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Abstract

Atomic charge is one of the most important concepts in Chemistry. Mulliken pop-

ulation analysis is historically the most important method to calculate atomic charges

and is still widely used. One basic hypothesis of this method is the half-and-half par-

tition of the overlap populations, Q(µ, ν), into equal charges in orbitals µ and ν. This

partition preserves the monopole moment of the overlap density but, other than that,

is arbitrary. In this work we derive a new population analysis (which we designate

Mulliken-Dipole population analysis) based on the conservation of both the monopole

moment and the dipole moment along the bond direction. Test calculations show that

the Mulliken-Dipole atomic charges are in accord to the chemical intuition; also they
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are very different from the Mulliken ones, being quite similar to the Hirshfeld atomic

charges. Mulliken-Dipole atomic charges are conceptually appealing and very easy to

calculate. In a further step, we also show how this Mulliken-Dipole population analysis

can be used to derive atomic charges for atomistic simulations that reproduce the total

dipole moment of the molecule, yielding at the same time a good description of the

local charges and dipole moments for the molecular fragments.

Introduction

Atomic charges in materials are a very important tool in Chemistry, Physics and Biology

both from the conceptual and the practical points of view.1–19 For example, the idea of

atomic charges is basic in many theories that explain the properties of the materials, and

atomic charges are used routinely to interpret experimental data. Also, atomic charges are

a fundamental component in atomistic simulations of complex materials using Molecular

Mechanics force fields or other approximate methods.

The concept of atomic charge is a very intuitive one (the amount of charge that we can

assign to an atom in a molecule, solid or liquid), yet it is not unambiguously defined; thus

different approaches have been developed for their calculation. The most famous one is

Mulliken population analysis (PA),1 which was proposed in 1955 and is still widely used,

in spite of some well-known deficiencies, due to its calculational simplicity and conceptual

appeal. In similarity to Mulliken PA, other methods to calculate atomic charges are based

on the density matrix, using a suitable, balanced, basis set of atomic-like orbitals, such as

the Löwdin2 (L) or the Natural PA3 methods. Alternatively, the atomic charges can be

defined via direct integration of the electron density in real space ρ(r) with a prescription on

how to split this electron density into different atomic contributions.4–6,20–30 For example, in

the Quantum Theory of Atoms-in-Molecules (AIM-QT)5,6,20 method, the electron density is

divided into non-overlapping regions of space around the different atomic positions. In the

Hirshfeld (HIR)4 (or stockholder) method the electron density at each point in space, ρ(r),
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is assigned a relative probability to belong to each atom, probability that is proportional to

the value of the neutral atom electron density at that point. The electron density ρ(r) can

also be used to determine the electrostatic potential (ESP) of the molecule and then obtain

partial atomic charges by fitting, in a given region of space, the ESP due to the partial

atomic charges to the ESP due to the electron density ρ(r) and nuclei.7–11,31–33 Moreover,

with the goal of obtaining atomic charges that yield a good description of the electrostatic

interactions, methods have been developed to optimize the description of the molecular

dipole moments, introducing variations to the atomic charges initially calculated with one

of the methods mentioned above (e.g. Mulliken, L, HIR).17,18,34–39

Since atomic charges are used for different purposes, and are not uniquely defined, differ-

ent methods are better suited for different applications. For example, atomic charges used

in force field molecular mechanics simulations should, ideally, represent accurately the total

atomic dipole of the molecules, as well as the local charge and dipole moment for their con-

stituent molecular fragments (e.g. functional groups). On the other hand, atomic charges

used for conceptual understanding shoud properly reflect the charge variations as a function

of the chemical environment.

In this work we derive a new PA method, that we denominate Mulliken-Dipole PA.

At variance with Mulliken PA, that is based on the half-and-half partition of each overlap

population, the Mulliken-Dipole PA is defined in terms of the two most important physical

properties of the overlap densities, i.e. their monopole and dipole moments. Test calculations

for some selected molecules show that the M-D atomic charges follow the intuitive chemical

trends based on the electronegativities of the atoms. The M-D charges are quite different

from the Mulliken ones and present an interesting similarity to the HIR charges. We conclude

that both M-D and HIR PA are good tools for the conceptual rationalization of chemical

processes. Finally, we discuss how the M-D PA can also be used to derive atomic charges

that replicate the total dipole moment, appropriately including the effects of the intra-atomic

dipoles.37–39 Our test calculations show that the resulting atomic charges, which are suited
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for atomistic simulations, give values between ESP and CM5 charges.

