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Abstract 

The use of data science tools to provide the emergence of nontrivial chemical features for catalyst design 

is an important goal in catalysis science. Additionally, there is currently no general strategy for 

computational homogeneous, molecular catalyst design. Here we report the unique combination of an 

experimentally verified DFT-transition-state model with a random forest machine learning model in a 

campaign to design new molecular Cr phosphine imine (Cr(P,N)) catalysts for selective ethylene 

oligomerization, specifically to increase 1-octene selectivity. This involved the calculation of 1-hexene:1-

octene transition-state selectivity for 105 (P,N) ligands and the harvesting of 14 descriptors, which were 

then used to build a random forest regression model. This model showed the emergence of several key 

design features, such as Cr–N distance, Cr–α distance, and Cr distance out of pocket, which were then used 

to rapidly design a new generation of Cr(P,N) catalyst ligands that are predicted to give >95% selectivity 

for 1-octene. 

 

 

 



Introduction 

Computational chemistry now plays an active role in molecular catalyst design and optimization 

by either testing chemical hypotheses or directly evaluating catalyst candidates.1 However, no general 

strategy for virtual catalyst design or optimization has emerged,2,3,12–14,4–11 and there are only a few cases of 

specific catalyst prediction followed by experimental realization.15–20 Due to the complex electronic 

structure of metal centers and ligands, one strategy for computational homogeneous, molecular catalyst 

design is to use quantum-mechanical methods to model transition states.21–27 While quantum-mechanical 

transition states can often replicate experiment and be used for catalyst prediction, it is not always 

straightforward to identify simple chemical features that control catalysis,28,29 especially for selectivity 

where small energy quantities can impart significant influence. In this type of scenario, a catalyst design 

workflow that combines quantum-mechanical transition state modeling with machine learning has the 

potential to reveal critical catalyst design features. 

We recently reported the development and use of a density functional theory (DFT) transition-state 

model that provided quantitative prediction of molecular Cr catalysts for controllable selective ethylene 

trimerization and tetramerization (Scheme 1).30 This selective catalyst design effort is important because 

the ubiquity of polyethylene resulting from robust Phillips31 and Ziegler-Natta catalysts32,33 has led to an 

increase in global need for linear α-olefin (LAO) polymerization comonomers.34 Additionally, these short-

chain LAOs, specifically 1-hexene and 1-octene, are used in the manufacture of plasticizers, lubricants, 

detergents, and plastomers/elastomers. Prior to our work, Sydora and co-workers reported a series of aryl 

and benzyl substituted phosphine imine (P,N) catalysts that experimentally produced only ~30% 1-octene.35 

In our computational catalyst design effort, we used the cationic high-spin transition-states TS1 and TS2 

shown in Scheme 1b to develop a linear correlation model between DFT computed values and experimental 

1-hexene:1-octene ratios. This allowed us to use transition-state calculations to computationally design a 

new general class of phosphine monocyclic imine Cr(P,N) catalysts where changes in the ligand structure 

control 1-hexene versus 1-octene selectivity (Scheme 1b). Experimental ligand and catalyst synthesis, and 

reaction testing, quantitatively confirmed our transition-state predictions. 



 

Scheme 1. a) Outline of Cr catalyzed selective ethylene oligomerization reaction conditions with targets of 

1-hexene and 1-octene. The catalyst involves a Cr metal center with phosphine and imine ligand 

coordination. MMAO is typically used to activate the pre-catalyst complex. b) Outline of using TS1 and 

TS2 as a selectivity model to design new monocyclic imine Cr(P,N) catalysts that are 1-hexene and 1-octene 

selective. c) The work presented here involves using our 1-hexene/1-octene transition-state selectivity 

model combined with machine learning models to reveal selectivity controlling features that are then used 

for virtual design new catalyst ligands. 

