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Abstract: 

The ongoing search to contain and control the spread of COVID-19 disease focuses on discovering drugs 

or vaccines that can play an essential role in treating this contagious disease. This paper focuses on natural 

compounds that can play a vital role in the treatment of Covid-19. The study spans over the chemicals 

that have the potential to bind with the key residues of type II Transmembrane Protease Serine 

(TMPRSS2). TMPRSS2 can be termed as the catalyst that cleaves the spike glycoproteins of Sars-Cov-2, 

which causes the replication and spread of virus inside the human body by facilitating virus-cell fusions. 

Drugs like Camostat Mesylate, Aprotinin, and Rimantadine have been proposed as potential inhibitors of 

TMPRSS2. After screening large sets of phytochemicals and flavonoids extracted from plants, potential 

compounds have been tested, and a set of most effective and suitable compounds are chosen for further 

studies. These selected compounds are further analyzed in terms of binding with key residues as well as 

high binding affinity with TMPRSS2. The in silico analysis of possible chemical compounds is carried out 

by using docking, screening analysis, Molecular Dynamics, and Electrostatic Potential Simulations. 

Chemicals extracted from different plants are comparatively analyzed with drugs like Aprotinin, Camostat 

Mesylate, and Rimantadine. 

Introduction:  

COVID-19 – emerged from Wuhan, China, and spread across the world in a short period. It is caused by a 

virus named Sars-Cov-2. It transfers from person to person through close contact and small droplets that 

are produced due to coughing and sneezing. The main symptoms are fever, illness, Flu, sore throat, and 

fatigue. It has spread across 200 countries, with 10.5 million confirmed infected cases and 600,000 deaths. 

It is still spreading because there is no vaccine available for the treatment of the virus yet. The worrisome 

sign is that an infected person may not realize about infection and cause infection to other people that 

are close to him. To understand the structure and working of this disease, researchers and medical units 

are working day and night. 

In the replication of disease, human protease TMPRSS2 plays a vital role because it helps the Spike to 

speed up the replication of viruses after Spike gains entry into cells through Human Ace2. This duplication 

increases the dominance of viruses in human cells. The structure of TMPRSS2 can play an essential role in 

discovering suitable compounds for the treatment. That's where antiviral drugs can play a significant role. 

These drugs link with the structural residues of type II Transmembrane Protease Serine, which mediate 
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by cleaving Spike protein and instigating membrane fusion. Natural plants contain substances that are 

used for different treatment purposes, and these plants have been used for this purpose for ages. Plants 

containing phytochemicals can have antiviral properties. A range of chemicals such as flavones, 

flavonoids, Kampo, Gingko, alkaloids, chlorophyllins, Ayurveda is known to have medicinal properties that 

have been used for a variety of viruses. Many publicly accessible databases like PubChem, ChemSpider, 

and Chembl have thousands of compounds' structures. Proper research and clinical trial can cause millions 

of dollars and result in a lot of wasted time to know the failure of the drug. In this study, we used accurate 

and efficient methods to check the appropriateness and effects of drugs by getting fast and robust results 

concerning the suitability of these compounds. This study gives an insight into the pathogens and potential 

inhibitors to help understand the compounds that can play a significant role in the discovery of drugs for 

the diseases.  

Structure of TMPRSS2:  

Type II Transmembrane Protease Serine found in human chromosome 21q22.3, 112, and it encodes a 

protein of 492 amino acids. It is a multi-domain transmembrane serine protease that contains two chains: 

a non-catalytic amino acid chain that is formed by amino acids 1-255 and a catalytic chain which contains 

amino acids 256-492. Usually, serine protease contains three active binding sites of the catalytic triad, 

which are: HIS 296, ASP 345, and SER 441. In humans, it is present in the prostate, lungs, and other tissues. 

Mostly it is shown that TMPRSS2 is associated with prostate cancer neglecting viral infections. However, 

it is a proven fact that duplication of Coronavirus is occurred due to the binding of viral proteins with the 

Human Receptors and further cleavage of the Spike glycoproteins by human cell proteases. The Structure 

of TMPRSS2 is shown in figure 1. 

 

 

Figure 1 Structure of TMPRSS2 

 

 

 



 

Catalysis Mechanism of TMPRSS2:  

Type II Transmembrane Protease Serine performs the catalysis process using Serine, which is an active 

residue of the catalytic side chain. In addition to Serine, there are Histidine and Aspartate residues also 

which assist in the catalysis[1].  This protease is a cleave peptide bond and can cut specific molecules that 

it binds. Figure 2 shows the polypeptide chain of protein that the serine protease will cut between Carbon 

and Nitrogen. And this is the location for the peptide bond. 

