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Abstract

The coupled-cluster (CC) singles and doubles with perturbative triples [CCSD(T)]

method is frequently referred to as the “gold standard" of modern computational chem-

istry. However, the high computational cost of CCSD(T) [O(N7)], where N is the num-

ber of basis functions, limits its applications to small-sized chemical systems. To address

this problem, efficient implementations of linear-scaling coupled-cluster methods, which

employ the systematic molecular fragmentation (SMF) approach, are reported. In this

study: (1) to achieve exact linear-scaling and to obtain a pure ab inito approach, we

revise the handling of nonbonded interactions in the SMF approach (2) a new frag-

mentation algorithm, which yields smaller sized fragments; hence, better fits high-level

CC methods is introduced (3) the new SMF approach is integrated with the high-level

CC methods, denoted by LSSMF-CC, for the first time. Performances of the LSSMF-

CC approaches, such as LSSMF-CCSD(T), are compared with their canonical versions

for a set of alkane molecules, CnH2n+2 (n=6–10), which includes 142 molecules. Our

results demonstrate that the LSSMF approach introduces negligible errors compared

with the canonical methods, mean absolute errors (MAEs) are between 0.20–0.59 kcal

mol-1 for LSSMF-CCSD(T). To further assess the accuracy of the LSSMF-CCSD(T)

approach, we also consider several polyethylene (PE) models. For the PE set, the

error of LSSMF-CCSD(T)/cc-pVDZ with respect to the experimental polymerization

energies per unit are between 0.08–0.63 kcal mol-1. To illustrate the efficiency and

applicability of the LSSMF-CCSD(T) approach, we consider an alkane molecule with

10004 atoms. For this molecule, the LSSMF-CCSD(T)/cc-pVTZ energy computation

on a Linux cluster with 100 nodes, 4 cores and 5 GB of memory are provided to each

node, is performed just in ∼ 24 hours. As far as we know, this computation is an

application of the CCSD(T) method on the largest chemical system to date. Overall,

we conclude that (1) the LSSMF-CCSD(T) method can be reliably used for large scale

chemical systems, where the canonical methods are not computationally affordable (2)

the LSSMF-CCSD(T) method is very promising for accurate computation of energies

in macromolecular systems (3) we believe that our study is a significant milestone in
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developing CC methods for large-scale chemical systems.

3



It has been demonstrated that coupled-cluster (CC) methods are accurate for the predic-

tion of molecular properties.1–5 The coupled-cluster singles and doubles (CCSD) method6

provides quite accurate results for most molecular systems at equilibrium geometries, but

nevertheless a triple excitations correction is required to obtain high accuracy.7–13 The

coupled-cluster singles and doubles with perturbative triples [CCSD(T)] method10,11,14 pro-

vides excellent results for a broad range of chemical systems near equilibrium geometries.12,15–24

Therefore, the CCSD(T) method generally referred to as the “gold standard" of computa-

tional chemistry. However, the high computational cost of CCSD(T) [O(N7)], where N is

the number of basis functions, limits its applications to small-sized chemical systems.

There have been many attempt to development of reduced cost electron correlation meth-

ods.25–35 Some of these studies take advantages of the locality of molecular orbitals (MO),

which is based on the idea that dynamic correlation is a short-range phenomenon. The in-

troduction of “correlation domain" concept, by Pulay and co-workers,25,26 stimulated local

correlation approaches. Nowadays, there are many variants of local CC methods, such as

projected atomic orbitals based local CC methods (PAO-LCC),28,29 the local pair natural

orbitals (LPNOs),32–34 the cluster-in-molecule (CIM) approach,36–40 and the divide-expand-

consolidate (DEC) approach.41,42

Alternative and more effective approaches, compared to LCC methods, to tackle the

molecular size dependence problems of electronic structure theories are the molecular frag-

mentation approaches (MFA). Various molecular fragmentation approaches have been sug-

gested to overcome the steep scaling problem of electronic structure methods.43–46 In molec-

ular fragmentation approaches, a molecular system is broken up into small molecular units,

and energies of the fragments are combined to approximate the energy of the entire system.

Although, the logic behind all fragmentation approaches is similar, the formation of frag-

ments, as well as the combination of the fragment energies, differ significantly from method to

method. Molecular fragmentation methods include molecular tailoring approach (MTA),47–49

fragment molecular orbital theory (FMO),50–52 molecular fractionation with conjugate caps
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(MFCC),53,54 systematic molecular fragmentation (by annihilation) [SMF(A)],44,55–63 com-

bined fragmentation method (CFM),60,64 generalized energy-based fragmentation (GEBF),65

kernel energy method (KEM),66,67 molecules-in-molecules (MIM) approach,68 many-overlapping-

body expansion (MOBE),69 and generalized many-body expansion (GMBE).70

In terms of accuracy and general applicability, the SMF approach appears to be very

attractive. The SMF energy is a sum of two-components: bonded and nonbonded. We

may also call them as covalent and noncovalent terms. The number bonded fragments

scales linearly [O(n)], where n is the number of groups, while the number of nonbonded

fragments scales quadratically [O(n2)]. To reduce the high cost of nonbonded fragments,

Collins introduced a cutoff distance (Rcut), such as 2 Å. If the distance between monomers

of a nonbonded fragment is smaller than Rcut, then it is treated with electronic structure

methods; otherwise, with a simple perturbation theory approach. For branched molecules,

Collins’ algorithm yields large-sized fragments compared to the chain-like linear alkanes case,

which is another difficulty. This situation especially becomes problematic for high-level CC

approaches, such as CCSD(T), where the computational cost increases steeply with the

molecular size.