Electron density and overlap populations.

In this work we represent the electron density ρ(r) as :

ρ(r) =
∑
i

fi|ψi(r)|2 =
∑
µν

Pνµφ
∗
µ(r−Rm)φν(r−Rn), (1)

where the orbitals φµ(r − Rm) are a suitable basis set of orbitals centered in the different

atoms, m; Rm and Rn are the positions of the atoms m and n: orbital µ belongs to atom

m while orbital ν belongs to atom n. ψi(r) are the eigenstates (molecular orbitals) that are

obtained e.g. from a DFT or Hartree-Fock calculation, ψi(r) =
∑

µ cµiφµ(r − Rm), fi are

the occupation factors and Pνµ is the density matrix, Pνµ =
∑

i fi cνic
∗
µi .

Eq. (1) is a sum of electron densities for each pair of orbitals (µ, ν):

ρ(r) =
∑
(µ,ν)

ρ(µ, ν)(r) (2)

where the sum extends to all the pairs (µ, ν), with:

ρ(µ, ν)(r) = Pνµφ
∗
µ(r−Rm)φν(r−Rn) + Pµνφ

∗
ν(r−Rn)φµ(r−Rm). (3)

Each overlap density ρ(µ, ν) yields the following overlap population (or overlap charge):

Q(µ, ν) =

∫
ρ(µ, ν)(r) d3r = (PνµSµν + PµνSνµ), (4)

where Sµν =
∫
φ∗µ(r−Rm) φν(r−Rn) d3r is the overlap matrix.

In Mulliken PA each Q(µ, ν) is equally distributed into charges qµ(µ, ν) and qν(µ, ν)
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corresponding to orbitals µ and ν:1

qµ(µ, ν) = qν(µ, ν) =
Q(µ, ν)

2
=

1

2
(PνµSµν + PµνSνµ) , (5)

preserving in this way the monopole moment, eq. (4):

qν(µ, ν) + qµ(µ, ν) = (PνµSµν + PµνSνµ) . (6)

The total electron charge in each orbital is then calculated adding the contributions from all

Q(µ, ν):

qMµ =
∑
ν

1

2
(PνµSµν + PµνSνµ) =

1

2
(SP + PS)µµ ; (7)

S and P are the overlap and density matrices. In most applications the eigenstates ψi and

basis orbitals φµ are real, and equation (7) is simplified to qMµ =
∑

ν PµνSνµ = (PS)µµ.

Thus, the basic ingredients of Mulliken PA are the linear dependence on the density

matrix elements, Pµν , together with the preservation of the monopole moment for each

overlap density, eq. (6), and the assignment of equal charges, eq. (5). Also, in order to yield

meaningful results, the basis set must be well-balanced between the different atoms.

Dipole moments: Mulliken-Dipole population analysis.

The distribution into equal charges in both orbitals in Mulliken PA, eq. (5), preserves the

monopole moment, eq. (6), but, other than that, is arbitrary.40 Thus, we turn our attention

to the next most important multipole moment of the overlap densities.

The dipole moment of ρ(µ, ν) can be written as:

∆(µ, ν) =

∫
r ρ(µ, ν)(r) d3r = (PνµDµν + PµνDνµ) +

(
Rn + Rm

2

)
Q(µ, ν) , (8)

where the dipole matrix elements Dµ,ν are defined w.r.t. the midpoint between atoms m
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and n :

Dµν =

∫ (
r− Rn + Rm

2

)
φ∗µ(r−Rm) φν(r−Rn) d3r . (9)

The idea is that the charges qµ(µ, ν) and qν(µ, ν) must conserve both the monopole moment,

eq. (6), and the dipole moment along the direction from atom m to atom n, umn:

∆(µ, ν) · umn = (qµ(µ, ν) Rm + qν(µ, ν) Rn) · umn , (10)

with umn = (Rn −Rm) /dmn, where dmn = |Rn−Rm| is the distance between atoms m and

n. This yields:

qν(µ, ν)− qµ(µ, ν) =
2

dmn

(
PνµD

‖
µν − PµνD‖νµ

)
, (11)

with

D‖µν = Dµν · umn ; (12)

if orbitals µ and ν belong to the same atom (m = n), then D
‖
νµ/dmn = 0. Intra-atomic

dipoles are discussed below. Notice that D
‖
νµ = −(D

‖
µν)∗.