  

 

Figure 2 Substrate of Enzyme 

It is imperative to study the structure, catalytic sites, and key residues of TMPRSS2 so that we can find 

suitable inhibitors to stop the splitting of Spike Glycoprotein inside the human body. Figure 2 illustrates 

the three site chains of Serine (SER), Histidine (HIS), and Aspartic Acid (ASP). It is essential to mention here 

that the key residues that are very significant in the catalytic process are at a distance from each other in 

a sequence, they brought closer to each other by the folding of the enzyme to make them physically close 

to each other. The closeness of these is essential to start, but more importantly, the flexibility of the 

protein with these side chains is vital to the catalytic function that is going to occur. Specifically, the green 

dotted region indicates the place where spike protein binds, and the cleavage process occurs after it 

interacts with this active catalytic triad of SER, HIS, and ASP[2]. The binding of a substrate (which is Spike 

protein in the case of Coronavirus) from Figure 1 will occur in the S1 pocket of an enzyme. S1 pocket is 

shown in a semicircle that is holding on the part of the protein. As we can see, that protein is going to be 

cut at the active site. It is vital to note here that after the protein binding with an enzyme, the Negative 

charge of oxygen in Aspartate is slightly moved closer to the ring of Histidine. As a result, the electronic 

configuration of the HIS ring is changed; results from the nitrogen of HIS are now attracting Hydrogen, 

which is in SER. So this binding of the enzyme is starting the process by which reaction is going to initiate. 

S1 pocket uses specific protein for binding[3]. It means that protein with a particular protein would bind 

to this pocket. Nitrogen from HIS abstracts a proton from SER side-chain, creating alkoxide ion, which 

makes the nucleophilic attack on the carbonyl carbon of peptide bond eventually releasing half of the 

polypeptide from enzyme and another half of polypeptide covalently links with SER. And this action will 

be repeated for the next cycle. 



 

Figure 3 Catalysis Mechanism of TMPRSS2 

 

From the above study, it is well established that the active binding sites of catalytic triad must be targeted 

to inhibit the process of TMPRSS2. The key residues that are catalytic in the cleavage process are HIS 296, 

ASP 345, and SER 441. Targeting these residues will inhibit the functioning of TMPRSS2 and hence will 

stop the splitting of Spike of Covid-19. One of the potential inhibitors of serine protease is Camostat 

Mesylate, which is currently under trial. This compound binds to key sites HIS 296 and SER 441 along with 

other key sites like GLY 464, GLY 439, and SER 460[4]. Binding details of Camostat Mesylate may help to 

propose promising compound that binds to active side residues along with another residue that is missed 

by Camostat Mesylate like ASP 345 and good binding affinity than Camostat Mesylate. 

Phytochemicals and flavonoids consist of natural compounds and herbs that have been used since ages 

for treatment purposes due to their antiviral properties[5]. For example, Azadirachta, which is commonly 

known as neem, contains antiviral and antibacterial substances that are used for diabetes, skin diseases, 

and stomach upset, etc. In the same way, compounds of aconitum heterophyllum contain naturally 

occurring antibiotic and antiviral compounds that are used for the treatment of cough, diarrhea, and 

fever. Artemisia compounds are useful for the inhibition of tumor growth and can be used as anti-cancer 

substances. There are thousands of phytochemicals, flavonoids, flavones, and other naturally occurring 

substances that are readily available in databases like PubChem, ChemSpider, and chEMBL. Proper clinical 

trials of these substances for a particular illness can devour enormous exertion as far as time and funds 

are concerned, and yet output results may not accomplish the desired goals. In-silico analysis ] can 

extensively limit the number of significant substances through precise and careful demonstration. These 

strategies can give an insight into the structural behavior and anticipate the effectiveness against viruses.  

 



Related Work: 

Various in computational methods such as docking, Virtual screening, Molecular Dynamics, binding 

analysis is used to analyze compounds for the discovery of potential inhibitors. 3D Structure of TMPRSS2 

is developed by the SWISS Model. Ammar et al. performed the analysis to evaluate the potential of ligands 

interacting with human enzymes using Computer-Aided Design (CADD). To study the potential inhibitors, 

ADMET profiling is done by developing the structure of a protein using Homology Modeling. Then the 

broad set of phytochemicals is virtually screened by Autodock Vina[6]. T. Joshi performed the Virtual 

screening of 316 chemicals for the identification of potential drug for ACE2, analyzed the interaction with 

PyMol and Ligplot+ tool is used to analyze the different conformations of ligand on binding sites[7]. 

