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Abstract 

The outbreak of the COVID-19 pandemic caused by the SARS-CoV-2 has triggered intense 

scientific research into the possible therapeutic strategies that can combat the ravaging disease. 

One of such strategies is the inhibition of an important enzyme that affects an important 

physiological process of the virus. The enzyme, Guanine 7 Methyltransferase is responsible for 

the capping of the SARS-CoV-2 mRNA to conceal it from the host’s cellular defense. The study 

aims at computationally identifying the potential natural inhibitors of the SARS-CoV-2 Guanine-

N7 methyltransferase binding at the active site (Pocket 41). A library of small molecules was 

obtained from edible African plants and were molecularly docked against the SARS-CoV-2 

Guanine-N7 methyltransferase (QHD43415_13. pdb) using the Pyrx software. Sinefungin, an 

approved antiviral drug which had a binding score of -7.6 kcal/ mol with the target was chosen as 

a standard. Using the molecular descriptors of the compounds, a virtual screening for oral 

availability was performed using the Pubchem and SWISSADME web tools. The online servers 

PKCSM and Molinspiration were used for further screening for pharmacokinetic properties and 

bioactivity respectively. The molecular dynamic simulation and analyses of the Apo and Holo 

proteins was performed using the GROMACS software on the Galaxy webserver. The lead 

compounds are Crinamidine, Marmesin and Sinensetin which are obtained from waterleaf, 

mango, and orange plants respectively. All the lead compounds performed better than the 



standard. Crinamidine is predicted to show the greatest inhibitory activity. Further tests are 

required to further investigate the inhibitory activities of the lead compounds.  
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Dynamic Simulation 

Introduction 

Corona virus disease 2019 (COVID-19) is a novel infection which began in China resulting 

in a worldwide outbreak. The disease was declared a global health emergency and later 

recognized a pandemic by the World Health Organization in March 2020 [1]. As at the 25th 

of July, 2020, the global number of reported cases of the disease stood at 15,975,268 with 

643,476 deaths and 9,766,873 recoveries [2]. COVID-19 is caused by Severe Acute 

Respiratory Syndrome Corona virus 2 (SARS-CoV-2) which causes mild to severe 

respiratory illness with symptoms such as fever, cough, and shortness of breath. The ailment 

becomes life-threatening in the presence of co-morbidities such as diabetes, hypertension, 

and cardiovascular diseases [3,4]. There is currently no WHO approved drug or vaccine for 

the cure or prevention of COVID-19. SARS-CoV-2 belongs to a large family of viruses 

consisting of multiple strains that are known to cause illnesses ranging from the common 

cold to more severe diseases such as the Middle East Respiratory Syndrome (MERS) and 

Severe Acute Respiratory Syndrome (SARS) [4,5]. SARS-CoV-2 is a positive-sense, single-

stranded RNA virus possessing the largest and most complex genome (about 30 Kb), packed 

inside a nucleocapsid protein and enveloped with several structural proteins  [6]. The size of 

the viral particle is in the range of 8 0-90nm and there are bulbous surface projections that 

form crown-like patterns (corona) on the surface of the particles [7]. The potential 

therapeutic strategies for the treatment of COVID-19 include immunomodulation and viral 

inhibition. Several enzymes or structural proteins of SARS-CoV-2 are potential drug targets 

as they directly affect physiological processes such as RNA synthesis, replication, assembly 

and human cell receptor binding [8,9]. Guanine N-7-MethylTransferase (GNMT) is one of 

such targets and it the enzyme responsible for the capping of SARS-CoV-2 mRNA. For 

many life-sustaining processes such as replication, protein translation and metabolism, 

viruses require a host cell as they lack the proper cellular machinery. Viral propagation 

within host cell require the transcription of viral mRNA. To do this, the viral  mRNA 



assumes molecular anonymity to evade detection in the host cell cytoplasm. The viral 

mRNA undergoes structural modification by a 5’ cap structure. By evading the host cell 

defense system, viral mRNA can be effectively translated into proteins. The addition of the 

guanine N-7-methylguanosine cap is necessary for the maturation, stability, nuclear export 

and efficient translation of viral mRNA. Eukaryotic mRNA is modified by the addition of 

the 5′ cap structure which is a 7-methylguanosine linked to the first transcribed nucleotide 

by a 5′-5′ triphosphate bridge [10]. The mRNA cap is formed on the first transcribed 

nucleotide of transcripts by three sequential enzymatic activities; triphosphatase, 

guanylyltransferase and methyltransferase [11,12]. The 5′ triphosphate of pre-mRNA is 

hydrolyzed to diphosphate by a 5 ′-triphosphatase, to which Guanosine monophosphate 

(GMP) is added by the RNA guanylyltransferase to create the cap intermediate, GpppN. 

Guanine-N-7-methyl transferase (GNMT) also known as mRNA cap guanine-N7 

methyltransferase is the enzyme that catalyzes the chemical reaction and most importantly 

plays a necessary part of the RNA capping reaction. RNA guanine N7 methyltransferase 

creates the mature cap, m7GpppN, and a byproduct, AdoHcy (S-adenosyl homocysteine) 

through the methylation of the cap intermediate utilizing the methyl donor, AdoMet [13]. 

The GNMT in coronaviruses belongs to a large class of SAM (S-Adenosyl methionine)-

dependent methyltransferases and is an exoribonuclease [14]. Additionally, they have been 

shown to be linked with a unique 3’ to 5’ exoribonuclease (ExoN) domain in non-structural 

protein 14 (nsp14). The diversity of the capping apparatus makes viral RNA capping an 

attractive target for drug design and development [14,15]. Accordingly, the inhibition of 

GNMT which may induce potent antiviral activity makes it an important drug target [16]. 

This implies that incompletely-capped mRNAs can be recognized by immune sensors which 

trigger innate immunity pathways that culminate in the expression of type I interferon and  

other cytokines that have antiviral activity in neighboring cells [17,18]. The active site of 

GNMT is found in Pocket 41 and it includes residues ARG 289, VAL 290, TRP 292, GLY 

333, PRO 335, ASP 352, ALA 353, GLN 354, PRO 355, CYS 356, SER 357, TRP 385, 

ASN 386, CYS 387, ASN 388 and PHE 426 [19]. 

