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ABSTRACT:  Despite its widespread use in chemical discovery, approximate density functional 
theory (DFT) is poorly suited to many materials targets, such as those containing open-shell, 3d 
transition metals that can be expected to have strong multireference (MR) character. For DFT 
workflows to be predictive, we must incorporate automated, low cost methods that can 
distinguish the regions of chemical space where DFT should be applied and where it should not. 
We curate over 4,800 open shell transition metal complexes up to hundreds of atoms in size from 
prior high-throughput DFT studies and evaluate affordable, finite-temperature DFT evaluation of 
fractional occupation number (FON)-based MR diagnostics. We show that intuitive measures of 
strong correlation (i.e., the HOMO-LUMO gap) are not predictive of MR character as judged by 
FON-based diagnostics. We train independent machine learning (ML) models to predict HOMO-
LUMO gaps and FON-based diagnostics. ML model analysis reveals differences in metal- and 
ligand-sensitivity of the two quantities, suggesting opportunities to minimize MR character while 
tailoring the gap. We use our trained ML models to rapidly evaluate MR character over a space 
of ca. 187,000 theoretical complexes, identifying large-scale trends in spin-state-dependent MR 
character and discovering small HOMO-LUMO gap complexes with low MR character. 
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 High-throughput computational screening is essential in the discovery of new molecules1-

5 and materials6-9. For these large-scale efforts6, density functional theory (DFT) with a few 

approximate exchange-correlation functionals is nearly exclusively employed to ensure the low 

computational cost and ease of automation that study of thousands of molecules with tens to 

hundreds of atoms requires. Open-shell transition metal complexes that are promising catalysts4, 

10-16 and functional materials17-21 exemplify this outstanding challenge. These molecules can be 

tuned by variation of ligand chemistry that influences ground state spin and oxidation state5, 22, 

motivating large-scale, high-throughput screening for their design5, 23-24.  

 In small-scale studies, careful benchmarking of the computational method is possible25-28, 

including the detection of strong correlation that motivates using multireference (MR) electronic 

structure theories29-31. However, high-scaling methods are impractical in conjunction with large-

scale screening  and have been limited to small organic molecules32-33. The development of 

machine learning (ML) property prediction models23, 34-38 and interatomic potentials39-43 

compounds these challenges, both by motivating the generation of large datasets and by 

magnifying the impact of electronic structure biases when they are learned by an ML model. 

  Indeed, first-row open-shell transition metal complexes with nearly-degenerate 3d 

orbitals can be expected to be strongly correlated.25-27, 44-45 Here, approximate DFT will fail46-49, 

and the accurate treatment of dynamic and static correlation in larger transition metal complexes 

remains an active area of research29-31. For small, well-studied molecules (e.g., the chromium 

dimer50-53), the effects of strong correlation are understood, but in chemical discovery target 

complexes will lack literature precedent for guiding expectations of MR character. It is necessary 

to develop tools to detect strong correlation that can be integrated into existing DFT workflows 

at no greater complexity or computational cost in order to advance large-scale screening. 
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 While numerous MR diagnostics have been developed54-65, we focus on diagnostics63-65 

based on fractional occupation numbers (FONs) that can be obtained from computationally-

affordable finite-temperature DFT66 (FT-DFT). Since electron correlation can arise from both 

dynamical and non-dynamical (i.e., MR) effects67-69, Matito and coworkers63-64 have derived 

expressions for dynamical, ID, and non-dynamical, IND, contributions. The ID is computed from 

the occupation, n, of orbital i with spin σ as63-64:  

 ID =
1
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The non-dynamical contribution63-64, IND, is:  

 IND =
1
2

ni
σ

σ ,i
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σ )   (2) 

where larger IND values can be used as an indicator of MR character33, 63-64, 70. The ratio,67 rND, of 

the IND to the total correlation (i.e., ID+IND) has been proposed by Martin and coworkers as a 

size-intensive MR diagnostic:                       

 rND =
IND

ID + IND
  (3) 

Although rND is not strictly bounded, larger values are indicative of strong MR character.33, 67 

 Grimme and coworkers have developed the closely-related fractional occupation density 

(FOD)65: 

 ρFOD = (δ1 −δ 2ni
σ ) |φi

σ (r) |2
σ ,i
∑   (4) 

where φi
σ (r)  are molecular spin orbitals and δ1 and δ2 are constants (i.e., below the Fermi level: 

δ1 = δ2 = 1, above the Fermi level: δ1 =0, δ2 = -1). The integration of ρFOD over all space yields 

NFOD, a size-extensive number for quantifying non-dynamical correlation. We focus on the size-

intensive rND, and we demonstrate our approach is general both to size-extensive, FON-based 
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diagnostics (i.e., IND, NFOD) and approximately size-intensive quantities obtained from 

normalization by the number of valence electrons, nve (i.e., IND/nve and NFOD/nve).  