Claudia et al. used the Schrodinger server for the docking of protein and ligand. Grid is designed by a tool 

named Grid Generator. To further study the correlation of TMPRSS2 and ACE2 with Spike Protein, path 

enrichment analysis technique is followed[8]. Manoj followed the method of Molecular Dynamics for 

protein-ligand analysis; similar ligands are screened using the DrugMint tool. Pockets in the protein are 

identified by a web-based tool named CastP is used. Followed by these methods, Autodock is used for the 

interactions, and binding affinity of ligands is strictly observed[9]. NAMD tool is used to evaluate the 

stability of protein, which interacts with ligands, and solvation, minimization of protein in complex with 

the ligand is analyzed for RMSD and RMSF calculation[10]. R. Chen, in his study, has shown Naringen as a 

potential candidate as a therapeutic compound using Virtual screening, docking analysis, homology 

modeling, and protein-ligand interaction[11]. Many researchers have also applied machine learning 

methods for the study of large datasets[12]–[16]. 

Our study used the same virtual screening, Docking, Molecular Dynamics, and structure analysis method 

for the identification of TMPRSS2 inhibitor. Less useful and irrelevant compounds are discarded, and 

chosen compounds are further observed by docking and binding analysis, and most effective and suitable 

compounds are selected for further investigation. 

  

Material and Methods: 

Preparation of TMPRSS2 and Phytochemicals: 

The structure of TMPRSS2 that is used in this study is obtained from UniProt (PDB ID: O15393). The 3D 

model is generated from SWISS-Model[17]. Molecules have two chains with a length of 492 amino acids. 

MGL tool is used to remove hydrogen atoms and water molecules from TMPRSS2 

Phytochemicals are selected by investigating the properties of various plants. At that point, the 3D 

compound structure of 4217 phytochemicals is selected from chemical and organic databases like 

PubChem[18], IMMPAT[19], and ChemSpider[20]. After downloading these structures, these Structure 

Data file (SDF) format compounds are converted into protein data bank (PDB) format. In this way, the 

phytochemical library is set up to perform further operations. 

Virtual Screening of Compounds:   

RPBS is an online server that is used for virtual screening of phytochemicals. These compounds are 

uploaded on the server for screening. This severs built-in package of AutoDock Vina, which it uses for the 

screening of suitable compounds[21]. Table 1 shows the Grid Coordinates and search space that is used 



in the screening of compounds. The server performed virtual screening of listed structures and discarded 

all those compounds which have a higher binding affinity than -7.   

                                                                Table 1 Grid Coordinates and Spacing for Virtual Screening 

 

                                                      

Molecular Docking: 

Molecular docking is the process of docking ligand in the potential pocket of the protein. The screened 

compounds are further listed for the docking process[22]. PyRx software is used for docking of screened 

compounds and TMPRSS2. For the minimized energy of selected compounds, PyRx used universal force 

field analysis. Table 2 illustrates the Grid Coordinates and Grid Dimensions.  

                                          Table 2 Grid Coordinates and Spacing for Autodock Vina 

 

 

BFGS Algorithm: 

For optimization and solving the search problems of the conformer, the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm is deployed in Autodock Vina. This algorithm generates different poses of each 

compound. One of the optimization strategies is the Gradients scoring function, which uses the method 

of derivation with defined arguments. In the initial state, it follows metropolis criteria to decide on 

whether to continue with the original pose or update the new one. Regardless of the second-order 

derivative, that can increase complexity, BFGS uses gradient evaluation for approximating the rank one 

improvement. Ultimately structure is evaluated by metropolis criteria for selection, and selected structure 

is used as an initial point in the next cycle. 

 

Visualization: 

Docked compounds are analyzed by PyMol, which is an efficient and widely used package that provides a 

complete simulation of the 2D and 3D structure of the protein, ligand, or interaction of both. Binding sites 

of protein-ligand can be analyzed with the distance measurement of binding interactions. 

Molecular Dynamic Analysis: 

Molecular dynamic (MD) is an in silico method that is used to examine the structure and interaction of 

protein-Ligand complex. For this purpose, Nanoscale Atomic Dynamic (NAMD) is a tool that analyzes the 

structural stability of TMPRSS2 and ligand[23]. The temperature was set to 310K, and CHARMM site is 

used to create configuration files. Parameter files protein and ligand were generated from CHARMM 

General Power Field (CGenFF)[24]. A combination of protein-ligand is solvated using water atoms. Table 

3 illustrates the details of temperature, stages, and dielectric, which is set in this process. 