Materials and Methods  

Preparation, analysis and validation of target protein structure: The 3D structure of SARS-

CoV-2 GNMT in the Protein Data Dank (pdb) format (ID: QHD43415_13. pdb) was obtained 



from the I-TASSER online server with an estimated Template Modelling (TM) score of 0.99 [ 

20]. The web server, Volume, Area, Dihedral Angle Reporter (VADAR 1.8) was used to reveal 

the architecture of GNMT. The structure of the target was further analysed using the 

Ramanchandran plot obtained from the MolProbity web server [21]. Ligand preparation: A 

library of 1,048 compounds obtained from edible African plants such as fruits, spices, and 

vegetables were downloaded from PubChem database [22]. All the compounds had been pre-

screened for Lipinski (hydrogen bond donor (HBD) ≤ 5, hydrogen bond acceptor (HBA) ≤ 10, 

molecular weight ≤ 500, and logP ≤ 5) and Veber (polar surface area (PSA) ≤ 140, and rotatable 

bonds ≤ 10) rules [23]. The 3D structures of all the compounds, and that of the standard, 

Sinefungin (PubChem CID 65482) were downloaded from PubChem in the structure-data file 

(sdf) format [22].  

Molecular docking and virtual screening: In preparation for molecular docking, all the ligands 

were uploaded on the virtual screening software, PyRx (Python prescription) 0.8 version using 

the Open Babel plug-in tool [24] and converted from sdf to Protein Data Bank, Partial Charge, & 

Atom Type (pdbqt) format [25]. For stable conformation, the Universal Force Field (UFF) was 

used as the energy minimization parameter and conjugate gradient descent as the optimization 

algorithm. Using AutoDock Vina plug-in tool in Pyrx, all ligands and the standard were docked 

against the target protein, SARS-CoV-2 GNMT using the following grid parameters [26]. Centre 

X = 92.432, Y = 92.529, Z = 92.555 and Dimensions (Angstrom): X = 87.658, Y = 97.427, Z = 

64.081 [24]. Using the Microsoft Excel software, the docked results were exported in comma-

separated values (csv) format and screened using the docking score of the standard, Sinefungin (-

7.6 kcal/ mol) as the cut off. The SWISSADME, pkCSM, and Molinspiration webservers were 

used to predict the molar refractivity, pharmacokinetic properties, and bioactivity of all the 

ligands respectively [27, 28 29, 30]. The SMILES for Sinefungin and the ligands were 

downloaded from PubChem. Binding site analyses: Using the Pymol software, the target protein 

was superimposed with the docked poses of all the front-runner compounds [31]. The Protein-

Ligand Interaction Profiler (PLIP) webserver was used to evaluate the resultant protein-ligand 

complexes for hydrogen bonds, salt bridges and other protein-ligand interactions. The analyses 

carried out include the name and number of residues, exhaustiveness, bond distance and bond 

angle [32]. The binding pockets of the target protein was analysed with the Fpocket web server 

[19].  



Molecular Dynamic Simulations (MDS) and Analyses: A 2-nanoseconds MDS of the Apo and 

Holo structures of SARS-CoV-2 GNMT was performed using the GROMACS software of the 

Galaxy (versions 2019.1 and 2019.1.4) supercomputing server [33]. For ligand parameterization, 

LigParGen server was used to generate GROMACS-compatible topology files for the small 

molecules. OPLS-AA/ 1.14*CM1A was the force field parameter used [34, 35]. After initial 

conversion to topology files, solvation, energy minimization and equilibration (NVT and NPT), a 

1,000,000-step MDS was performed. The analyses of trajectories were done using the BIO 3D 

tool on the Galaxy super-computing platform [36]. These include the Principal Component 

Analysis (PCA), per residue Root Mean Square Fluctuation (RMSF) of the protein backbone, 

and Root Mean Square Deviation of atomic positions (RMSD) and Dynamical Cross-Correlation 

Matrix (DCCM). [37]. The radius of gyration and the B factor was also analysed using the 

MDWeb webserver [38].  

Results and Discussion.  

Structural analysis, validation and preparation of SARS-CoV-2 GNMT (QHD43415_13. 

pdb): The Apo structure of SARS-CoV-2 GNMT (QHD43415_13. pdb) has 527 amino acids 

with the following constituent secondary structures: α helix 21%; beta sheets 30%; Coil 48%; 

and Turns 16% (Figure 1). The Total Accessible Solvent Area (ASA) is 260780 (Å) ². The 

geometry of SARS-CoV-2 GNMT (QHD43415_13. pdb) reveals 8.01% poor rotamers, 83.98% 

favored rotamers, 4.00% Ramachandran outliers, 82.29% Ramachandran favored, 3.22% Carbon 

Beta deviations >0.25Å, 0.00% bad bonds and 1.04% bad angles (Figure 2). The Peptide omegas 

of SARS-CoV-2 GNMT (QHD43415_13. pdb) include 0.00% Cis Prolines and 3.04% Twisted 

Peptides. The low-resolution criteria include 8.2% CaBLAM outliers and 0.96% CA Geometry 

outliers. 
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Figure 1: a: Cartoon model of the crystal structure of SARS-CoV-2 GNMT 

(QHD43415_13.pdb). Beta sheets (yellow), Alpha helix (red) and Loops (green) b: Surface 

representation. 

 

 

Figure 2: Ramachandran plot for SARS-CoV-2 GNMT (QHD43415_13.pdb). 

Chemoinformatic profile of ligands (Figure 3, Table 1): A combination of Ghose, Lipinski 

and Veber rules define the molecular descriptors necessary for good oral bioavailability of 

drugs and their penetration through biological membranes. The molecular descriptors 

include a molecular weight ≤ 500 g/mol, log P ≤ 5, hydrogen bond donors ≤ 5, hydrogen 

bond acceptors ≤ 10, molar refractivity between 40 to 130, the number of rotatable bonds ≤ 

10 and polar surface area (PSA) ≤ 140 [39, 40, 41, 42]. 



Results from Table 1, reveal that none of the lead compounds violated the Ghose, Lipinski 

and Veber rules. This suggests that they have good oral bioavailability and permeability. 

Therefore, we predict that these compounds are good drug candidates having met the criteria 

for drug-likeness assessment [43]. However, the Standard (Sinefungin) violates the Veber 

rule with a high TPSA value (208.65 Aa). This suggests that it would have a considerably 

lower intestinal absorption, blood-brain barrier permeation, and cellular potency than the lead 

compounds [44].  