 

While our DFT transition-state model is practical, accurate, and successfully identified new ligands 

that were experimentally validated, it did not offer general catalyst design guidance to enhance 1-octene 

selectivity. Moreover, the interpretation of singular controlling transition-state features is unobvious since 

the energy difference between 1-hexene and 1-octene selectivity is relatively small. Therefore, we decided 

to combine our transition-state model with quantitative data science methods that can potentially provide 

the emergence of chemical features to enhance 1-octene selectivity. While machine learning and related 

multi-dimensional methods are beginning to be used for molecular catalyst design,36 there are currently no 

examples of an experimentally verified quantum-mechanical transition model merged with machine 

learning methods. Generally, data science approaches to molecular catalyst design emphasize ground-state 

properties of either pre-catalysts or ligands without metal centers. For example, Fey and Pringle developed 



databases of ground-state ligand properties37–42 that enabled the prediction and experimental verification of 

new fluorophosphine ligands for hydroformylation and hydrocyanation.43 Recently Denmark reported a 

workflow where a subset of a library of synthetically accessible catalysts are selected and tested. The data 

obtained was then used to train statistical learning models to optimize a chiral catalyst for thiol addition to 

N-acylimines.44 Machine learning methods have also been used to predict reaction barrier heights in 

heterogeneous catalyst applications.45–47 

Outlined in Scheme 1c, our approach reported here involves using DFT-computed transition-state 

features and selectivities for machine learning analysis. The analysis of >100 Cr(P,N) catalysts and 14 

molecular descriptors through machine learning regression algorithms with multifold cross validation 

resulted in a low root mean square error (RMSE) and emergence of three critical design elements to enhance 

1-octene selectivity. The utility of these machine-learning identified selectivity features was demonstrated 

by the design and calculation of several new ligands that are predicted to give >90% 1-octene selectivity. 

 

Results and Discussion 

Companies such as Shell, Ineos, Idemitsu, SABIC, and Chevron Phillips Chemical Company LP 

(CPChem) use metal-catalysed ethylene oligomerization to produce a wide distribution of LAOs from 1-

butene to 1-eicosene (C20).
48 CPChem was the first to commercialize a selective ethylene trimerization to 

1-hexene system using 2-ethylhexanoate Cr along with 2,5-dimethylpyrrole and aluminum co-activators.49 

Sasol later developed selective ethylene oligomerization technology that produces both 1-hexene and 1-

octene using a Cr-diphosphinoamine catalyst.50 However, an important and major unsolved challenge is to 

develop a general set of molecular catalysts and catalyst design principles that result in highly selective 

ethylene tetramerization to 1-octene. 

As discussed in the introduction, in our recent computational campaign, we developed a DFT 

transition-state model that provided quantitative prediction of molecular Cr(P,N) catalysts (Scheme 1).30 

This resulted in the computational design and experimental verification of a new general class of phosphine 

monocyclic imine Cr(P,N) catalysts where slightly more than 50% 1-octene was formed. Importantly, this 



DFT transition-state model is accurate and relatively fast to use. New ligands can be virtually screened by 

calculating the energies of transition-state conformation ensembles for TS1 and TS2 (Scheme 

1b),51,52,61,62,53–60 which can then be used in our linear correlation model to provide a predicted 1-hexene:1-

octene ratio for CPChem reaction conditions. While this DFT transition-state model is extremely useful, 

because it is a correlation model with small energy differences, it did not reveal general catalyst design 

principles that would easily lead to the design of extremely high 1-octene selectivity. Because our transition-

state selectivity model is accurate, this provided a platform for combining it with machine learning data 

science methods that can provide the emergence of general chemical features to enhance 1-octene 

selectivity for Cr(P,N) catalysts. To our knowledge, there has not been a previous report of combining an 

experimentally verified transition-state model with machine learning analysis as a workflow to design new 

catalysts. 

While machine learning is beginning to find significant application as a tool to aid organic 

synthesis,63,64,73,65–72 there are relatively few examples of machine learning applied to inorganic or 

organometallic reactions, especially heterogeneous45,74,83–86,75–82 and homogeneous catalysis.87,88 Recently, 

Kulik trained an artificial neural network to predict the high-spin to low-spin splitting energies of ~2700 

transition metal complexes.89 They also demonstrated the usage of a kernel ridge regression model for 

predicting spin-splitting, bond lengths, and redox potentials for a relatively large collection of transition 

metal complexes.90 Related, Corminbouef trained machine learning models to screen over 18000 potential 

homogeneous catalysts for the Suzuki-Miyaura C-C cross-coupling reaction.91 Sunoj used a combination 

of a neural network and random forest model to identify the regioselectivity of catalytic difluorination of 

alkenes.92 Brgoch screened over 100,000 compounds using a support vector machine regression to identify 

novel highly compressible metal materials,93 and Buehler used convolutional neural networks to search for 

new composite metal materials.94 Xin used artificial neural networks to identify heterogeneous metallic 

catalysts for CO capture and reduction.95 



With the success of previous machine learning studies predicting spin-splitting energies and redox 

potentials,89,90 we were relatively confident that one or more machine learning algorithms would perform 

well for our workflow. Similar to our previous computational studies,30 and computational assessments by 

