in similarity distribution of active compound

pairs after training.

Figure 2: Distribution of cosine similarities between GATNN fingerprints of randomly sam-
pled compound pairs that are, and are not active against the same target, respectively. The
right-hand side plot shows a clear shift in distribution of active pair similarities, following
29 epochs of training.

After training, we removed the final classifier layer from the network, and used the

molecular embedding layer as the GATNN fingerprint. This provides for a straightforward

way to apply GATNN in LBVS, using a flow identical to one applied with other fingerprint-

based approaches: fingerprints of database compounds can easily be generated by a simple

forward pass of the network, subsequently stored and compared to queries, making the

entire process highly efficient. The similarity comparisons of GATNN fingerprints – in all

benchmark experiments – were performed using cosine similarity, as it was seen as the

most suitable similarity metric for high-dimensional, real-valued vectors. We also attempted

using generalized Tanimoto similarity,48 and observed comparable, though slightly worse

performance (results not shown).

We evaluated the performance of GATNN using three external datasets (MUV, ChEMBL,

DUD-LBVS) that are commonly employed to benchmark LBVS methods, as proposed by

Riniker and Landrum.54 None of the targets or compounds represented in these datasets were
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used in model training. We compared the performance of GATNN to three fingerprint-based

methods, namely an extended-connectivity circular fingerprint (ECFP4),18 the topological

torsion (TT) fingerprint,16 and MinHash fingerprint (MHFP6);55 the choice was motivated

by the fact the first two consistently gave best results in previous studies utilizing the same

benchmarking data,54 while the MHFP6 is a more recent development with other useful

properties such as fast approximate nearest neighbor searches. The feature count-based

fingerprint (ECFC0) was included as a random enrichment baseline. We looked at three

metrics: area under the receiver operating characteristic (ROC) curve (AUC); enrichment

factor at 1% of the ranked dataset (EF 1%); and Boltzman-enhanced discriminator of ROC

(BEDROC). As summarized in Fig. 3 and Table S1, although significant differences can be

observed across the three datasets, GATNN consistently outperforms existing methods. The

performance boost seen with GATNN is greatest in MUV and ChEMBL datasets, both in

terms of AUC, and in metrics of early enrichment. Specifically, GATNN yields 36% and 13%

improvement in BEDROC values in MUV and ChEMBL benchmarks, respectively, when

compared to the best performing standard method. This finding was very encouraging as

MUV is typically seen as a difficult benchmark, given that it features significant scaffold

diversity, and thus intrinsically tests a method’s scaffold hopping capability. Indeed, while

ECFP4, TT, and MHFP performed close to random for several MUV targets (Fig. S1),

GATNN exhibited robust enrichment across the benchmark. Conversely, GATNN was mod-

estly outperformed by all three comparator fingerprints in terms of early enrichment in the

DUD-LBVS benchmark, despite yielding a higher AUC. We postulated limited structural

diversity of actives in DUD-LBVS (as illustrated in Fig. S2) was essentially erasing any

advantages GATNN has over the other methods, the former being more attuned to scaffold

hopping tasks.
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Figure 3: Summary performance of GATNN in three benchmarks (MUV, ChEMBL, DUD-
LBVS), compared to well established fingerprinting methods (ECFP4, TT, MHFP), and a
feature count-based fingerprint (ECFC0), included as a random enrichment baseline. Boxes
edges correspond to 1st and 3rd quartile of the distribution of values obtained across all
benchmark targets, with 10 benchmarking runs per target, and random selection of 5 query
compounds on each run. Median value is denoted by a horizontal black dash, with minimum
and maximum values given by the edges of whiskers. Outliers are shown as empty circles.
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To investigate this further, we next looked at the performance of these three methods in

scaffold enrichment. While there is no universally accepted scaffold definition to leverage in

such an exercise, we opted to use Bemis-Murcko scaffolds (BMS),56 and examine how varying

the number of unique BMS in the query set affects the resulting BMS enrichment. The

results are illustrated in Fig. 4. Unsurprisingly, increasing the number of query compounds

from 1 to 5 consistently leads to doubling of scaffold enrichment, both across methods and

benchmark sets. Likewise, GATNN outperforms the other two methods irrespective of query

numbers, though differences are most pronounced in the MUV benchmark, and negligible in

DUD-LBVS. Of practical relevance in low-data settings, with one query molecule GATNN

yields a mean BMS enrichment factor of 7.33, whereas the second-best method, TT, gives a

factor of 4.99 (MUV benchmark); the 47% increase can mean several additional scaffold hits

in a prospective application. Notwithstanding the fact BMS enrichment might overestimate

genuine scaffold hopping potential, overall, our results indicate GATNN features improved

capabilities in this respect.