The molecular complexity of a compound measured by the ratio of sp3 hybridized carbons 

over the total carbon count of the molecule (Fraction Csp3). It is an important property in 

determining the success of drug development. A value of at least 0.25 indicates saturation 

[45]. From (Table 1), all lead compounds and standard are saturated suggesting molecular 

stability. Crinamidine has a higher saturation than the standard while Sinensetin has the 

lowest. 

Due to problematic structural moieties, promiscuous bioactive compounds interact with multiple 

biological targets, and aggregate under assay conditions giving false positive results. While this 

might be good for polypharmacology, unintended interactions might likely lead to many 

undesired side effects [46]. From (Table 1), all lead compounds and standard are predicted to be 

non-promiscuous. 

Beyond ligand binding to the appropriate target, it should elicit a pharmacological effect. Drug 

candidates are classified based on their bioactivity which includes GPCR ligands, ion channel 

modulators, kinase inhibitors, nuclear receptor ligands, protease inhibitors and other enzyme 

inhibitors [47]. In this study, the results showed that only the standard and Crinamidine had 

poor bioactivity scores as Nuclear Receptor Ligand and Kinase inhibitors respectively. All 

other scores for standard and lead compounds revealed moderate to good bioactivity against 

the targets. Furthermore, all lead compounds showed good activity as enzyme inhibitors. 

While the standard showed the highest enzyme inhibition, Marmesin showed the least 

activity (Table 1.). [29, 48].  
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Figure 3: The 3D chemical structures (stick model) of standard and lead compound a: Sinefungin 

b: Crinamidine c:  Marmesin d: Sinensetin 

 

 

Table 1: Chemo-informatic properties of standard and lead compounds 

 Sinefungin      

(Standard) 

Crinamidine Marmesin Sinensetin 

Molecular 

Weight (g/mol) 

381.39 346.37 354.31 320.29 

XLogP3 -4.31 -0.43 -1.05 0.33 

Hydrogen Bond 

Donors 

6 3 4 5 

Hydrogen bond 

acceptors 

10 6 9 7 

# heavy atoms 27 25 25 23 

# rotatable bonds 7 2 4 2 

TPSA (Aa) 208.65 111.90 138.82 119.61 

Molar 

Refractivity 

92.73 88.47 83.12 80.83 

Saturation 

(fraction csp3) 

0.60 0.63 0.44 0.25 

PAIN Alert 0 0 0 0 

GCPR ligand 1.15 0.22 -0.16 0.37 

Ion channel 

modulator 

0.66 0.02 -0.26 0.07 

Kinase Inhibitor 0.74 -0.62 -0.26 0.11 

Nuclear Receptor 

Ligand 

-1.03 0.67 -0.14 0.48 

Protease 

Inhibitor 

0.57 0.14 -0.16 0.23 

Enzyme Inhibitor 1.14 0.36 0.29 0.39 

 



Pharmacokinetic properties of ligands: Pharmacokinetic properties play an important role 

in drug discovery and development. The primary goal of drug to discovery or design projects 

are to identify potential drug candidates that have the greatest efficacy and least toxicity. To 

avoid failures in the drug development process, it is proper to identify good Absorption, 

Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of the front-runner 

compounds through in silico methods [28]. An excellent drug candidate should have good 

ADMET properties at therapeutic doses [28, 49].  

The penetration of a target molecule by a drug candidate is a good marker of its therapeutic 

potential and its influenced by absorption parameters such as human intestinal absorption (poor: 

<30%), caco2 permeability (high:> 0.9), water solubility (insoluble: less than -4.0 Log mol/L), 

and skin permeability (low: LogKp > −2.5). From Table 2, data suggests that the standard and all 

lead compounds to have good human intestinal absorption property, and skin permeability. The 

ability to penetrate human epithelial colorectal adenocarcinoma cells is lowest in the standard, 

and highest in Crinamidine.  

The pharmacological markers for distribution include CNS permeability (permeable Log PS > -

2; poor Log PS < -3), BBB permeability (permeable: Log BBB > 0.3; poor <: Log BBB <-1), 

Volume of distribution steady state (Low: Log VDss <- 0.15; High: Log VDss > 0.45), and 

Fraction unbound. From Table 2, Sinensetin has a high VDSS, while the values for Marmesin 

and Crinamidine are below the pharmacological range. This can be corrected by dosage. 

The standard and Marmesin have a poor ability to permeate into the brain tissue, while other lead 

compounds can permeate. The standard and all the lead compounds have a poor CNS 

permeability. The fraction unbound values for standard and all lead compounds are within 

acceptable range. 

P-glycoprotein is a transmembrane efflux pump which pumps its substrates from inside to 

outside the cell [50]. All the lead compounds except Marmesin were shown to be P-

glycoprotein substrates which implies that they should be co-administered with a P-

glycoprotein inhibitor to prevent a potential reduction in absorption and oral bioavailability 

resulting in decreased retention time of the drug [51]. However, all lead compounds, and the 

standard showed no inhibition to P-glycoprotein I and II indicating less likelihood of its 

substrates inducing cellular toxicity, and drug interactions [52,53].  



The predicted metabolic behavior of bioactive compounds is a determinant of their inclusion 

or elimination in the drug discovery process. The inhibition or non-inhibition of the isomers 

of the Cytochrome P450 enzyme determines whether the drug candidates would undergo 

biotransformation or accumulate in the cellular spaces with toxic tendencies. If drug 

candidates are Cytochrome P450 enzyme substrates they would be administered with 

inhibitors to facilitate their metabolism [54]. From Table 2, all lead compounds are neither 

inhibitors nor substrates of CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4 enzymes.  

The predicted excretion values for Total Clearance for the standard, and the lead compounds are 

within pharmacological range [23]. Similarly, they all are predicted to be non-substrates of Renal 

Organic Cation Transporter 2 (OCT2). This implies that they will all be eliminated from the 

blood into the proximal tubular cell by the Renal OCT2 [24]. 

The toxicity profile for the standard and all lead compounds suggests that are non-mutagenic, 

non- cardiotoxic, non-hepatotoxic, and non-dermatotoxic as revealed in their AMES 

toxicity, hERG I & II toxicity, hepatotoxicity and skin Sensitization predictions respectively 

[28]. 