 

Grid Coordinates X=9.8, Y=-4.2, Z=17.6 

Grid Spacing X=45, Y=45, Z=45 

Grid Coordinates X=10, Y=-5, Z=18 

Grid Dimensions (Angstrom) X=35, Y=35, Z=35 



                                           Table 3 shows the values set for the simulation 

 

 

 

Electrostatic Potential Calculation: 

PyMol, which is implemented on the Poisson-Boltzmann method, is used to perform Electrostatic 

potential charge calculation and analyze the charge distribution on the protein surface using a technique 

of cubic spline charge discretization. It divides the positive (blue) and negative (red) charge all over the 

protein. Table 3 shows numerical details of the Grid box that is used to calculate the electrostatic charge 

on TMPRSS2. 

                                           Table 4 Shows Grid box Details set for the electrostatic charge calculation 

 

 

 

 

Results: 

Table 5 shows the details of selected compounds after molecular docking. Binding affinity and binding 

residues are also listed in this table. The threshold of binding affinity was set less than -7. These Potential 

compounds bind to key sites of TPRSS2. Most of these compounds are founds in plants and herbs and 

have shown antiviral properties to be considered for the inhibitors of the targeted protein. 

 

 

 

Table 5 shows the list of Potential compounds that show Good binding interactions with TMPRSS2 

Ligand Binding Sites Binding Affinity (kcal/mol) 
6-Deacetylnimbinene ASP 359 -13.4 

SER 441 

2',3'-Dehydrosalannol GLY 464 -12.9 

HIS 296 

Deacetylsalannin SER441 -11.9 

GLY 464 

SER 460 

Salannin GLU 376 -11.2 

GLN 374 

HIS 296 

Temperature 310K 

Stages 2000 

Dielectric 1.0 

Temperature 310K 

Solute Dielectric 2.0 

Solvent Dielectric 78.0 

Radius Range 1.400 Å 



Salannol acetate SER 441 -10.7 

ASP 340 

Nimbolin A GLN 374 -10.6 

HIS 296 

17-epi-17-Hydroxyazadiradione HIS 296 -10 

ASP 340 

SER 436 

17-Hydroxyazadiradione GLU 376 -9.7 

GLN 377 

SER 441 

Nobiletin GLY 282 -9.5 

HIS 296 

5,6,7,8,3',4',5'-
Heptamethoxyflavone 

HIS 279 -9.5 

HIS 296 

Pinostrobin SER 441 -9.3 

GLY 443 

Sakuranetin SER 436 -9.3 

HIS 296 

Homoeriodictyol GLY 282 -9.2 

SER 436 

SER 441 

Umuhengerin GLN 374 -9.1 

HIS 296 

 