Figure 4: Scaffold hopping performance of GATNN, ECFP4, TT and MHFP, and its depen-
dence on the number of distinct scaffolds in the query set. Performance was quantified by
the enrichment of unique Bemis-Murcko scaffolds (BMS) in top 1% of the database, across
three benchmark sets (MUV, ChEMBL, DUD-LBVS).

We also sought to understand to what degree are molecular embeddings generated by

GATNN similar to existing fingerprints as, theoretically, the network could have largely been

reproducing e.g. ECFP4, if that was already the optimal representation for LBVS tasks. We
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sampled 10,000 random pairs of molecules from the benchmark data and compared their

similarities using GATNN and ECFP4, respectively. Interestingly, we observed virtually

no correlation between molecular similarities quantified through these two representations

(Pearson r = 0.130, Spearman ρ = 0.148), as illustrated in Fig. 5. This clearly indicates

that, although both methods are able to enrich for actives in a LBVS campaign, they capture

features translating to chemical similarity in a distinct fashion. This observation is not

limited to random pairs of molecules, though we found the correlation to be stronger (Pearson

r = 0.701, Spearman ρ = 0.566) when focusing only on similarities of molecules both active

at the same target (Fig. S3). Summarily, this demonstrates GATNN yields a genuinely novel

molecular representation, with significant orthogonality to ECFP4, at least.

Figure 5: Correlation between Tanimoto similarity of ECFP4 fingerprints and cosine similar-
ity of GATNN embeddings for 10,000 random pairs of molecules. Dashed red line represent
best linear fit (r = 0.130).

As outlined in the Introduction section, the number of previously reported models that

are readily comparable to the approach described in this manuscript is limited. The one-shot

learning framework reported by Altae-Tran et al. features a similar degree of flexibility in

terms of not requiring a large training set to support LBVS. The best performing model

from this publication was reported by the authors to achieve a ROC-AUC of 0.663 for the

MUV dataset in task hold-out validation with a support set of 5 active and 10 inactive
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examples; by contrast, GATNN scores an AUC of 0.763 with 5 active query compounds.

Similarly, the model reported by Winter et al.,51 leveraging an encoder-decoder architecture,

achieves an AUC of 0.679 in the MUV benchmark. Looking beyond deep learning models,

several newer fingerprinting algorithms have recently been described that provide a new

baseline for comparing the performance of machine learning approaches. The best performing

variations of connected subgraph fingerprints57 were reported to achieve an AUC of 0.671,

0.814, and 0.900, in MUV, ChEMBL, and DUD benchmarks, respectively; GATNN scores

0.763, 0.866, and 0.931, although the last figure is not fully comparable, given our choice to

use DUD-LBVS. Similarly improved performance was observed over MHFP6,55 as illustrated

in previous sections. The performance of the GATNN-based LBVS framework reported here,

thus, compares favorably to related approaches, both conventional and those leveraging deep

learning methodologies.

Although we determined GATNN features good comparative performance across relevant

benchmarks, a prospective application of the method would typically involve LBVS of com-

pound databases featuring a significant degree of structural diversity. We, therefore, looked

at the distribution of training data in chemical space to garner a qualitative appreciation

of the model’s applicability domain (AD). We do note this analysis should be interpreted

cautiously, given the AD of this type of model also needs to be considered in terms of target

space coverage, as will be discussed later. As shown in Fig. 6, the breadth of chemical space

captured by the training data roughly matches the diversity of the three benchmark sets,

suggestive of the fact the estimated performance presents an interpolation scenario for the

application of the model. Encouragingly, though, solid coverage of ZINC1258 is also evident,

albeit the model has seen limited exposure to some parts of the respective chemical space.

Overall, these findings suggest our model, leveraging solely publicly available training data,

would be well suited for screening a commonly employed VS database, from a chemical

space AD perspective. It should be noted that while this analysis was based on GATNN em-

beddings, we made identical observations looking at projections derived from ECFP4 (Fig.
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S4).

(a) GATNN training set vs. the three bench-
mark sets employed in this study, each ran-
domly sampled to 12,000 compounds for vi-
sualization purposes.

(b) GATNN training set vs. ZINC12, each
randomly sampled to 40,000 compounds.