The dose administered at clinical trials is determined by the maximum recommended 

tolerated dose. Values less than 0.477 log mg/kg/day are considered low while values higher than 

0.477 log mg/kg/day are considered as high. From Table 2 the predicted values suggest that 

Marmesin and Crinamidine are the most and least potent compounds respectively [55]. The 

predicted values for Oral Rat Acute Toxicity and Oral Rat Chronic Toxicity should be 

considered alongside factors such as concentration of drug, dose and the length of time it is 

administered [55]. 

Inhibition of 50% of the growth of T.pyriformis, a protozoan bacterium (IGC50) is a toxicity 

marker in drug discovery. When the pIGC50 value is greater than -0.5 log Ug/L, the drug 

candidate is considered as toxic. Results from Table 2, all lead compounds, and the standard are 

predicted to be toxic against T.pyriformis suggesting antibacterial effect properties (that might be 

unharmful to human cells) [55]. Similarly, in flathead Minnows, the log LC50 is the log of a 

compound to cause death of 50% of the population. High acute toxicity is indicated by values 

less than 0.3 log mM. The results from Table 2 shows that all lead compounds, and the standard 

are not toxic to Minnows [55]. 

 



Table 2: Pharmacokinetic properties of ligands 

 Sinefungin 

(standard) 

Crinamidine Marmesin Sinensetin 

Water solubility (log 

mol/L) 

-2.892 -2.487 -2.21 -3.085 

Caco2 permeability 

(log Papp in 10-6 

cm/s) 

-0.933 0.54 0.377 

 

-0.119 

 

Human Intestinal 

absorption (% 

Absorbed) 

32.936 51.799 

 

48.119 

 

60.725 

 

Skin Permeability 

(log Kp) 

-2.735 -2.735 -2.822 -2.735 

P-glycoprotein 

substrate (Yes/No) 

Yes Yes No Yes 

P-glycoprotein I 

inhibitor (Yes/No) 

No No No No 

P-glycoprotein II 

inhibitor (Yes/No) 

No No No No 

VDss (human) (log 

L/kg) 

0.012 

 

-1.386 -0.611 

 

1.635 

 

Fraction unbound 

(human) (Fu) 

0.383 

 

0.488 0.397 

 

0.263 

 

BBB permeability 

(log BB) 

-1.582 

 

-0.665 -1.286 

 

-0.927 

 

CNS permeability 

(log PS) 

-3.928 

 

-3.101 -3.954 

 

-3.265 

 

CYP2D6 substrate 

(Yes/No) 

No No No No 

CYP3A4 substrate 

(Yes/No) 

No No No No 

CYP1A2 inhibitor 

(Yes/No) 

No No No No 

CYP2C19 inhibitor 

(Yes/No) 

No No No No 

CYP2C9 inhibitor 

(Yes/No) 

No No No No 

CYP2D6 inhibitor 

(Yes/No) 

No No No No 

CYP3A4 inhibitor 

(Yes/No) 

No No No No 



Total Clearance (log 

ml/min/kg) 

0.564 

 

0.744 0.716 

 

0.347 

 

Renal OCT2 

substrate (Yes/No) 

No No No No 

AMES toxicity 

(Yes/No) 

No No No No 

Max. Tolerated dose 

(human) (log 

mg/kg/day) 

0.44 

 

0.777 0.393 

 

0.368 

 

hERG I inhibitor 

(Yes/No) 

No No No No 

hERG II inhibitor 

(Yes/No) 

No No No No 

Oral Rat Acute 

Toxicity 

(LD50)(mol/kg) 

2.482 

 

1.996 2.391 

 

2.289 

 

Oral Rat Chronic 

Toxicity (log 

mg/kg_bw/day) 

3.081 

 

2.278 3.756 2.929 

Hepatotoxicity    

(Yes/No) 

No No No No 

Skin Sensitization 

(Yes/No) 

No No No No 

T.Pyriformis toxicity 

(log ug/L) 

0.285 

 

0.285 0.286 

 

0.296 

 

Minnow toxicity   

(log mM) 

4.001 3.177 4.198 3.747 

 

 

Molecular docking analyses of ligands against SARS-CoV-2 GNMT: In molecular docking, 

the binding affinity score is a measure of the ability of the small molecule to find the optimal 

conformation in the protein binding pocket. Hence, the ligand with the lower binding energy 

suggests the greatest binding affinity making it a possible drug candidate [56].  

All lead compounds have shown greater potency as drug candidate because they have stronger 

binding affinity than the standard. Crinamidine has the strongest binding affinity of -8.5 

Kcal/mol (Table 3) 

 



Table 3. Molecular docking scores of ligands against SARS-CoV-2 GNMT 

Ligand Binding (Kcal/mol) affinity 

Sinefungin -7.6 

Crinamidine -8.5 

Marmesin 

Sinensetin 

-7.9 

-7.7 

 

Binding Site analyses: Hydrogen bonding plays an important role in many biochemical 

processes such as protein-ligand interactions. By displacing water molecules, it enhances ligand 

binding [57]. Also, the orientation and length of an intermolecular hydrogen bond determine the 

direction and specificity ligand binding [58]. 

Hydrogen bonds (H-bonds) are abundant in nature and are vital in protein folding, protein-ligand 

interactions as well as catalytic reactions. In biological systems, they are generally considered as 

facilitators of protein-ligand binding [59,60]. An increasing number of H-bonds between protein 

and drug molecule in molecular simulations is indicative of a stronger binding affinity [61].  

Figure 4 & 5 and Table 4 reveals that while the standard has the highest number of 

intermolecular hydrogen bonds (eight) while Marmesin form the least (one).  Of all the lead 

compounds, Crinamidine has the highest number of hydrogen bonds (four). 

All hydrogen bonds of the lead compounds and standard fall within Pocket 41. Regarding the 

angles formed by hydrogen bonds, the standard forms four strong (greater than 130°) and four 

(less than 130°) hydrogen bonds with the target protein. Crinamidine forms two weak and two 

strong hydrogen bonds. Other lead compounds form only weak hydrogen bonds [62].   

Regarding the donor to acceptor distance, the standard forms six moderate (2.5-3.2 Å) and two 

weak (3.2-4.0 Å) hydrogen bonds with the target protein. Crinamidine forms two moderate and 

two weak hydrogen bonds. Marmesin and Sinensetin forms only weak bonds [62]. 