 While FON-based diagnostics have demonstrated promise65, 70 in quantitative prediction 

of MR character in studies of small sets of transition metal complexes, they have yet to be 

incorporated in large-scale, high-throughput screening to provide guidance about when single-

reference methods are suitable. We thus first curated a diverse set of 4,865 mononuclear 

octahedral transition metal complexes from six prior studies71-76 and rapidly assessed their MR 

character with FON-based diagnostics. We leveraged converged geometries and wavefunctions 

from fixed-occupation DFT for the FT-DFT66 calculation of FON-based diagnostics, accelerating 

MR character determination (see Computational Details). All complexes contain a mid-row 

transition metal in one of two oxidation states (i.e., M(II)/M(III) where M = Cr, Mn, Fe, or Co) 

in its high spin (HS) or low spin (LS) state (see Computational Details). Over all sets considered, 

the metals and spin states are evenly distributed, with only somewhat fewer Cr complexes 

(Figure 1). 

Figure 1. Statistics of different properties of the octahedral complexes in the datasets studied in 
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this work (MD1, MD2, and the two component datasets, LRX and OHLDB, included in MD2 but 
absent in MD1). (top) Schematic of octahedral transition metal complex illustrating possible 
unique ligands (one equatorial ligand type, Leq, and up to two axial ligand types, Lax1 and Lax2) 
and representative ligands in different datasets. Ligand atoms that coordinate the metal are 
shaded with translucent circles colored by element: red for oxygen, blue for nitrogen, orange for 
phosphorus, yellow for sulfur, gray for carbon, cyan for fluorine, and purple for iodine. (bottom, 
left) Bar graph showing the metal center identity and spin state (HS: dark gray, LS: light gray) of 
the complexes in MD1 and MD2. (bottom, center) Kernel density estimation (KDE) of the one-
dimensional distribution of the size of complexes in MD1, LRX, and OHLDB. (bottom, right) 
Clustered bar graph comparing the distribution of the direct connecting atom identity (X 
indicates any halide) in MD1, LRX, and OHLDB.  

 We distinguish a 2,305-complex subset (MD1) from four of the studies71-74, which are all 

small to mid-sized complexes constructed from common ligands in inorganic chemistry 

originally to study their spin71-72, 74 or redox73 properties (Figure 1 and Supporting Information 

Table S1). The MD1 complexes are around 50 atoms in size and primarily contain first-row (i.e., 

C, N, or O) coordinating atoms (Figure 1 and Supporting Information Table S1). To form the 

4,865-complex MD2 dataset, we add to MD1 two sets: i) complexes of enumeratively generated 

ligands (OHLDB76) and ii) large bidentate redox (LRX75) complexes (Figure 1 and Supporting 

Information Tables S1–S2). The OHLDB complexes are smaller (ca. 25 atoms) and have more 

diverse coordinating atoms and bonding than in MD1, whereas the LRX complexes are much 

larger (i.e., up to 200 atoms) but with fewer coordinating atom types and more uniform bonding 

(Figure 1 and Supporting Information Table S1). While MR character for the more common 

MD1 complexes could be informed by prior experiment or computation, this would not be 

possible for the additional complexes in MD2. 

Over the MD1 dataset, the rND values span a large range (0.10-0.66), suggesting a 

significant variation in the extent of strong correlation, although all complexes are derived from 

common ligands (Figure 2). The MD2 dataset has a comparable rND range, despite its greater 

diversity in both ligand chemistry and complex size (Supporting Information Figure S1). The 

size-extensive diagnostics (i.e., IND and NFOD) differ significantly between MD1 and MD2, but 
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the comparable behavior of both rND as well as nve-normalized quantities (i.e., IND/nve and 

NFOD/nve) support our focus on a size-insensitive diagnostic (Supporting Information Figures S2– 

S5).    