Figure 6: Visualization of various datasets in chemical space, obtained by t-distributed
Stochastic Neighbor Embedding (tSNE) of GATNN fingerprints. The relatively uniform
distribution of training set compounds with respect to benchmark sets and ZINC12, respec-
tively, suggests the model has been exposed to meaningfully diverse chemical structures,
supporting its utility in prospective applications. tSNE embeddings were generated using
the openTSNE library,59 with perplexity set to 2000 and 500, for data presented in subfig-
ure a) and b), respectively. Optimization was carried out for 1000 iterations, with cosine
distance between GATNN fingeprints as the distance metric.

Finally, we sought to understand to what extent can the model’s performance be improved

by enhancing the training set with additional compounds, and more targets, respectively,

while gaining a further perspective on its applicability domain. To do so, we performed ran-

dom down-sampling of the original training data, and repeated the training process from a

newly initialized network for each reduced training set. Surprisingly, we observed relatively

modest performance gains with the inclusion of additional compounds, whereas more signifi-

cant performance boosts were seen as the number of targets in the training set are increased

(Fig. 7).
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(a) EF1% scores on three benchmark
datasets as function of training set size for
a fixed number of 235 targets.

(b) EF1% scores on three benchmark
datasets as function of the number of tar-
get labels for a fixed training dataset size of
approximately 360,000 molecules.

Figure 7: Influence of training set size and diversity on model performance in external
benchmarks. While only modest improvements are seen with inclusion of more compounds,
adding data points from additional targets (assays) yields consistent and significant benefits.
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In both scenarios of training dataset enlargement, performance in the MUV benchmark

benefits the most, which seems to indicate scaffold hopping tasks are where the GATNN

framework derives the largest advantage in leveraging historical screening data. Consistent

with this, we also observed our model features a strong inductive bias,60 as evidenced by

the fact we can observe better-than-random enrichment across all 3 benchmarks, without

a single epoch of training (Fig. S5). In essence, the architecture we developed, without

any training, behaves not unlike a circular fingerprinting algorithm with a random hash

function, providing baseline performance comparable to such methods; this is promising as

it can be seen as a worse case scenario for the model’s performance, when it’s faced with

unseen chemical matter or a novel target class. With training, on the other hand, the model

learns a more nuanced representation that can differentially weigh feature importance, and

reflect bioisostere-like equivalence in substructures, instead of simply accounting for presence

of specific moieties. We hypothesize this also presents the basis for larger improvements seen

with the addition of more targets to the training data (as opposed to more compounds),

given that the model becomes exposed to more diverse examples of “isoactive” compounds

when more targets are involved. From a practical perspective, these results also suggest the

GATNN framework may be of significant utility in generating additional value from large

corporate screening data repositories, as with additional training data – the performance

reported herein could be easily surpassed.

The computational requirements of generating GATNN fingerprints are relatively modest:

fingerprinting 1.7 million compounds from ChEMBL25 requires 9 minutes of GPU time on

an Nvidia 2080Ti card. For comparison, generating ECFP4 fingerprints for the same dataset

using RDKit takes 6 minutes on a single core of AMD Ryzen 9 3900X. GATNN fingerprints

can also be generated using CPUs alone, though the resulting performance is far worse,

with 5 hours required for fingerprinting ChEMBL25. Screening this dataset against a single

query molecule takes approximately half a second when using RDKit’s explicit bit vector

representation of 2,048 bit ECFP4, and its C++ implemented Tanimoto similarity function
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(BulkTanimotoSimilarity). On the other hand, performing the same screen with GATNN

fingerprints and SciPy’s61 implementation of cosine distance takes approximately 3 seconds.

Overall, while GATNN fingerprint-based flows do require more computational time, their

overall performance is adequate for routine application in virtual screening flows.

Experimental

Datasets

Model training was carried out using publicly available HTS data consisting of 256 assays

previously curated by Helal et al.,49 and used in Riniker et al.48 Of these, 14 assays were

removed due to target overlap with the benchmark sets employed in our study. Additional

7 assays were eliminated because they were outliers in number of active molecules: 3 as-

says had more than 10,000 actives and 4 had less than 50. Full records for the remaining

235 assays were retrieved from PubChem62 and processed to extract substance identifiers

(SIDs) and the corresponding bioactivity outcomes; any outcome other than “active” or

“inactive” (PubChem XML schema values of 2 and 1, respectively) was treated as ambigu-

ous and not used in model training. Structural records (SMILES) for the full set of SIDs

were then retrieved, desalted, and an InChI key was generated for each compound using