The identification of potential protein-ligand interactions is an integral aspect of drug discovery 

as it aids the discovery of possible new drug leads, thus contributing to the advancement from 

hits to leads and prediction of likely explanations for side effects of approved drug candidates 

[63]. The most frequently observed interactions in ligand design are hydrophobic bonds, 

hydrogen bonds and π-stacking, followed by weak hydrogen bonds, salt bridges, amide stacking, 

and cation–π interactions [64]. The presence of hydrophobic interactions and salt bridges further 

strengthens and stabilizes the protein-ligand complexes [65].  



The salt bridge is the strongest non-covalent bond, and it gives greater stability of the Protein-

ligand complex [66]. From Table 5, GNMT-Crinamidine and GNMT-Marmesin complexes form 

salt bridges at residues ASP352 and HIS424 respectively. GNMT-Marmesin also has the highest 

number of hydrophobic interactions. This suggests a slightly more atom-efficient binding than 

other complexes. GNMT-Crinamidine has also p-stacking contributing to the small molecule 

interaction. 
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Figure 4: Binding site of SARS-CoV-2 GNMT interacting with standard and lead compounds a: GNMT-Sinefungin 

complex b: GNMT-Crinamidine complex c: GNMT- Marmesin complex d: GNMT-Sinensetin complex 

 

 

a 

 

b 

 

C 

 

d  

 

Figure 5: Protein-Ligand interactions of SARS-CoV-2 GNMT with standard and lead compound. a: GNMT-

Sinefungin complex b: GNMT-Crinamidine complex c: GNMT- Marmesin complex d: GNMT-Sinensetin complex 

 



Table 4. Hydrogen bond analysis 

Complex Number of 

bonds 

Residues Distance (H-

A) 

Distance (D-

A) 

Bond angle 

GNMT-

Sinefungin 

8 VAL290 2.65 3.19 114.05 

  VAL290 2.05 2.9 145.62 

  GLY333 2.3 3.02 124.56 

  ASP352 1.96 2.87 151.24 

  ALA353 2.08 3.02 155.19 

  ALA353 2.99 3.92 157.5 

  GLN354 2.4 2.96 114.36 

  HIS427 3.18 3.86 125.1 

GNMT-

Crinamidine 

4 VAL290 3.34 4.04 129.2 

  ASP352 2.13 3.09 159.62 

  ALA353 3.38 3.95 118.21 

  ASN388 2.17 3.16 167.33 

GNMT-

Marmesin 

2 GLN354 3.46 3.78 101.13 

  HIS424 2.67 3.36 126.18 

GNMT-

Sinensetin 

1 ALA353 3.07 3.64 117.17 

 



Table 5. Other Protein-ligand interactions 

 Hydrophobic Int. Salt bridge p-Stacking 

Complex Residue Distance Residue Distance Residue Distance 

GNMT-

Sinefungin 

VAL290 3.85     

 PRO335 3.72     

       

GNMT-

Crinamidine 

VAL290 3.82 ASP352 5.28 PHE426 4.78 

 PRO335 3.8     

 PHE426 3.74     

       

GNMT-Marmesin VAL290 3.79 HIS424 4.1   

 VAL290 3.85     

 PRO335 3.8     

 PHE426 3.61     

 PHE426 3.49     

       

GNMT-Sinensetin VAL290 3.9     

 ALA353 3.87     

 PHE426 3.68     

 PHE426 3.72     

 

 



Analysis of MDS 

Root Mean Square Deviation of Atomic Positions (RMSD): Through a computational 

approach, the RMSD is used assess the quality of a reproduced binding pose. The new structures 

induced by simulation and/or ligand binding is compared to a reference structure where the 

RMSD is at zero. The structural distance between the Cα atoms of the protein backbone is used 

as a means of evaluation. Lower RMSD values show greater stability of the biological 

configuration. Higher values suggest greater structural instability [56, 67,68]. 

In a 2-nanosecond trajectory, the RMSD of Apo and Holo structures were measured over 

consistent time frames (Figure 7 and Table 6). Of all the holo structures, the GNMT-Sinefungin 

complex has the least total and average RMSD values. The other lead compounds produced 

greater total and average RMSD values than the standard (Sinefungin). Crinamidine followed 

closely by Sinensetin induced the greatest total and average RMSD values.  

There is a steep increase in RMSD of the simulated Apo protein relative to the crystal structure 

as the production time increased. The slope suggests that the RMSD values would increase with 

more simulation time. In a similar manner, the holo structures formed by the Crinamidine and 

Sinensetin also showed a steep increase of RMSD values all through the trajectory showing 

instability. This is also shown in the time frame in which their respective highest RMSD values 

were attained (20 and 19 respectively). The GNMT-Marmesin complex shows a gentle slope 

which flattens towards the end of the trajectory. The GNMT-Sinefungin complex shows the 

greatest stability with the least gradient of the slope.  

The distribution of RMSD values of the Apo and holo structures (Figure 8 and Table 6) suggests 

that the greatest deviation to the right from the respective reference structures comes from the 

GNMT-Crinimadine complex. A total of 17 peaks were found between RMSD values 3.0 to 5.0 

Å for the GNMT-Crinimadine complex while 17, 17, and 16 peaks were found in the same 

positions for the GNMT-Sinefungin, GNMT-Sinensetin, and GNMT-Marmesin complexes 

respectively. The GNMT-Crinimadine complex shows a wider RMSD range than the GNMT-

Sinefungin and GNMT-Sinensetin complexes. This is because the GNMT-Crinimadine complex 

has a peak between the 5.00 -5.49 Å range while the GNMT-Sinefungin complex has no peak 

beyond 4.0 Å and GNMT-Sinensetin complex has no peak beyond 5.0 Å. 

Put together, during the course of the simulation, the ligand-induced protein conformations have 

changed between different time points in the trajectory. The RMSD data suggests that 



Crinamdine, Marmesin and Sinensetin in this order induced more structural distortion to GNMT 

than the standard. Crinamdine followed closely by Sinensetin showed the greatest ligand induced 

instability of the viral protein.  

 

RMSF: The function of a protein is largely dependent on its function and dynamics. Protein 

motions are global, regional (domain or active site) and local (residue). Protein dynamics can be 

evaluated through the measure of the root mean square fluctuations (RMSF) of aligned residues. 

[69]. 