 
Figure 2. Scatter plot of the 2D distribution of HOMO-LUMO gap (eV) and rND values for 
octahedral complexes in MD1. The circle symbols are colored by the number of atoms in the 
complex, as indicated in inset colorbar. One-dimensional histograms of gap and rND are aligned 
with the axes of the scatter plot. Vertical and horizontal dashed lines indicate two standard 
deviations around the mean of gap or rND. The correlation between rND and gap is indicated with 
the gray dashed slope (R2=0.413). The gray shaded region indicates complexes with HOMO-
LUMO gaps in the range of 4.48 ± 0.25 eV, where the complexes with highest (LS CrII(NH3)6) 
and lowest (HS MnII(misc)4(H2O)(CO)) rND values are labeled with dark outline along with 
structures shown in the insets. 

 

Although FON-based diagnostics are relatively cheap to compute, one might expect it to 

be straightforward to predict MR character from fixed-occupation DFT calculations, e.g., by the 

size of the gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO-

LUMO gap). The HOMO-LUMO gaps indeed span a wide range (0-7 eV) over the MD1 set, but 

they only have a weak correlation (R2=0.41) to the rND diagnostic (Figure 2). Still, the 

relationship follows expectations, with the smallest HOMO-LUMO gap complexes having more 

MR character (i.e., higher rND) than the complexes with the largest HOMO-LUMO gaps. 
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Nevertheless, this relationship worsens over the diverse MD2 set, in which the HOMO-LUMO 

gap and rND ranges are comparable to MD1 but the correlation is even weaker (R2=0.17) between 

the two quantities (Supporting Information Figure S1). We might expect this is due to greater 

size-dependence for the HOMO-LUMO gap than rND, but correlations for both sets are still weak 

(R2 < 0.6) with size-extensive (i.e., IND, NFOD) MR diagnostics (Figure 2 and Supporting 

Information Figures S2, S4, and S6 and Table S3).  

Given the poor relationship between the HOMO-LUMO gap and MR character, we 

defined ranges of small (i.e., 0.88 ± 0.25 eV) and large (i.e., 4.48 ± 0.25 eV) gap values over 

which we identified what gives rise to low or high MR character in MD1. Many of the 276 large-

gap complexes have the expected low rND, including a HS MnII(misc)4(H2O)(CO) with an rND 

value (0.13) in the bottom 2% for MD1 (Figure 2). Conversely, LS CrII(NH3)6 has the highest rND 

(0.66) in all of MD1, despite its large HOMO-LUMO gap, suggesting that LS Cr complexes 

might have especially high MR character (Figure 2). For the 66 small HOMO-LUMO gap MD1 

complexes, both the expected high rND values are observed (i.e., LS MnIII(H2O)5(furan), rND = 

0.60) but unexpectedly low MR character is as well  (i.e., LS MnIII(pisc)6, rND = 0.27, Figure 2). 

While we may expect MR character to be dictated by HOMO-LUMO gap size, metal identity 

(e.g., Cr), or spin states (e.g., LS), exceptions are apparent, motivating the development of ML 

models capable of encoding these complex relationships. 

We trained ML (i.e., artificial neural network, ANN, and kernel ridge regression, KRR) 

models to independently predict FON-based diagnostics (e.g., rND) and frontier orbital energetics 

(i.e., the HOMO level and HOMO-LUMO gap) (see Computational Details and Supporting 

Information Text S1). We used revised autocorrelation (RAC)77-78 functions as input features, 

which have previously been demonstrated for predictive, geometry-free estimation of frontier 
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orbital energies to good (ca. 0.1-0.2 eV) accuracy (Supporting Information Text S2).73, 77 RACs 

are products and differences on the molecular graph of heuristic properties (i.e., topology, 

identity, nuclear charge, covalent radius, or electronegativity) of pairs of atoms a fixed number, 

d, of bonds apart (see Computational Details and Supporting Information Text S2). For the ML 

models trained on the MD2 dataset with RAC features, ANN model test MAEs (HOMO: 0.26 eV 

and HOMO-LUMO gap: 0.31 eV) are similar to those for MD1 or prior work10, 14 on MD1 

subsets, increasing only slightly despite being obtained on a much more diverse dataset (Figure 3 

and Supporting Information Table S4 and Figures S7–S8). 