Equations (6) and (11) fully determine the charges qµ(µ, ν), qν(µ, ν):

qµ(µ, ν) =
Pµν
2

(Sνµ + Cνµ) +
Pνµ
2

(Sµν − Cµν) , (13)

qν(µ, ν) =
Pνµ
2

(Sµν + Cµν) +
Pµν
2

(Sνµ − Cνµ) , (14)

with

Cµν = 2D‖µν/dmn; (15)

(if m = n, Cµν = 0). Notice that the matrix C is anti-hermitian, Cνµ = −C∗µν . Adding the

contributions from all overlap densities yields the Mulliken-Dipole (M-D) PA:

qMD
µ =

1

2
(PS + SP)µµ +

1

2
(PC−CP)µµ = qMµ + ∆qµ. (16)
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For real orbitals eq. (16) is simplified to qµ = (PA)µµ with Aνµ = (Sνµ + Cνµ).

Eq. (16) guarantees the correct description of the monopole and dipole moments for

each overlap density ρ(µ, ν), which are their two most important physical properties. In

practice, the M-D PA is straightforward to implement since the matrix elements D
‖
µν are

easily calculated alongside the overlap matrix elements Sµν . Thus, it represents an important

improvement over the Mulliken PA at practically no computational cost.

As an illustration of eq. (16), Tables 1-4 show the partial atomic charges for the molecules

HF, H2O, NH3, CH4, H2CO (formaldehyde), CH3OH (methanol) and CH3NH2 (methy-

lamine), see Figure 1, as calculated using the Mulliken-Dipole (M-D), Mulliken (M) or

Löwdin (L) PA methods. The partial atomic charge (or net atomic charge) in atom m

is δm = Zm − Qm , where Zm and Qm are the nuclear and electron charge in atom m. In

particular, the M-D partial atomic charges are:

δMD
m = Zm −

∑
µ∈m

qMD
µ . (17)

In these examples we calculate the electron density ρ(r), eq. (1), by means of a DFT

Kohn-Sham calculation, using the LDA exchange-correlation functional and a basis set with

ss∗ atomic-like orbitals in the H atoms and spd atomic-like orbitals in F, O, N and C;

these orbitals are obtained from atomic calculations for neutral atoms with the boundary

condition that the orbitals vanish at a distance of Rc = 6 a.u.41,42 Tables 1-4 also show some

representative values for the atomic charges, taken from other calculations,13,18,19,43–46 using

the HIR,4 AIM-QT,20 ESP,10 and CM518 methods. Also shown in these Tables are the δ0m

atomic charges that will be discussed below; these charges are derived from the M-D charges

introducing charge variations that are adjusted to reproduce the molecular dipole moments

including the effects of the intra-atomic dipoles.

Let us first compare the Mulliken and M-D results. First thing to notice is that the M-D

atomic charges are very different from the Mulliken ones, showing the very important effects
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of eq. (11). For example, the Mulliken partial charge for the C atom in the CH4, H2CO,

CH3OH and CH3NH2 molecules is -1.50, -0.59, -1.13 and -1.06 (in elementary charge units,

+e), respectively, to be compared with -0.18, -0.02, -0.06 and -0.01 for M-D. In general, the

M-D atomic charges are significantly smaller (in absolute value) than the Mulliken charges,

and follow the intuitive chemical trends based on the electronegativities of the atoms. Also,

notice that the M-D charges are quite similar to the HIR charges, the most significant

differences (∼ 0.16 e) appearing for H2CO, a molecule that presents very large intra-atomic

dipoles, see below. A comparison between the different results in Tables 1-4 shows that the

largest variations between the different methods appear for the C atoms. In this respect,

both the HIR and M-D methods yield small partial charges for the C atoms in the CH4,

H2CO, CH3OH and CH3NH2 molecules, a result in accord to the chemical intuition. In a

recent work19 different properties related to the atomic charges were analyzed and it was

concluded that the HIR method is the more satisfactory one of those tested. Thus, the

similarity of the M-D and HIR charges, together with the physical arguments presented

above in the derivation of the M-D charges, suggest that the M-D (and HIR) atomic charges

are good tools for the conceptual understanding and rationalization of chemical processes.