From Figure 9 and Table 6, the total and average global RMSF is greater in the GNMT-

Crinamidine complex than all the other holo structures and least in the GNMT-Sinefungin 

complex (Standard). In this regard, the GNMT-Crinamidine complex is followed by the GNMT-

Sinestein complex. The total and average regional (pocket 41) RMSF remained highest in the 

GNMT-Crinamidine complex followed by the GNMT-Sinestein complex. The lowest values are 

seen in the GNMT-Sinefungin complex for Pocket 41. In a similar vein, the highest fluctuation 

and highest range of RMSF was found in the GNMT-Crinamidine complex is followed by the 

GNMT-Sinestein complex. GNMT-Sinefungin complex (Standard) had the lowest values.  

Put together, Crinamidine showed the most instability with the greatest fluctuations at both 

global and regional sites followed by Sinensetin. Globally, Sinefungin showed the least 

fluctuation at the regional (Pocket 41) site. 

Radius of Gyration: The RoG analysis run to indicate or ascertain the compactness of the 

secondary structures within the 3D structure of the protein. It is measured from the center of 

mass of the molecule with a high RoG suggesting loose packing while a low RoG suggests a 

tight packing of the protein [70]. 

Graphical representation of the RoG reveals that the GNMT-Crinamindine complex has a steep 

slope in the upward direction showing the least compactness. The GNMT-Sinefungin complex 

also progressed upwardly howbeit with a gentle slope (Figure 10). The GNMT-Marmesin 

complex shows a gentle slope with a downward trend as the trajectory progressed. The GNMT-

Sinensetin appear to be flat with a slight downward trend.  



Trajectory data for RoG reveals that the GNMT-Crinamindine complex had the highest values of 

average gyration, range of gyration and percentage gyration over the trajectory. This made it the 

least compact of all the holo structures. The GNMT- Sinefungin complex is the most compact 

and only marginally different from the GNMT Marmesin complex. (Table 6). Put together, the 

Crinamdine followed closely by Sinensetin induced the greatest conformational changes on the 

target protein as shown by the least compactness. This suggests that they are better GNMT 

inhibitors than the standard. 

B-Factor: The B-Factor or Temperature factor is an evaluation of the thermostability of the 

protein molecule as it measures the internal atomic motions as reflected in their flexibility or 

rigidity [71]. The B-factor also directly impacts on the residual factor (R factor) which is a 

determinant of the stereochemical quality of protein structure coordinates [72].  

From Figure 11 and Table 6, the graphical plots of the B factor values show high values at the 

termini of the protein molecules suggesting molecular flexibility at these ends, and that the 

GNMT-Sinefungin complex is the most thermally stable of all the holo structures. The global 

average B-Factor value of the GNMT–Crinamidine complex is the highest of all the holo 

structures while the GNMT-Sinefungin has the lowest value. This suggests that at the global 

level the lead compounds-induced conformations are more thermally unstable than the 

conformation induced by the standard. In a similar vein, data of the regional average B factor 

obtained from Pocket 41 suggests that the GNMT–Crinamidine complex has the highest values 

of all the holo structures and this was followed by the GNMT–Sinensetin complex. In only the 

GNMT-Crinamideine complex, the average B-factor value for the Pocket 41 is higher than that 

of the global average. The GNMT-Marmesin complex has the least B factor value at the regional 

level.  Put together, the greatest temperature-dependent atomic vibrations were induced by 

Crinamidine binding causing the greatest dynamic disorder of the GNMT stereochemistry. 

Principal components Analysis: New conformations are generated during the molecular 

dynamic simulation of a protein. The statistical significance of these conformations is 

determined by the use of principal component analysis (PCA) [73]. Of all the holo structures, the 

total global motions (mean of PC1, PC2 and PC3) was highest in the GNMT-Sinensetin complex 

and least in the GNMT-Crinamidine complex.  However, the, total regional motions (mean of 



PC1, PC2 & PC3) was highest in GNMT-Sinefungin complex followed closely by the GNMT-

Sinensetin and GNMT-Crinamidine complexes (Figure 12 and Table 6). 

Specifically based on the greatest motions, the best global conformations are PC2 of the Apo 

protein, PC1 of GNMT-Sinefungin complex, PC1 of GNMT-Crinamidine complex, PC1 of the 

GNMT-Marmesin complex and PC3 of the GNMT-Sinensetin complex. Of all these holo 

structures, the GNMT-Sinensetin complex has the greatest motion. Similarly, the best 

conformations that produced the greatest motions at Pocket 41 are PC3, PC3, PC3, PC1 and PC2 

of the Apo protein, GNMT-Sinefungin complex, GNMT-Crinamidine complex, GNMT-

Marmesin complex and the GNMT-Sinensetin complexes respectively. Of all these holo 

structures, the GNMT-Crinamidine complex has the greatest motion at the Pocket 41. 

The convergence of the MD simulation is revealed by the cosine contents of the principal 

components. Convergence shows sampling quality, accuracy and reproducibility. Table 6 shows 

Results of cosine content show good quality except for a slight non-convergence at the PC3 of 

the GNMT-Sinefungin complex [74]. 

The dynamic cross-correlation (DCC) analysis: This is a standard method for analyzing 

significant intermolecular contacts are rapidly substituted by side-chain flipping in molecular 

dynamic simulations [75]. The dynamic cross-correlation map captures the multimodal 

characteristics of atoms, especially at the interface of macromolecules by quantifying the 

correlation coefficients of motions between atoms depicting data as positive and negative 

correlation effect of amino acids [75,76].   

From Figure 13, the strongest overall anti-correlated motion of residues occurred in the GNMT-

Crinamidine complex. The active site of GNMT fall within the range of residues 289-426. The 

GNMT-Sinefungin complex showed non-correlated between residues 300-400 while the other 

residues in the active site showed moderate anti-correlation motions. The GNMT-Crinamidine 

complex showed strong anticorrelation motions between residues 250-450 which covers the 

whole area of the active site. The GNMT-Marmesin complex shows moderate anticorrelated 

motions at approximately residues 280-300, predominantly non-correlated motions between 

residues 300-350 and predominantly moderate anticorrelated motions from residues 350-400. 

The GNMT-Sinensetin complex showed non-correlation, moderate correlation and moderate 

anticorrelation motions between residues 250-300. However, greater portion consisting of 

residues 300-450 show moderate anticorrelation motions.  