RDKit.63 Activity records of SIDs mapping to a single InChI key were merged using the

following rules: (i) if conflicting outcomes were reported (i.e. both “active” and “inactive”),

the outcome was treated as ambiguous; (ii) if all non-ambiguous records were concordant,

the outcome was set to the corresponding value. Following deduplication and activity record

merging, the dataset was filtered to remove: (i) compounds that were found to be active

in more than 10% of assays in which they were tested; (ii) compounds that were repre-

sented in either one of the benchmark sets used in our study, as assessed by matching InChI

keys. Finally, we observed that this dataset includes more than 45,000 close analogues

(3-methyl-3,4,5,6-tetrahydro-2H-1,5-benzoxazocine and 3-methyl-2,3,4,5,6,7-hexahydro-1,5-
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benzoxazonine derivatives, mainly) that we downsampled to 5,000 in order to avoid biasing

the training dataset. The final set consisted of 353,390 compounds, totaling 56,931,860 data

points, with the majority of included compounds evaluated in more than 200 assays (61.4%).

Model performance was evaluated using three external datasets, similarly to a previously

proposed framework,54 but with some modifications. The first benchmark set utilized was

Maximum Unbiased Validation (MUV),64 consisting of 17 targets, with 30 actives and 15,000

decoys each; no modifications were made to the original dataset, as distributed in ref.54 The

second benchmark set, referred throughout the manuscript as ChEMBL benchmark, was

generated to include 50 targets proposed in Heikamp and Bajorath.65 The procedure used

to prepare the ChEMBL benchmark was identical to that described in ref.,54 except that

it was carried out using release 25, instead of release 14 of the ChEMBL database.66 The

resulting dataset consisted of 100 actives for each target, and 10,000 decoys. The third set

included in the evaluation workflow was DUD-LBVS,67 from which all the targets with less

than 30 active examples were removed, as was done in.54 The filtered dataset consisted of 21

targets, with between 31 and 365 actives, and between 1,058 and 15,560 decoys per target;

the average number of decoys per active was 26. We opted to use DUD-LBVS instead of

DUDe, given that DUDe features a significant target overlap with the ChEMBL benchmark,

thus providing more orthogonality between the three benchmarks.

Model architecture and training

We developed the model based on the graph attention network52 architecture. Our additions

to that architecture are usage of gated residual connections53 and feature vectors on edges

as well as vertices. The model operates on molecular graphs, vertices being the atoms, and

edges being the bonds. Size of the vertex and edge feature vectors are equal in each layer.

The network was implemented in the PyTorch68 framework, using the Deep Graph Library,69

which requires all graph edges to be directed. We therefore represent each bond as a pair of

graph edges (one in each direction).
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The network consists of multiple graph attention blocks, each block consisting of multiple

primitive neural network layers and operations. The result of every block is an updated

vertex and edge vector representation. The final model is made up of an embedding layer,

seven graph attention blocks, a pool block and, for training, fully connected layer for target

activity prediction. Embedding size for both the nodes and the edges in each residual layer

is 512, and the number of heads is 16 (each head accounting for 32 parameters). The output

sizes of the two final fully connected output layers were 2048 and 235, for the molecular

embedding and assay-specific classifiers, respectively.

In addition to the molecular graph structure, as represented in RDKit’s molecule objects,

the model uses a number of atom and bond features. For atoms we use: atom type, number

of bonded hydrogen atoms, and chirality. For edges we only use bond type.

A graph attention block is implemented through following procedure:

1. Fully connected layers are applied to vertices and edges:

βb = W b
vertexv

b−1, εb = W b
edgee

b−1

whereW b
vertex andW b

edge are block-specific weight matrices multiplying the vertex vector

vb−1 and edge vector eb−1 from the previous block, while β and ε are intermediate values

used throughout the block b.

2. Attention based convolutional update applied to each node:

αbij = softmaxj(σA(A
b[βbi ‖ εbij ‖ βbj ]))

vbi =
∑
j

αbijβ
b
i ε
b
ij

where Ab is the block-specific attention weight matrix, βbi ‖ εbij ‖ βbj is concatenation of

vertex-edge-vertex triplet of vectors and σA is a leaky rectified linear unit with the slope
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set to 0.2. We have also employed the multi-head extension to the attention mechanism,

as described in the original graph attention paper,52 so the final vertex feature vector

is obtained by concatenating results of K independent attention mechanisms:

vbi =
Kn

k=1

∑
j

αbijkβ
b
ikε

b
ijk

3. For the edge update, a fully connected layer is applied to a concatenated triplet con-

sisting of feature vectors of the edge and the two adjacent vertices:

ebij = W b
triplet[v

b
i ‖ εbij ‖ vbj ]

where W b
triplet is the block-specific weight matrix multiplying the concatenated vertex-

edge-vertex vector.