 
Figure 3. ANN model performance for predicting rND (upper) and HOMO-LUMO gap (lower) 
for the MD2 data set. (left) Parity plots of actual vs predicted values for train (red filled circles) 
and test (blue filled circles) data points along with a black dotted parity line. (right) Distribution 
of absolute test set model errors for rND (unitless, bins: 0.005) and HOMO-LUMO gap (in eV, 
bins: 0.1 eV) with the MAE annotated as green vertical bars and the cumulative count shown in 
blue according to the axis on the right. 
 

It is not evident a priori if FON-based diagnostics that are derived from temperature-

dependent properties obtained with FT-DFT are as easily learned quantities as the fixed-

occupation DFT frontier orbital energies. Indeed, the ML model trained on MD2 to predict rND 

exhibits as good performance as for the HOMO-LUMO gap (Figure 3). The ANN test MAE for 

rND (0.018) corresponds to a smaller mean absolute percent error (3%) evaluated over the rND 
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range than for the HOMO-LUMO gap (4%) and represents a modest error in comparison to the 

variation over which we would distinguish a complex as having low (e.g., rND < 0.3) or high 

(e.g., rND > 0.5) MR character (Figure 3 and Supporting Information Table S4 and Figure S7). In 

comparison to predicting rND from a linear mapping to the HOMO-LUMO gap, the ANN 

prediction is vastly superior (linear: R2 = 0.456 vs ANN: R2 = 0.942) and test MAEs are 

significantly lower (Supporting Information Figures S9–S10 and Table S5).  

Beyond prediction accuracy, interpretation of the character of essential RACs provides 

insight77, 79 into why MR character (i.e., rND) and HOMO-LUMO gap differ among these 

transition metal complexes. To identify these essential features77, 79, we employ feature selection 

during KRR model training73, 77 and achieve KRR model errors similar to those obtained with 

ANNs (Supporting Information Tables S4, S6–S12, and Figures S11–S12). Analyzing MD1-

selected feature sets confirms that distinct properties are important in predicting rND (i.e., rND-28) 

with respect to those for predicting the HOMO-LUMO gap (gap-28) or HOMO level (Figure 4 

and Supporting Information Figure S13 and Tables S7–S8, S13–S15). Although the rND-28 and 

gap-28 feature sets are the same size, the gap subset contains a higher portion of global features 

(43%) than the rND subset (32%, Figure 4 and Supporting Information Tables S14–S15). 

Electronegativity-containing RACs are more crucial for predicting MR character (25% of rND-28 

vs 11% of gap-28) as is the metal nuclear charge, whereas global, covalent radius-containing 

features only present in gap-28 highlight the greater size-dependence of the HOMO-LUMO gap 

(Figure 4 and Supporting Information Tables S14–S15).  
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Figure 4. (upper) Pie charts of the features selected by RF-RFA on the MD1 data set for HOMO-
LUMO gap (gap-28, left) and the rND multireference diagnostic (rND-28, right). Features are 
grouped by the most distant atoms: metal in blue, first coordination sphere in red, second 
coordination sphere in green, third coordination sphere in orange, or more distant, global features 
in gray. The metal through second-coordination sphere properties are bounded by a solid black 
line. Within each distance category, the property (i.e., 𝜒, S, T, Z, or I) is also indicated, with 
oxidation/spin state (O) assigned as metal-local and ligand charge (L) assigned as global. (lower) 
HOMO-LUMO gap (eV) and rND values (unitless) illustrating the larger effect of metal identity 
on rND (left) and of non-local features on gap (right). Vertical and horizontal dashed lines 
indicate two standard deviations around the mean gap or rND for MD1. The representative 
complex structures are shown along with their symbol legends above the plots. 
 

Although over our datasets we had observed a weak correlation between the gap and MR 

character, these feature-selected subsets provide explicit design principles over MD1, i.e., to 

separately tailor the gap or MR character by focusing ligand-size-based vs metal-based 

properties. For example, the LS FeIII(CO)4(H2O)(misc) and CrII(CO)4(H2O)(misc) complexes 

differ only in their metal center and have comparable HOMO-LUMO gaps (Fe(III): 2.73 eV, 

Cr(II) 2.87 eV, Figure 4). This difference instead has a profound effect on MR character, with 
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the CrII complex having a high rND (0.55), whereas the FeIII complex rND (0.33) is lower (Figure 

4). Conversely, replacing water ligands with larger furan ligands in HS homoleptic FeIII or MnIII 

complexes has a modest effect on MR character (rND from 0.34 to 0.40 in FeIII) because the 

immediate coordinating environment is unchanged, whereas the increased ligand size reduces the 

gap substantially (FeIII: by 3.44 eV, Figure 4).  