For practical applications, e.g. force fields molecular mechanics simulations or semi-

empirical methods, it is important to have a good description of the dipole moments in

order to properly model the electrostatic interactions. In many cases intra-atomic dipoles

are an important contribution to the dipole moments. We analyze next the relation between

the total dipole moment, M-D charges and intra-atomic dipoles. This analysis allows us to

introduce charge variations to the M-D atomic charges so that the resulting atomic charges,

δ0m, replicate the total dipole moment of the molecule, yielding also a good description of the

local charge and dipole moments in the different functional units that make up the molecule.
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Total dipole, intra-atomic dipoles and M-D atomic charges.

The total dipole moment of a molecule is the sum of the contributions of the nuclear charges,

Zm, and the electron density:

∆T = ∆Z + ∆E =
∑
m

Zm Rm −
∫

r ρ(r) d3r. (18)

The term due to the electron density can be written in terms of the density matrix P as:

∆E = −
∫

r ρ(r) d3r = −
∑
µν

PνµDµν −
∑
µν

PνµSµν

(
Rn + Rm

2

)
. (19)

Since the M-D charges already include the contributions of the dipole moments along the

bond directions of all overlap charges, the total dipole moment can be written as (see S.I.):

∆T =
∑
m

δMD
m Rm +

∑
m

∆0
I,m + δ∆, (20)

where δMD
m is the M-D partial charge in atom m, eq. (17), ∆0

I,m is the intra-atomic dipole

in atom m,

∆0
I,m = −

∑
µ,µ′∈m

Pµ′µDµµ′ , (21)

and δ∆ the ”residual” dipole associated with the dipole moments perpendicular to the bond

directions:

δ∆ = −
m 6=n∑
µν

Pνµ
(
Dµν −D‖µν

)
= −

m 6=n∑
µν

PνµD
⊥
µν ; (22)

D
‖
µν and D⊥µν are the components of Dµν parallel and perpendicular to the bond direction,

umn. In practice, this contribution can be projected into the intra-atomic dipoles, renormal-

izing them as follows:

∆I,m = ∆0
I,m −

∑
µ∈m

n6=m∑
ν

1

2

(
PµνD

⊥
νµ + D⊥µνPνµ

)
. (23)
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This finally yields

∆T =
∑
m

δMD
m Rm +

∑
m

∆I,m. (24)

In this equation the total dipole is written as a sum of two atomic contributions, one as-

sociated with the M-D partial atomic charges, δMD
m , and the other due to the intra-atomic

dipoles ∆I,m. A similar expression can be found in the context of HIR PA.4,39,44

In general, the intra-atomic dipoles are an important contribution to the total dipole

moment. Tables 5, 6, and Tables S1, S2 in the S.I. show the different contributions to

∆T , eq. (20), in our test calculations for the HF, H2O, NH3, H2CO, CH3OH and CH3NH2

molecules.47 For example, the intra-atomic dipole in the O atom in the H2O molecule is 0.73

D, out of a total dipole of 1.77 D. A more extreme situation is found for formaldehyde (Table

6), with a very large dipole moment in the C atom (2.37 D), in the opposite direction than

the total dipole moment of the molecule; the intra-atomic dipole in the O atom is also large

(-1.17 D). As another example, the intra-atomic dipole moment in the C atom in methanol

(Table S2) has a magnitude of 1.19 D, with a very different orientation than ∆T (angle of

∼ 2π/3). These Tables also show how δ∆ is incorporated into the intra-atomic dipoles ∆I,m

using eq. (23).