Eucalyptin SER 460 -9.1 

SER 441 

4'-Methoxyflavone GLY 443 -9.0 

SER 436 

HIS 296 

4',5,7-Trimethoxyflavone GLU 376 -9.0 

SER 441 

3-Hydroxy-4'-methoxyflavone HIS 296 -9.0 

Nobiletin ASP 340 -8.9 

Pinostrobin SER 460 -8.9 

SER 441  

Lutonarin HIS 296 -8.8 

ASP 345 

SER 441 

HIS 279 

GLY 474 

Sakuranetin SER 460 -8.5 

SER 441 

Homoeriodictyol SER 436 -8.4 

HIS 296 

Umuhengerin GLN 374 -8.4 

HIS 296 



Eucalyptin SER 441 -7.9 

GLY 443 

SER 436 

4'-Methoxyflavone ASP 359 -7.9 

SER 441 

4',5,7-Trimethoxyflavone HIS 296 -7.8 

HIS 279 

3-Hydroxy-4'-methoxyflavone ASP 345 -7.8 

GLY 443 

SER 436 

3-Hydroxy-3',4',5,7-
tetramethoxyflavone 

HIS 296 -7.8 

GLU 376 

3-Hydroxy-3',4'-
dimethoxyflavone 

HIS 279 -7.8 

HIS 296 

 SER 441 

5,6,7,8,3',4',5'-
Heptamethoxyflavone 

SER 441 -7.8 

GLY 443 

Pinostrobin SER 441 -7.8 

HIS 279 

GLY 474 

Sakuranetin SER 460 -7.8 

SER 441 

Homoeriodictyol SER 441 -7.7 

ASP 340 

Umuhengerin GLN 377 -7.7 

SER 441 

GLY 474 

Glabone SER 460 -7.6 

SER 441 

5,6,5'-Trihydroxy-3,7,2',4'-
tetramethoxyflavone 

HIS 296 -7.6 

GLN 374 

HIS 279 

4H-1-Benzopyran-4-one, 2-(1,3-
benzodioxol-5-yl)-5,7-

dimethoxy- 

HIS 296 -7.5 

SER 441 

GLY 464 

Isothymonin GLN 374 7.5 

HIS 279 

3-Acetyltricin GLY 474 -7.5 

SER 460 

3,5-Dihydroxy-4',7-
dimethoxyflavanone 

GLY 464 -7.4 

GLN 374 

2-(3-Hydroxy-4-
methoxyphenyl)-3,7-dimethoxy-

5,6-dimethylchromen-4-one 

HIS 296 -7.4 

SER 441 

GLN 374 

GLY 464 -7.4 



8-Butyl-5,7-dimethoxy-2-(3,4,5-
trimethoxyphenyl)-4h-chromen-

4-one 

ASP 345 

Camostat Mesylate HIS 296 -7.4 

SER 441 

GLY 464  

HIS 279 

7,3',4',5'-
Tetramethoxyflavanone 

GLY 464  -7.3 

HIS 279 

Aprotinin HIS 296 -7.2 

SER 441 

GLY 464  

SER 460 

3-Methyl-4'-methoxy flavone HIS 296 -7.2 

ASP 345 

GLY 464  

2-(3-Hydroxy-4-oxo-2,5-
cyclohexadienylidene)-5,7-

dihydroxy-2H-1-benzopyran-
3,4-dione 

GLN 374  -7.2 

HIS 279 

GLY 464  

8-Chloro-5,7-dimethoxy-2-(4-
methoxyphenyl)-2,3-

dihydrochromen-4-one 

HIS 296 -7.1 

ASP 345 

GLY 464  

  

From Table 5, only those compounds are selected for further analysis that shows good binding affinity, 

interaction with key residues, and are naturally occurring substances. Some off the compounds listed in 

the above table is also under trial. In the next step, we tried to select only those compounds which have 

an excellent binding affinity and bind to maximum key residues, and then we compared the proposed 

compound with the proven antiviral compounds for the TMPRSS2.  

In Table 6, we shortlisted the best compounds from Table 5 and highlighted the key sites and distance of 

residues binding with the ligand, inhibition constant, and comparison with Camostat Mesylate, and 

Aprotinin is also shown. 

 

 

Table 6 Shows Comparison of the proposed compound with proven Antiviral Drugs 

Ligand  Binding Sites 

with TMPRSS2 

Residue 

Distance 

Binding Affinity 

(kcal/mol) 

Inhibition 

Constant (nM) 

Lutonarin 
 

(Proposed 
Compound) 

HIS 296 2.3 -8.8 348nM 
 ASP 345 2.7 

SER 441 2.3 

ARG 470 2.6 

GLY 474 2.8 



TYR 2.7 

Camostat Mesylate 
(Proven Antiviral 

Drug) 

HIS 296 2.4 -7.4 3713nM 

SER 441 2.5 

GLY 464 2.2 

HIS 279 2.1 

Aprotinin 
(Proven Antiviral 

Drug) 

HIS 296 2.7 -7.3 4396nM 

SER 441 2.9 

GLY 464  2.3 

SER 460 2.5 

 

Below details of proposed compounds have been described with uses, structural properties, toxicity, and 

visualization of binding interaction to verify its potency with TMPRSS2.   

Lutonarin/Isooreintin 7-glucoside (PubChem ID: 44559810): 

Lutonarin is a natural compound that is found in barley seeding, which is also a source of food. It belongs 

to the class of organic compounds containing flavonoids and showed antiviral and antioxidant activities. 

It is used for the treatment of cough, metabolic syndrome, and diabetes with very low toxicity and minimal 

side effects. The structure contains O-Glycosidically combined with carbohydrate moiety at the C7 

position. Figure 4 illustrates the structure of Lutonarin. 

 

Figure 4 Chemical Structure of Lutonarin[18] 

Lutonarin can be used to inhibit the working of TMPRSS2, which is used to split the Spike glycoproteins 

of Coronavirus. Now we shall see the interaction of the proposed compound with TMPRSS2. 