Put together, the greatest anticorrelation motions both globally and regionally (at active site) was 

found in the GNMT-Crinamidine complex suggesting the greatest inhibitory activity. The heat 

map of the GNMT-Sinensetin complex also suggests a greater inhibitory activity than the 

standard at the active site. 

 

a 

 

b 

 

c 

 

 

 

d 

 

 

 

e 

 

 

 

Figure 6: Cartoon model of the crystal structure of SARS-CoV-2 GNMT Apo and Holo 

structures (without water and ions) after molecular dynamics simulation. Beta sheets (yellow), 

Alpha helix (red) and Loops (green) a: GNMT b: GNMT-Sinefungin complex c: GNMT-

Crinamidine complex d: GNMT- Marmesin complex e: GNMT-Sinensetin complex 
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Figure 7:  RMSD for Apo and Holo structures a: GNMT b: GNMT-Sinefungin complex c: 

GNMT- Crinamidine complex d: GNMT- Marmesin complex e: GNMT-Sinensetin complex 
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Fig 8: RMSD histogram for Apo and Holo structures a: GNMT b: GNMT-Sinefungin complex c: 

GNMT- Crinamidine complex d: GNMT- Marmesin complex e: GNMT-Sinensetin complex 
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Figure 9:  Per-residue RMSF for Apo and Holo structures a: GNMT b: GNMT-Sinefungin 

complex c: GNMT- Crinamidine complex d: GNMT-Marmesin complex e: GNMT-Sinensetin 

complex 
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Figure 10:  Radius of gyration for Apo and Holo structures a: GNMT b: GNMT-Sinefungin 

complex c: GNMT- Crinamidine complex d: GNMT- Marmesin complex e: GNMT-Sinensetin 

complex 
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Figure 11:  B Factor for Apo and Holo structures a: GNMT b: GNMT-Sinefungin complex c: 

GNMT- Crinamidine complex d: GNMT-Marmesin complex e: GNMT-Sinensetin complex 
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Figure 12: Principle component analysis cluster plot of Apo and Holo structures. The projection 

of trajectory onto 1st few eigenvectors for: a: GNMT b: GNMT-Sinefungin complex c: GNMT- 

Crinamidine complex d: GNMT- Marmesin complex e: GNMT-Sinensetin complex 
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Fig 13: Dynamic cross correlation map Apo and Holo structures of 1m4k Purple represents anti-

correlated, dark cyan represents fully correlated while white and cyan represents moderately and 

uncorrelated respectively. 1.0= correlated; 0 is non-correlated; and -1.0 is anti-correlated. a: 

GNMT b: GNMT-Sinefungin complex c: GNMT- Crinamidine complex d: GNMT- Marmesin 

complex e: GNMT-Sinensetin complex 

 

Table 6: Summary of data from Molecular Dynamics Simulations of Apo and Holo structures of 

SARS-CoV-2 GNMT 

MDS Parameters GNMT GNMT-

Sinefungi

n 

GNMT-

Crinamidin

e 

GNMT-

Marmesi

n 

GNMT-

Sinenseti

n 

RMSD      

Total RMSD 67.269 65.504 77.78 66.383 77.69 

Average RMSD 3.203 3.119 3.704 3.16 3.67 

Lowest RMSD 0 0 0 0 0 

Highest RMSD 3.998 3.721 5.046 4.108 4.895 

Time Frame of Highest RMSD 17 16 20 17 19 

Time Frame of Lowest RMSD 1 1 1 1 1 

      

RMSD Peak Distribution      

0.00 - 0.49A 1 1 1 1 1 

0.50 – 0.99A 0 0 0 0 0 

1.00 – 1.49A 0 0 0 0 0 

1.50 – 1.99A 0 0 0 0 0 

2.00 – 2.49A 2 1 2 2 1 

2.50 – 2.99A 3 2 1 2 2 

3.00 – 3.49A 6 13 5 10 2 



3.50 - 3.99 9 4 1 5 5 

4.00 - 4.49 0 0 3 1 5 

4.50 - 4.99 0 0 7 0 5 

5.00 -5.49  0 0 1 0 0 

      

RMSF      

Total Global RMSF 861.45 708.39 1100.42 864.69 946.28 

Average Global RMSF 1.63 1.34 2.09 1.64 1.8 

Total Regional (Pocket 41) 

RMSF 

20.98 18.46 30.61 19.9 22.76 

Average Regional (Pocket 41) 

RMSF 

1.31 1.16 1.91 1.24 1.42 

Least Fluctuation 0.65 0.59 0.62 0.7 0.71 

Highest Fluctuation 6.68 6.04 7.1 6.55 6.83 

Range of RMSF 6.03 5.45 6.48 5.85 6.12 

      

PCA      

Total global motions (PC1, PC2 

& PC3) 

19.0638

2 

19.42237 19.36949 19.6954 20.13226 

Average global motions (PC1, 

PC2 & PC3) 

0.03611 0.03685 0.03675 0.03737 0.0382 

Total Regional (Pocket 41) 

Motion (PC1, PC2 & PC3) 

0.44046 0.56208 0.55081 0.43385 0.55802 

Average Regional (Pocket 41) 

Motion (PC1, PC2 & PC3) 

0.02892 0.03513 0.03442 0.02712 0.03488 

      

PC1 Eigenvalue 46.19% 28.44% 70.47% 40.24% 54.26% 

PC2 Eigenvalue 16.23% 18.22% 10.06% 24.89% 11.73% 

PC3 Eigenvalue 8.31% 13.31% 3.97% 9.07% 8.23% 

Total 70.73% 59.97% 84.50% 74.20% 74.22% 

PC1 cosine content 0.694 0.725 0.885 0.802 0.726 

PC2 cosine content 0.592 0.003 0.452 0.635 0.553 

PC3 cosine content 0.000 0.021 0.259 0.582 0.273 

      

Radius of Gyration      

Average Gyration 6.9955 6.9929 6.9986 6.99292 6.9951 

Maximim Gyration 7.00071 6.99792 7.00598 6.99873 6.99983 

Minimum Gyration 6.99132 6.98818 6.98944 6.98703 6.98903 

Range of Gyration  0.0094 0.0097 0.01654 0.117 0.0108 

% Gyration 0.13 0.14 0.24 0.17 0.15 

Time Frame of Max. Gyr. 14 21 18 8 5 

Time Frame of Min.Gyr. 1 16 1 1 1 



      

B Factor      

Global Average B Factor 324.51 168.72 513.95 247.71 276.95 

Regional (Pocket 41) Average 

B Factor 

220.53 167.69 696.14 154.53 260.06 

 

Conclusion 

After the virtual screening of a library of 1,048 natural compounds against the SARS-CoV-2 

GNMT, three lead compounds namely Crinamidine, Sinensetin and Marmesin were identified. 