To demonstrate the value of our approach in a context representative of chemical 

discovery efforts, we applied the trained gap and rND ANN models to a space of 187,200 

transition metal complexes. This space of theoretical complexes contains HS and LS M(II/III) 

(M = Cr, Mn, Fe, or Co) centers in complex with 36 unique ligands derived from the original 

MD1 dataset. Although all ligand identities were in the ANN training data, only 1% (1,836) of 

the complexes were, and thus the theoretical complexes have distinct properties (e.g., size and 

charge) from the original dataset (Supporting Information Tables S16–S18 and Figures S14–

S15).  

Over this large theoretical complex space, we investigate what the ML model has learned 

about how MR character is influenced by transition metal complex chemistry (i.e., spin state, 

metal, and ligand). Spin-state ordering calculations in particular are known to be sensitive to 

method choice79-85, especially due to lack of error cancellation between when the degree of 

correlation recovery differs between spin states30, 85-88. One might expect that LS states are more 

degenerate and thus have higher MR character than HS states, a trend observed in small studies 

of organic molecules68, 89 and some first-row transition metal complexes.85  

Although some metal centers in our large scale set follow this expectation, others do not. 

The Cr and Mn complexes exhibit an increase in MR character from HS to LS for both rND and 

other FON-based diagnostics, whereas Fe and Co complexes have limited spin-state dependence 
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(Figure 5 and Supporting Information Figures S16–S21). For the HS complexes in either 

oxidation state, all metals have comparable diagnostic (e.g., rND) distributions, suggesting the 

HS-LS MR character difference for Cr/Mn arises primarily from increased LS MR character 

(Figure 5 and Supporting Information Figures S17–S21). Indeed, for the Cr/Mn complexes with 

the greatest HS-LS MR character difference, the LS rND is very high while the HS rND is only 

somewhat lower than the overall average (Supporting Information Figure S22). The ligands that 

most frequently appear in these complexes are small, sometimes charged species (e.g. NH3, OH-, 

and S2-, CN-) with intermediate field strengths (Supporting Information Figure S17). Although 

MR character is strongly spin-state- and metal-dependent, subtle differences in chemistry can 

also distinguish ligands that frequently occur in low-MR character complexes (e.g., NH2CH3) 

from those (e.g., NCO-) in complexes with high MR character (Supporting Information Figures 

S23–S24). 

 
Figure 5. Normalized probability density distribution of rND (unitless, bin size 0.0167) as 
predicted by the ANN for the 93600 M(II) complexes (M=Cr, Mn, Fe, Co) in the full compound 
space. There are 11700 complexes for each M(II) spin state. The histograms are colored by spin 
(red for low spin, LS, and blue for high spin, HS). The median of each distribution is indicated 
by a vertical line with the same corresponding color.  
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Within this theoretical space of complexes, these independent ML models also make it 

possible to target optimal DFT properties (e.g., for the HOMO-LUMO gap) while avoiding 

regions of chemical space with high MR character. Over the theoretical space the ML-model-

predicted MR character and HOMO-LUMO gap vary widely but are again weakly correlated 

(Supporting Information Figures S25–S29). These trends are expected to be robust because ANN 

model test errors are modest, but we focus on low uncertainty points in the theoretical space as 

quantified by those with the smallest distances in ANN model latent space90 (Supporting 

Information Text S3 and Figures S30–S31). 