It is clear that, in principle, intra-atomic dipoles should be considered explicitly for an

accurate description of the electrostatic interactions in atomistic simulations. In many ap-

plications, however, the charge density of the molecule is approximated as a sum of partial

atomic charges, δ0m, placed at the atomic positions Rm (the so called distributed monopole

approximation). This is a very attractive approach for e.g. force-fields molecular mechan-

ics simulations due to the simplicity of its practical implementation. Different methods

have been developed to incorporate the effects of the intra-atomic dipole moments into the

partial atomic charges, such as the CMx family (x= 1-5)17,18,34–36 or the dipole-preserving ap-

proach.37–39 These effects are implicitly incorporated in the ESP methods that derive partial

atomic charges from the fitting of the electrostatic potential in some region of space.

Eq. (24) offers an alternative approach to derive physically motivated δ0m charges that

10



replicate the total dipole of the molecule:

∑
m

δ0m Rm = ∆T , (25)

using the idea of locally distributed dipole-preserving charges.38 In this approach, charge

variations, dqmk , are introduced to include the contribution from the intra-atomic dipoles,

∆I,m =
∑
k

dqmk Rk , (26)

with the condition that ∑
k

dqmk = 0 . (27)

Ideally, the electrostatic potential due to ∆I,m should be associated to atomic charges close

to atom m. Thus, the dqmk are minimized in a least square sense, using weighting functions

that depend on the interatomic distances, wmk = eλ|Rk−Rm|2 , so that dqmk are small (in

absolute value) and are localized close to atom m (in this work we have used λ = 1 Å−2).38

The partial δ0m charges are then obtained as

δ0m = δMD
m +

∑
k

dqkm. (28)

At variance with the original proposal, we use here δMD
m as initial charges, and ∆I,m for the

intra-atomic dipoles in eq. (26). In this way, the total dipole of the molecule ∆T , eq. (18), is

exactly reproduced by the charges δ0m. The atomic charges δ0m obtained with this approach

are shown in the the last row in Tables 1-4. These charges are in general quite similar to the

ESP and CM5 atomic charges. Interestingly, in the cases where there is a larger difference

between ESP and CM5 atomic charges, e.g. the C atoms in H2CO, CH3OH or CH3NH2,

the dipole-preserving M-D charges δ0m present an intermediate value between the CM5 and

ESP atomic charges. In similarity to the M-D atomic charges, the dipole-preserving M-D

atomic charges δ0m also follow the expected chemical trends. Notice that the δMD
m atomic
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charges already incorporate the local dipole moments (along the bond directions) and the

dipole-preserving approach in eqs. (26) and (28) introduces the remaining dipolar effects,

see eq. (24), also in a local fashion. Thus, it is to be expected that the atomic charges δ0m

in eq. (28) provide a good description of the local partial charges and local dipole moments

in the different functional groups that make up the molecule. We conclude that eq. (28) is

a very promising approach to derive atomic charges for atomistic simulations.

In summary, we have presented the Mulliken-Dipole PA in which the arbitrary half-and-

half partition of the overlap populations is replaced by the physical condition of conservation

of the monopole moment and dipole moment along the the bond direction of the overlap

densities. Test calculations show that this approach yields very reasonable atomic charges

that follow the expected chemical trends and are also quite similar to the Hirshfeld atomic

charges. We have also discussed how this approach can be applied to determine atomic

charges, δ0m, appropriate for applications in e.g. force field molecular mechanics simulations

or semiempirical methods. We finally comment that the Mulliken-Dipole atomic charges are

conceptually appealing and are very easy to calculate, offering a great compromise between

simplicity and accuracy.
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Figure 1

Figure 1: Geometry of the formaldehyde (a), methanol (b) and methylamine (c) molecules.
Atoms in white, grey, blue and red correspond to H, C, N, and O, respectively. The different
H atoms are indicated.

13



Tables

Table 1: Mulliken-Dipole (M-D), Mulliken (M), Löwdin (L), Hirshfeld (HIR), Atoms-in-
Molecules-Quantum-Theory (AIM-QT), CHELPG (ESP), CM5 and dipole-preserving M-D
(δ0m) partial atomic charges δH (in elementary charge units, +e) in the H atoms for the HF,
H2O, NH3 and CH4 molecules, see text.