McGuinness suggesting the good performance of M06L,51,52 we used the unrestricted M06L density 

functional96 for describing the electronic structure of Cr(P,N) catalysts. The UM06L/Def2-

TZVPP//UM06L/6-31G**[LANL2DZ] level of theory was combined with the SMD continuum model97 

for cyclohexane to estimate the free energies of TS1 and TS2  (see SI for computational details). In this 

transition state model, the relative free energies of TS1 and TS2 provide selectivity under the assumption 

of Curtin-Hammett type conditions. All transition-state structures were optimised, and vibrational 

frequencies were computed to verify the stationary points as first-order saddle points. Normal rigid-rotor 

harmonic oscillator approximations were applied with free energies at 1 atm and 298 K. Because the 

transition-state model is a linear correlation scheme, no temperature or pressure corrections were applied. 

All DFT calculations were performed using Gaussian 09.98 Machine learning analyses were performed 

using scipy,99 numpy,100 pandas101 and scikit-learn102 in Python 2.7. The source code is available in the SI. 

We used 105 unique (P,N) ligands in our transition-state training data set, which included 14 

experimentally measured ligands. Scheme 2 outlines these (P,N) ligands, which have a variety of different 

functional groups, but retain the phosphine and imine, or imine-like, ligand coordination for which the DFT 

transition-state model was developed. A major motivation in the selection of these 105 ligands was to 

further optimize the five-membered imine ring system we previously designed and to stay within the bounds 

of accuracy for our correlation model. As shown in Scheme 2, this set includes a variety of substituted 

heterocycles such as pyrrols, imidazoles, and oxazoles. In each of these cases we also examined their 

combination with alkyl, fluoroalkyl, aryl, and amido phosphines as well as phospholanes.  



 

Scheme 2. Outline of 105 unique (P,N) ligands in our transition-state training data set. These ligands were 

used to calculate selectivity based on TS1 and TS2. Transition-state features were then harvested from the 

electronic structure and geometries of TS1 and TS2. 

 



  

Figure 1. Descriptors extracted for machine learning analysis. a) Geometric descriptors and electrostatic 

charges. b) Definition of percent volume buried. c) Definition of distance out of pocket.  

 

14 atomic and molecular descriptors/features were extracted from TS1 and TS2 for each of the 105 

ligands shown in Scheme 2. Described in Figure 1, extracted features included geometric parameters such 



as bond lengths, angles, dihedrals, percent volume buried, and Cr metal center distance out pocket. Several 

electronic features were also harvested, such as electrostatic-based atomic charges. Percent volume buried 

describes the extent to which the first coordination sphere of the Cr metal center is occupied by a (P,N) 

ligand.103 The distance out of pocket describes the how far the Cr metal is situated from the (P,N) ligand. 

The Scikit-Learn python library was used to set up and train regressors on this transition-state data 

set, which was split into 25% training and 75% testing sets. Seven regression algorithms were tested 

including: random forest, Gaussian process regression, LASSO, elastic-net, ridge regression and support 

vector regression with both a linear and radial basis function kernel. Multifold cross validation was 

performed to protect against model overfitting common in small datasets. This random sampling was 

performed 10 times and 20-fold cross validation was used at each iteration to determine regression 

accuracy. The RMSE of each model determined using cross validation averaged across iterations is shown 

in Figure 2. 

 

Figure 2. Root mean square error (RMSE) for machine learning regression algorithms to quantitatively 

predict TS1 an TS2 energy differences using 14 atomic and molecular features. RF = random forest, 

LASSO = least absolute shrinkage and selection operator, GPR = Gaussian process regression, SVR = 

support vector regression. 