Since small HOMO-LUMO gap complexes are expected68, 91 to have strong MR 

character, we identify the chemical motifs that break this relationship (Figure 6). For the 

complexes with small HOMO-LUMO gap (< 1 eV) and below average MR character (rND < 0.3) 

that the ANN model identifies with low uncertainty, clear patterns emerge (Figure 6).  One in 

three (134 of 403) of these target complexes are from the same family of HS CoIII or MnIII 

complexes with equatorial substituted-pyridine ligands and axial weak field ligands that thus all 

reside in a narrow region of the complex space (Figure 6 and Supporting Information Tables 

S19–S20 and Figures S32–S33). Conversely, nearby complexes (e.g., with strong field equatorial 

carbonyl) also have small gaps but instead have relatively high MR character (Figure 6 and 

Supporting Information Figure S34 and Table S21). In the future, these ANN models could be 

paired with optimization strategies72, 75, 92-93 for the continued discovery of safe islands of optimal 

DFT properties, low MR character, and high ML model confidence from new, even larger spaces 

of theoretical transition metal complexes. 
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Figure 6. Properties of the full compound space colored by ANN predicted rND (left, unitless) 
and HOMO-LUMO gap (right, ΔEg in eV). (top) The 1D histograms of rND and HOMO-LUMO 
gap are aligned with the respective color bars, with the target design zone (rND <0.307, the mean 
of MD1, HOMO-LUMO gap < 1 eV) shaded in green. (bottom) The t-distributed stochastic 
neighbor embedding plots are shown with coloring as indicated in top inset color bar. The 
convex hull of a family of 3744 octahedral complexes with functionalized pyridinyl ligands 
indicated by a green polyhedron. Inset circles show a zoom of this convex hull with discrete 
complexes in circles: the 134 complexes within target ranges of rND and HOMO-LUMO gap and 
low distance in latent space (bottom 10%) to the ANN training data. (top, middle) Representative 
structures of the complexes in the convex hull with typical axial ligands are also shown. 
 

In summary, we have demonstrated a low-cost approach that can be integrated into 

current DFT high-throughput screening workflows for open shell transition metal complexes and 

materials. Over a curated set of nearly 5,000 open shell transition metal complexes from prior 

high-throughput DFT studies that ranged from tens to hundreds of atoms in size, we evaluated 

MR character from FON-based diagnostics. Since intuitive measures of strong correlation (i.e., 

the HOMO-LUMO gap) were not predictive of these FON-based diagnostics, we trained ML 

models to separately predict frontier orbital energies (i.e., the HOMO-LUMO gap) and FON-

based diagnostics. Models trained to predict these finite-temperature-derived FON-based 

diagnostics were as predictive as models trained to predict fixed-occupation DFT properties. 

Analysis of the important features for model prediction revealed that MR character is more 

metal-sensitive, whereas the HOMO-LUMO gap is more ligand-sensitive. We used these 
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principles to identify opportunities for tailoring the two quantities independently. We 

demonstrated the promise of our ANN models for chemical discovery efforts by evaluating MR 

character over a space of over 187,000 theoretical complexes, identifying large-scale trends in 

spin-state-dependent MR character, and discovering small HOMO-LUMO gap complexes with 

low MR character. We expect this approach to be valuable both in the practical goal of 

identifying where DFT-level workflows are sufficiently robust and in discovering strongly 

correlated molecules as test cases for more advanced electronic structure methods.  

 Computational Details 

 Datasets and calculations. We curated a dataset of 4,865 mononuclear octahedral transition 

metal complexes generated in six prior studies71-76 using fixed-occupation DFT geometry 

optimizations in TeraChem94-95 automated with molSimplify96-97. All sets used the same high-

spin (HS) and low-spin (LS) multiplicity definitions in mid-row M(III)/M(II) complexes as 

follows: quintet-singlet for both d4 Mn(III)/Cr(II) and d6 Co(III)/Fe(II), sextet-doublet for d5 

Fe(III)/Mn(II), and quartet-doublet for both d3 Cr(III) and d7 Co(II).  

 We automated the calculation of FT-DFT66 MR diagnostics63-65 (e.g., rND and NFOD) with 

MultirefPredict67 and the QCEngine98 interface to TeraChem94-95 on the curated structures from 

prior work. For consistency, all DFT calculations employed the B3LYP99-101 hybrid functional 

with LANL2DZ102 effective core potentials for the transition metals, I, or Br and the 6-31G* 

basis for the remaining atoms. Level-shifting103 was used in unrestricted (i.e., non-singlet) 

calculations with a uniform 0.25 a.u. value for FT-DFT and most prior fixed-occupation DFT 

calculations (Supporting Information Table S22). The FT-DFT calculations employed the 

recommended104 temperature for B3LYP (9000 K) with Fermi–Dirac smearing and were 

initiated from fixed-occupation DFT wavefunctions71-76 when available (Supporting Information 

Text S4 and Tables S22–S23).  
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All complexes were filtered prior to analysis and ML model training in a four-step 

process. Complexes for which finite-temperature DFT calculations did not converge were first 

eliminated followed by those with positive (i.e., unbound) or unreported majority-spin HOMO 

levels from fixed-occupation DFT (Supporting Information Text S4 and Table S24). Geometries 

were next checked73 for preserved connectivity and quality, and, lastly, high broken symmetry 

fixed-occupation DFT (i.e., with <S2> deviations from S(S+1) > 1) results were excluded 

(Supporting Information Table S25 and Table S24).  