All the compounds showed good oral bioavailability properties except for the Standard 

which has a high TPSA value. The standard, and the lead compounds all showed favorable 

absorption, metabolism, excretion, and toxicity properties. The distribution 

pharmacokinetics are generally favorable except that all the compounds have a poor CNS 

permeability, poor BBB (except standard and Marmesin) and they are P-glycoprotein 

substrates (except Marmesin). The standard has the highest number of hydrogen bonds 

formed within the active site followed by Crinamidine. The trajectory data such as RMSD, 

RMSF, B-Factor, DCCM, and RoG, suggests that Crinamidine proved to cause the greatest 

distortion to the target protein while the standard caused the least at the global and regional 

levels (Pocket 41). Specifically of all the compounds, the PC3 of Crinamidine is the 

conformation caused the greatest distortion at the active site. Overall, the lead compounds 

proved to be better drug candidates than the standard in the following order: Crinamidine, 

Sinensetin and Marmesin. 

Isolated for the Streptomyces species, Sinefungin is a natural nucleoside that is a derivative 

of S-adenosylmethionine (SAM) [77]. It has shown a wide range of biological effects which 

include amoebicidal, antifungal, antibacterial (Streptococcus pneumoniae) and antiparasitic 

(Plasmodium, malarial, trypanosomal, and leishmanial species) activities [77, 78,79,80]. 

The antiviral activity of Sinefungin has also been established as it has been shown to be an 

inhibitor of mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2'-)-

methyltransferase, and DNA methyltransferases [81, 82].  Sinefungin is has been shown to 

inhibit the multiplication of feline herpesvirus type I, Newcastle disease and vaccinia virus 

[82, 83].   



Crinamidine is an alkaloid obtained from  Crinum latifolium and Talinum triangulare. In 

Chinese ethnomedicine, the antiviral and antitumor properties of the extract of Crinum 

latifolium has been reported [84, 85]. Sinensetin can be found in orange (Citrus sinensis) 

peel, and it has a wide range of biological activity such as antiviral, anticancer, antitumor, 

anti-inflammatory. Sinensetin is an important ingredient of the aqueous extract of 

Orthosiphon stamineus extract which has shown inhibitory properties against Herpes 

Simplex Virus type 1 [86, 87]. Marmesin can be found in mango and wheat [88]. Its 

inhibitory activity against the Epstein-Barr virus (EBV) has been reported [89] 

It is recommended that the inhibitory effect of Crinamidine, Sinensetin and Marmesin on the 

active site of SARS-CoV-2 GNMT should be further investigated.  
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Figure Legends 

Figure 1: a: Cartoon model of the crystal structure of SARS-CoV-2 GNMT 

(QHD43415_13.pdb). Beta sheets (yellow), Alpha helix (red) and Loops (green) b: Surface 

representations. 

Figure 2: Ramanchandran plot for SARS-CoV-2 GNMT (QHD43415_13.pdb). 

Figure 3: The 3D chemical structures (stick model) of standard and lead compound a: Sinefungin 

b: Crinamidine c: Marmesin d: Sinensetin 

Figure 4: Binding site of SARS-CoV-2 GNMT interacting with standard and lead compounds a: 

GNMT-Sinefungin complex b: GNMT- Crinamidine complex c: GNMT- Marmesin complex d: 

GNMT-Sinensetin complex 

Figure 5: Protein-Ligand interactions of SARS-CoV-2 GNMT with standard and lead 

compounds a: GNMT-Sinefungin complex b: GNMT-Crinamidine complex c: GNMT- 

Marmesin complex d: GNMT-Sinensetin complex 

 Figure 6: Cartoon model of the crystal structure of SARS-CoV-2 GNMT Apo and Holo 

structures (without water and ions) after molecular dynamics simulation. Beta sheets (yellow), 

Alpha helix (red) and Loops (green) a: GNMT b: GNMT-Sinefungin complex c: GNMT- 

Crinamidine complex d: GNMT- Marmesin complex e: GNMT-Sinensetin complex 

Figure 7:  RMSD for Apo and Holo structures a: GNMT b: GNMT-Sinefungin complex c: 

GNMT- Crinamidine complex d: GNMT- Marmesin complex e: GNMT-Sinensetin complex 

Fig 8: RMSD histogram for Apo and Holo structures a: GNMT b: GNMT-Sinefungin complex c: 

GNMT- Crinamidine complex d: GNMT- Marmesin complex e: GNMT-Sinensetin complex 

Figure 9:  Per-residue RMSF for Apo and Holo structures a: GNMT b: GNMT-Sinefungin 

complex c: GNMT- Crinamidine complex d: GNMT- Marmesin complex e: GNMT-Sinensetin 

complex 

Figure 10:  Radius of gyration for Apo and Holo structures a: GNMT b: GNMT-Sinefungin 

complex c: GNMT- Crinamidine complex d: GNMT- Marmesin complex e: GNMT-Sinensetin 

complex 



Figure 11:  B Factor for Apo and Holo structures a: GNMT b: GNMT-Sinefungin complex c: 

GNMT- Crinamidine complex d: GNMT- Marmesin complex e: GNMT-Sinensetin complex 

Figure 12: Principle component analysis cluster plot of Apo and Holo structures. The projection 

of trajectory onto 1st few eigenvectors for: a: GNMT b: GNMT-Sinefungin complex c: GNMT- 

Crinamidine complex d: GNMT- Marmesin complex e: GMT-Sinensetin complex 

Fig 13: Dynamic cross correlation map Apo and Holo structures of 1m4k Purple represents anti-

correlated, dark cyan represents fully correlated while white and cyan represents moderately and 

uncorrelated respectively. 1.0= correlated; 0 is non-correlated; and 1 is anti-correlated. a: GNMT 

b: GNMT-Sinefungin complex c: GNMT- Crinamidine complex d: GNMT- Marmesin complex 

e: GNMT-Sinensetin complex 
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