HF H2O NH3 CH4

M-D 0.29 0.16 0.10 0.04
M 0.57 0.48 0.42 0.37
L 0.41 0.35 0.30 0.25

HIR18 0.22 0.16 0.10 0.03
AIM-QT43 0.78 0.63 0.35 -0.04
ESP13,19 0.45 0.34 0.29 0.10
CM518 0.29 0.32 0.28 0.08

δ0H 0.40 0.31 0.26 0.04

Table 2: Same as Table 1 for the partial atomic charges δm in the different atoms for the
formaldehyde molecule, H2CO, see Figure 1a.

O C H1 H2
M-D -0.39 -0.02 0.21 0.21
M -0.27 -0.59 0.43 0.43
L -0.12 -0.45 0.28 0.28

HIR18 -0.23 0.14 0.05 0.05
AIM-QT44 -1.11 1.04 0.04 0.04
ESP (C)18 -0.45 0.51 -0.03 -0.03

CM518 -0.29 0.08 0.11 0.11

δ0m -0.27 0.17 0.05 0.05
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Table 3: Same as Table 2 for the partial atomic charges δm in the different atoms for the
methanol molecule, see Figure 1b.

H1 H2 / H3 C H4 O
M-D 0.07 0.05 -0.06 0.26 -0.37
M 0.39 0.37 -1.13 0.51 -0.52
L 0.31 0.29 -0.87 0.41 -0.43

HIR44 0.03 0.03 -0.01 0.16 -0.24
AIM-QT44 0.01 0.01 0.49 0.54 -1.07

ESP44 0.00 0.00 0.23 0.39 -0.61
CM545 0.09 0.09 -0.14 0.34 -0.48

δ0m 0.09 0.00 0.05 0.40 -0.55

Table 4: Same as Table 2 for the partial atomic charges δm in the different atoms for the
methylamine (CH3NH2) molecule, see Figure 1c.

C N H1 H2 / H3 H4 / H5
M-D -0.01 -0.29 0.01 0.02 0.13
M -1.06 -0.76 0.35 0.33 0.40
L -0.94 -0.69 0.28 0.31 0.36

HIR44 -0.04 -0.22 0.03 0.03 0.10
AIM-QT46 0.62 -1.17 -0.08 -0.05 0.36

ESP46 0.42 -0.94 -0.10 -0.03 0.34
CM545 -0.15 -0.68 0.09 0.09 0.28

δ0m 0.02 -0.75 0.00 0.05 0.31
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Table 5: Molecular dipoles (in Debye) for the HF, H2O and NH3 molecules: the total
dipole, ∆T ; the dipole due to the M-D partial atomic charges, ∆Q =

∑
m δ

MD
m Rm; the

intra-atomic dipoles ∆0
I,m in the F, O or N atoms; and the residual dipole δ∆. Notice that

∆T = ∆Q + ∆0
I,m + δ∆.

HF H2O NH3

∆T 1.75 1.77 1.45
∆Q 1.29 0.90 0.55

∆0
I,m 0.47 0.73 0.61
δ∆ 0.00 0.13 0.29

Table 6: Cartesian X, Y, Z dipole components (in Debye) for the H2CO (formaldehyde)
molecule in the geometry shown in Figure 1a: ∆T is the total dipole, eq. (18); ∆Q =∑

m δ
MD
m Rm is the dipole due to the M-D partial atomic charges; ∆0

I,C and ∆0
I,O are the

intra-atomic dipoles, eq. (21), for the C and O atoms; δ∆ is the residual dipole, eq. (22).
∆I,C , ∆I,O, ∆I,H1 and ∆I,H2 are the renormalized intra-atomic dipoles, eq. (23).

X Y Z
∆T 0.00 0.00 -1.80
∆Q 0.00 0.00 -3.44
∆0

I,O 0.00 0.00 -1.17
∆0

I,C 0.00 0.00 2.37
δ∆ 0.00 0.00 0.44

∆I,O 0.00 0.00 -0.99
∆I,C 0.00 0.00 2.41
∆I,H1 0.00 0.18 0.11
∆I,H2 0.00 -0.18 0.11
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