ML models. KRR and ANN models were trained on all 151 RACs (i.e., 42d+30 with a cutoff of 

d = 3 after elimination of invariant RACs) along with three overall (i.e., oxidation state, denticity 

and total charge)77 complex features as well as feature-selected subsets (Supporting Information 

Text S2). Hyperparameter optimization for all models was carried out with Hyperopt105 using a 

random 80% train/20% test split, with 20% of the training set (16% overall) set aside as the 

validation subset for hyperparameter selection. Input features and outputs were normalized over 

the training set to have zero mean and unit variance. As in prior work73, KRR model feature 

selection was carried out with random forest106-ranked recursive feature addition (RF-RFA)107. 

With each feature addition, the KRR model was trained (i.e., to select regularization strength and 

kernel width) and judged on the KRR model R2 for the validation set. RF-RFA was stopped 

when no improvement of R2 was observed. Final KRR models were implemented in scikit-

learn108, trained on the full (80% overall) training set, and tested on the 20% test set (Supporting 

Information Table S26). 

Fully-connected ANN models were trained using Keras109 with TensorFlow110 as the 

backend and Hyperopt105 for hyperparameter selection (Supporting Information Table S27). The 

ANN model was trained with batch optimization for 1000 epochs with early stopping when no 
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more performance improvement was observed, and we again71 included dropout 

regularization111-112 to avoid overfitting (Supporting Information Table S28). The optimal ANN 

topology for all models consisted of 512 nodes per layer with two (i.e., for the HOMO level) to 

three (i.e., for HOMO−LUMO gap and rND) three hidden layers (Supporting Information Table 

S28).  
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optimal features for HOMO level prediction of MD1; statistics on HOMO-52, gap-28, and rND -
28 feature sets; ligands used for building the theoretical complex space; allowed ligand 
combinations and spin/oxidation combinations in the theoretical complex space; distribution of 
sizes in the theoretical complex space; distribution of theoretical space M(III) rND values; 
difference of theoretical space HS and LS rND values; distribution of theoretical space 
M(II)/M(III) IND, IND/nve, NFOD, and NFOD/nve values; contributions to high HS-LS rND difference 
complexes; ligand types in the top 5% and bottom 5% of rND in the theoretical complex space; 
correlation between gap and MR diagnostics (rND, IND, NFOD, IND/nve, NFOD/nve) for 187k 
theoretical complexes; details of latent space distance evaluation; distribution of gap latent space 
distances and rND latent space distances over theoretical space; ligands in the target leads inside 
the convex hull of theoretical space; metals in the target leads inside the convex hull of 
theoretical space; the rND distribution and HOMO-LUMO distribution of target leads inside the 
convex hull; convex hull compounds with large rND; attributes of ligands in convex hull 
compounds with large rND; summary of size of data sets after each stage of refinement; 
additional details about finite-temperature calculations; number of core orbitals for different 
elements; summary of wavefunction related information for each dataset; geometry check cutoffs 
for data refinement; optimal hyperparameters for KRR models in this work; hyperspace for ANN 
hyperparameter optimization; optimal hyperparameters for ANN models in this work. (PDF) 
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Total energies in fixed-occupation and finite-temperature DFT, MR diagnostics, and orbital 
energies in fixed occupation-DFT of all molecules in the six raw datasets and the refined datasets 
MD1 and MD2; list of molecules eliminated during MD2 set curation; list of molecules in MD2 
lacking fixed-occupation DFT wavefunction information from previous studies; ANN predicted 
MR diagnostics and orbital energies for the design space; list of unique ligands in MD1 and 
MD2; the ANN and KRR models trained on MD1 and MD2 training set; geometries of all 
molecules in MD2 (ZIP) 
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