 

The machine learning regression algorithms were used to evaluate the use of the 14 atomic and 

molecular features to quantitatively correlate with the DFT calculated energy differences between TS1 and 

TS2. The RMSE of the regression algorithms ranged from 0.344 to 0.568 (Figure 2). The best performing 
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model was random forest (RMSE = 0.344) and the poorest performing model was elastic-net (RMSE = 

0.568). Unsurprisingly the LASSO and ridge algorithms, which are related to elastic-net, also performed 

poorly with RMSEs of 0.565 and 0.494, respectively. The performance of support vector regression 

improved by almost 10% when changing from a linear (RMSE = 0.491) to a radial basis function (RMSE 

= 0.408) kernel. Gaussian process regression performed comparable to SVR-rbf.  

Related to the top performance of random forest for our correlation of 1-hexene:1-octene ratios, 

Doyle reported that random forest outperformed linear models, SVR, k-nearest neighbor, and artificial 

neural networks at predicting yields of Pd-catalysed Buchwald-Hartwig cross-coupling of aryl halides with 

4-methylaniline.68 Also, for spin-splitting energies and bond lengths of transition metal complexes, Kulik 

achieved exceptionally low mean unsigned errors using random forest.90 Palmer et al. showed that random 

forest outperforms SVR and artificial neural networks in predicting the aqueous solubility of organic 

molecules.104  

Because the random forest algorithm performed well in our case, and the applications mentioned 

above, this algorithm was chosen for further hyperparameter optimization using the GridSearch CV method 

from SciKit-Learn. Different permutations of hyperparameters and five-fold cross validation were tested in 

order to determine the set of hyperparameters that maximized the performance of the model. The number 

of trees in each forest was varied from 20 to 210 and the trees were split from 5 to 125 times. Both mean 

signed error and mean absolute error were considered when determining the quality of each split and 

between three and 14 features were examined when considering the best split. The optimized random forest 

model was then re-fit to the training data to validate the hyperparameter optimization. The RMSE of the 

random forest model decreased from 0.344 to 0.272 after optimization. The RMSE of the 1-hexene to 1-

octene selectivities are 0.275 and 0.269, respectively. 

The top of Figure 3 plots the selectivities determined from the optimized random model are plotted 

against those determined from the DFT selectivity model. In our data set, overall 1-hexene selective (i.e. 

>50% 1-hexene vs. 1-octene) is labeled as a negative value and overall 1-octene selective is labeled as a 



positive value (i.e. >50% 1-octene vs. 1-hexene). The random forest model correctly predicted the overall 

1-hexene versus 1-octene selectivity for 83 ligands and incorrectly predicted the overall selectivity for 22 

ligands. This incorrect assignment occurs in cases where the DFT computed 1-hexene selectivity of a ligand 

is less than 1%. The random forest model tends to perform best for ligands ranging from 20:80 to 50:50 1-

hexene:1-octene selectivity (See SI-Figure 1). Importantly, the majority of ligands in our data set are overall 

1-octene selective, which is useful for our goal of improving the percentage of 1-octene, but it is likely that 

the RMSE of the random forest model would be reduced if the data set were more evenly distributed 

between overall 1-hexene and overall 1-octene selective. 

In the bottom of Figure 3, the 1-octene selectivities calculated using the DFT selectivity model and 

the optimized random forest model are plotted against the experimentally determined selectivities. The DFT 

selectivity model agreed with experiment very well (R2 = 0.91, mean absolute deviation = 4.4%). The DFT 

model underestimates the experimental selectivity, however, this is overall advantageous with the goal to 

increase 1-octene production. The lack of very high quantitative correlation between random forest and 

experiment values is likely due to the relatively small sample size of experimentally studied ligands. Despite 

this, the random forest can be used to determine critical chemical features that are responsible for enhancing 

1-octene selectivity. The relative importance of the 14 features included in our dataset can be determined 

by replacing data with random values and observing the impact on the RMSE value. If replacing data of a 

feature with random values results in a small change to the RMSE then it has a low degree of importance. 

Conversely, if there is a large change in the RMSE it this feature has a large importance. Figure 4 displays 

this feature importance analysis using the optimized random forest model. 



 

 

Figure 3. Top: Linear regression of selectivities predicted by DFT selectivity model (x-axis) and optimized 

random forest (RF) model (y-axis). Negative values correspond to high 1-hexene selectivity, positive values 

to high 1-octene selectivity. Bottom: Linear regressions of 1-octene selectivities predicted by DFT (circles) 

and random forest (triangles) models compared to experimental values. 
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Figure 4. Normalized feature importance determined from random forest model with 95% confidence 

intervals (red bars). 