 

Lutonarin:  

The interaction of Lutonarin-TMRSS2 is shown in figure 5. The proposed compound not only binds to all 

three key residues but other critical residues such as HIS 279, GLY 464 also. 



 

 

Figure 5 Binding Interaction of Lutonarin-TMPRSS2 

 

Table 7 illustrates the interaction of Lutonarin with TMPRSS2 that binds to all three key sites with an 

affinity of -8.8 and an inhibition constant of 348nM.  

Table 7 shows the details of Binding Residues, Binding Affinity, and Inhibition Constant 

Ligand  Color No. of Key Binding 
Sites 

 Binding 
Residues 

Binding Affinity 
(kcal/mol) 

Inhibition 
Constant (nM) 

Lutonarin Green 3 HIS 296, ASP 
345, SER 441, 
GLY 464, ARG 
470, TYR 337 

-8.8 348nM 

 

 

Electrostatic Potential Calculation:  

Electrostatic potential is used to calculate the potential charges distribution on the surface of the protein. 

We used PyMol to map the charges on the target protein. Figure 6 shows the distribution of charges on 

the surface of TMPRSS2 during the interaction of Lutonarin. 



 

 

Figure 6 Shows the Inner Cavity of TMPRSS2 during interaction with Lutonarin 

 

From figure 6, Blue and Red color indicate positive and negative charges respectively, and we can visualize 

that inner cavity of the binding pocket of TMPRSS2 is covered with a negative charge (Red), which 

indicates that this internal cavity is where key residues are, and cause cleavage of Spike. Binding this cavity 

will inhibit the function of TMPRSS2; thus, our proposed ligand (Lutonarin) targets this cavity and binds to 

all key residues, which make it more suitable. 

 

Molecular Dynamic Simulation (MDS) Analysis: 

MDS is used to analyze the stability of the combination of both protein and ligand. Root Mean Square 

Deviation (RMSD) is used to calculate the interval between the backbone molecules of the superimposed 

atom. Figure 7 illustrates the RMSD analysis of free TMPRSS2 and the complex of TMPRSS2 and Lutonarin. 

RMSD of free TMPRSS2 arose until 14ns at 1.6 Å, where it stabilized till 25ns at 1.5 Å, again after slight 

fluctuations, it became consistent at 43ns at 1.52 Å. For TMPRSS2_Lutonarin, RMSD ascended until 13ns 

at 1.66 Å and stabilized until 23ns at 1.5 Å.  



 

Figure 7 RMSD illustration of Free_TMPRSS2 and complex of TMPRSS2 with Lutonarin 

 

Figure 8 shows a brief analysis of Root Mean fluctuation of residues of TMPRSS2 and its complex. As it can 

be observed, free TMPRSS2 and its complex showed variation from 1.22 Å to 1.78 Å, which is the clear 

indication that TMPRSS2 aligned with the proposed compound and sustained close contact with the 

proposed inhibitor.  

 

Figure 8 RMSF illustration of Free_TMPRSS2 and complex of TMPRSS2 with Lutonarin 
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Conclusion: 

Covid-19 affected millions of people all over the world and is still on the rise. It is inevitable to design a 

vaccine that can help to cure the viral infection. Researchers are working hard to understand the structure 

and devise a way to come out of this plague. Phytochemicals are naturally occurring substances with fewer 

side effects and natural antiviral properties. In this paper, we have proposed the potential inhibitor to 

stop the replication of the virus inside the human body by targeting type II Transmembrane Protease 

Serine, which contains catalytic side chain that causes the splitting of Spike protein of Coronavirus. 

Targeting key residues of this catalytic chain would inhibit the functioning of the target protein, and as a 

result, virus replication can be avoided. We used the in-silico method and machine learning approaches 

to propose a compound. The proposed chemical compound is analyzed based on the binding affinity, key 

binding residues, Molecular Dynamic Simulation, RMSD, RMSF, and Electrostatic potential Distribution. 

After qualifying all the mentioned approaches, we proposed a natural compound that has a good binding 

affinity and binds to all key residues of the Transmembrane Protease Serine, which gives a strong 

indication that the proposed compound can act as an inhibitor of TMPRSS2 and mitigate the ferocity of 

the infection. 

Future Work: 

All results of this study have been obtained from computational methods. Proper medicinal research and 

thorough analysis will reveal important features of the compound. If this compound is proven stable under 

medical tests and yield good results, then this would open new ways of treating this virus. 
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