4. At the end of each block we apply layer normalization70 to vertex and edge feature

vectors.

Blocks are followed by a gated (parametric) residual connection,53 on both the vertex

and the edge feature vectors. Since residual connections require that a dimensionality of

input and output are equal, they are added from the block two onward. The outputs of the

residual values are passed through parametric rectified linear units (PReLU).71

Finally, vertex feature vectors are pooled, in order to provide unified molecule represen-

tation. Weighted average pool is used, with weights derived in a process similar to graph

attention:

1. Fully connected layers applied to vertices

βm = Wm
β v

last
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2. Weights are calculated using this vector and used for summation:

αm = softmax(σA(Aβ
m))

µ′ =
∑
i

αmi β
m
i

where σA is again a leaky rectified linear unit with the slope set to 0.2.

3. Batch normalization72 and PReLU activation is applied

µ = σP (batchnorm(µ′))

4. Another fully connected layer is applied to create a final molecule embedding

m = Wm
µ µ

We trained the model using an AdamW optimizer.73 The training was done using a

mini-batch size of 256 molecules and a learning rate of 0.001.

The model was regularized using weight decay set to 0.02. Final model parameters are

derived by running Stochastic Weight Averaging74 over the models from the final 10 epochs

of training.

The training procedure takes around 4 GPU hours on a system with 2080Ti cards.

Model evaluation

A GATNN fingerprint was generated for every compound from the benchmark datasets by

a forward pass through the trained model, taking the final (embedding) layer as a suit-

able molecular representation. Cosine similarity was used as metric for comparing GATNN

fingerprints. We found that the best results are achieved when feature vectors are stan-

dardized using the statistics calculated on benchmark dataset molecules before calculating
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cosine. Comparator fingerprints were generated using RDKit.63 These included the RDKit

implementation of extended connectivity circular fingerprints18 with a radius of 2 bonds

(ECFP4), and topological torsion fingerprints (TT).16 MinHash fingerprints (MHFP) were

generated using the implementation distributed by the authors,55 with a radius of 3 bonds.

ECFP4 was folded to 2048 bits, whereas TT and MHFP were represented by 2048 integers.

Each fingerprint was compared using a different similarity function, as proposed to give best

LBVS performance: ECFP4 was compared using Tanimoto, TT using Dice, and MHFP

using Jaccard similarity.

For every target from each of the three benchmarks, 5 active compounds were randomly

sampled without replacement, and were subsequently used as queries against the remainder of

the database. To obtain a ranked list of database compounds, the MAX fusion approach75

was used, meaning the maximum similarity to any one of the 5 queries was taken as the

final similarity measure. This ranked list was used as input for calculating area under the

receiver-operating characteristic (ROC) curve (AUC), Boltzman-enhanced discriminator of

ROC (BEDROC), and enrichment factor at 1% of the rank-ordered list (EF1%), as previously

elaborated.54 This process was repeated 10 times for every target, and mean values were used

to compute summary statistics across benchmark datasets.

For calculating scaffold enrichment, Bemis-Murcko scaffolds (BMS)56 were constructed

using the RDKit implementation of the method, facilitating grouping of all actives by scaf-

fold, per target. Query compounds (1, 2, or 5) were drawn by randomly sampling BMS

groups, and then randomly choosing one representative compounds when the corresponding

group had more than one associated compound. From there on, the benchmarking process

was identical to what was described above, with enrichment factors calculated on basis of

BMS counts, rather than counts of distinct compounds.
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Conclusion

We have presented a novel framework for leveraging deep learning in ligand-based virtual

screening. Distinct from most previous contributions, our approach results in a target-

agnostic model that can prospectively be applied with the same ease as conventional topo-

logical fingerprints. We have demonstrated that leveraging deep learning for automated

feature extraction in conjunction with a multi-task training regime – results in a molecu-

lar representation with enhanced scaffold hopping potential, and with significant promise

in low data hit discovery settings. Beyond the performance reported herein, we believe

our framework also provides a foundation for generating significant additional value from

organizational HTS data assets.
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