 

Inspection of Figure 4 shows that the Cr–N distance, Cr–α distance, and distance out of pocket 

were identified as being most important in enhancing 1-octene selectivity. The Cr–N–C2 distance, which is 

related to the Cr–α distance, was also identified as an important 1-octene enhancing feature. Interestingly, 

despite the proposed importance of the ligand bite angle, especially for phosphine catalysts,105 we found 

that the P-Cr-N1 ligand bite angle is among several lesser important features, which is consistent with 

Sydora previously showing that for Cr-phosphinoamidine catalyst ligands with similar bite angles resulted 

in significantly different 1-hexene:1-octene selectivities.35 After we completed this machine learning 

analysis and identified the importance of the Cr-distance out of pocket for the 105 ligands examined here, 

Liu reported a DFT analysis of ethylene oligomerization by a Cr(2,2’-dipicolyamine) catalyst and also 

found that enhanced tetramerization was likely due to Cr-distance out of pocket was also important. 

With the emergence of chemical features by the random forest machine learning model, we then 

turned to the final step in our workflow, which is using this information to virtually identify new catalyst 

ligands (Scheme 1c). Based on the important features, we very rapdily designed ligands L9-L15 shown in 

Figure 5. The machine learning features directed us to change the 4-membered (P,N) ligand scaffold found 

in generations 1 (L1-L5) and 2 (L6-L8) to a 3-membered (P,N) ligand, which would potentially alter the 

Cr–N distance, Cr–α distance, and Cr distance out of ligand pocket. This machine-learning driven 
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modifcation led to the proposal of ligands L9-L11, and with our transition-state model they are predicted 

to be 97-99% 1-octene selective. With the very rapid success of this new generation 3 type of (P,N) ligands 

we further decreased the the ligand to have direct phosphine-nitrogen connection, which naturally led to 

the proposal of ligands L12-L14. Based on using our transition-state model, ligands L12-L14 have 

predicted selectivities of >95% for 1-octene. Importantly, as plotted at the bottom of Figure 5, the use of 

our transition-state model combined with translation of machine learning features to new catalyst ligands, 

resulted in increasing the prediction of 1-octene from between <35% for generation 1 and ~50% for 

generation 2 to >95% for generation 3. 

 

 

 

 

 



 

 

 

Figure 5. Top: Strucutres for previous (P,N) ligand generations and the new proposed ligands (generation 
3) based on machine-learing identified features. The 1-hexene:1-octene selectivity (predicted) is given 

below each strucutre. Bottom: Plot of 1-octene selectivity for previous (P,N) ligand generations and new 

proposed ligands. 

 

With the rapid success of designing ligands L9-L15 it is clear that there are a number of new 

candidates that are now availible for experimental testing, and several more ligands can now be virtually 



and rapidly designed. As one experimental confirmation of our results, subsequent to our desing of L9-

L15, a literature search of all reported Cr-phosphine catlaysts for ethylene oligomerization revealed that 

Yang reported that L12 is indeed highly 1-octene selective.106 In this experimental test, which is signficantly 

different than the CPChem reaction conditions that our transition-state model was developed for, in situ 

catalyst formation with the combination of Cr(acac)3, MAO, and L12 and oligomerized under 50 bar of 

ethylene gave a 1-hexene:1-octene ratio of 28:70 with trace production of polyethylene. 

 

Conclusions 

 For Cr(P,N) catalysed ethylene oligomerization, we combined our previously developed 

experimentally verified DFT-transition-state model with a random forest machine learning model. This 

workflow involved the calculation of transition-state 1-hexene:1-octene selectivity for 105 ligands and the 

harvesting of 14 descriptors, which were then used to build a random forest regression model with a low 

RMSE. This model revealed that Cr–N distance, Cr–α distance, and Cr distance out of pocket were key 

features for enhancing 1-octene selectivity. This then allowed the rapid design of several generation 3 

Cr(P,N) catalyst ligands that are predicted to give >95% selectivity for 1-octene. Overall, this work 

demonstrated the utility of combining an accurate quantum-mechanical transition state model with machine 

learning to propel molecular catalyst design. 
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