In this research, to achieve exact linear-scaling and to obtain a pure ab inito approach,

we completely neglect all long-range nonbonded contributions since they already approach

to zero. Further, we introduce a new fragmentation algorithm for the branched molecules,

which yields smaller sized fragments; hence, the new algorithm better fits high-level CC

methods. The new linear-scaling SMF algorithm, denoted by LSSMF, have been coded in

C++ language by present authors and integrated with the Dfocc module24,71–78 of the Psi4

package.79 The newly proposed LSSMF-CC approaches, such as LSSMF-CCSD, LSSMF-

CCSD(T) as well as LSSMF-MP2, are applied to a series of alkane molecules to demonstrate

their efficiency and accuracy.
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The correlation energy for a CC method can be expressed as follows

∆E = 〈0|e−T̂ ĤNe
T̂ |0〉, (1)

where ĤN is the normal-ordered Hamiltonian operator,3,80 |0〉 is the reference determinant,

and T̂ is the cluster excitation operator. For the CCSD wave function

T̂ = T̂1 + T̂2, (2)

where T̂1 and T̂2 are single- and double-excitation operators, respectively.

T̂1 =
occ∑
i

vir∑
a

tai â
†î, (3)

T̂2 =
1

4

occ∑
i,j

vir∑
a,b

tabij â
†b̂†ĵ î, (4)

where â† and î are the creation and annihilation operators, and tai and tabij are the single and

double excitation amplitudes, respectively.

The amplitude equations can be written as

〈Φa
i |e−T̂ ĤNe

T̂ |0〉 = 0, (5)

〈Φab
ij |e−T̂ ĤNe

T̂ |0〉 = 0, (6)

where 〈Φa
i | and 〈Φab

ij | are singly- and doubly-excited Slater determinants, respectively. For

details of our CCSD and CCSD(T) implementations, one may refer to our previous stud-

ies.24,76,77

The SMF approach starts with the molecule M divided into different “groups". Groups

are sets of atoms defined by the SMF algorithm. The basic ideas involved in the method
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can be illustrated for the simplest case involving a chain-like molecule containing N groups

connected by single bonds:

M = G1G2G3 . . . GN , (7)

The target is to derive an accurate value for the total electronic energy:

E(M) = E(G1G2G3 . . . GN). (8)

The energy of the molecule M is determined by summation of the fragment (Fn), which

are defined in terms of combinations of groups, energies. The sizes of the fragments depend

on the “Level" of SFM, and the fragments can overlap with each other since a group can

involved in the multiple fragments. Hence, additional fragments with negative coefficients

are generated to cancel the effects of multiple counting.

The bonded energy:

Eb =

Nfrag∑
i

fiE(Fi), (9)

where fi is the integer coefficient associated with the fragment Fi.

For a model system of chain containing five groups, SMF fragmentation scheme can be

expressed as,

Level 1 : G1G2G3G4G5 = G1G2 +G2G3 +G3G4 +G4G5 −G2 −G3 −G4, (10)

Level 2 : G1G2G3G4G5 = G1G2G3 +G2G3G4 +G3G4G5 −G2G3 −G3G4, (11)

Level 3 : G1G2G3G4G5 = G1G2G3G4 +G2G3G4G5 −G2G3G4. (12)

Thus, the fragment sizes increase with the level used. However, the number of fragments

grows linearly with the size of the system. The authors have noted that the different Levels
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used in SMF are related to some older concepts used in the field of theoretical thermo

chemistry. For example, Level 1 reactions are known as “isodesmic reactions", Level 2 is

known as homodesmotic reactions, and Level 3 is known as hyperhomodesmotic reactions.

Since the bonded energy only includes nearby interactions, one should consider the non-

bonded interactions between more distant groups. The nonbonded interactions may be

evaluated by the following equation:

Enb =

Nfrag∑
i>j

fifj E[Fi···Fj]allowed. (13)

The “allowed" nonbonded interactions are the interactions that are not already included in

Eb.

For a chain-like CnH2n+2 molecule with the SMF scheme (at level 3), the bonded frag-

ments are just butane and propane fragments. The nonbonded fragments are just methane

dimers with different molecular distances. The number of bonded and nonbonded fragments

are given as follows,

Nb = (n− 3)C4H10 + (n− 4)C3H8 ∼ O(n), (14)

Nnb =
1

2
(n− 4)(n− 3)CH4···CH4 ∼ O(n2). (15)

The number of bonded fragments scales linearly with the number of carbons, while the

number of nonbonded fragments scales quadratically. However, one may consider only short-

range NB fragments, their number also scales linearly with the system size.

N short−range
nb ∼ O(n). (16)

Hence, we introduce a nonbonded cutoff tolerance, ∆nb. If the distance between the closest
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atoms of two groups is larger than ∆nb, then this nonbonded fragment is disregarded. We

denote this algorithm by distance based elimination (DBE). An alternative approach is using

the ratio of distance to covalent radii (DCRR ) as follows:81

dij =
||Xm

i −Xn
j ||

ri + rj
, (17)

where Xm
i denotes the Cartesian position of the atom in the fragment m and ri denotes the

covalent radius of the atom. Atomic covalent radii are obtained from Cordero et al. 82

Before presenting our fragmentation algorithm let us define the notation: i, j, k, l, . . . for

atoms; a, b, c, d, . . . for groups; and µ, ν, λ, σ, . . . for fragments.

(1) Define the level of SMF and tolerances for single, double, triple bonds as well as NB

cutoff: ∆sb, ∆db, ∆tb, and ∆nb.

(2) Read molecular info: Cartesian coordinates (X, Y , and Z), number of atoms (Natom),

atomic masses, atomic covalent radii (ri)

(3) Compute inter atomic distances: Rij.

(4) Compute bond order matrix: Bij.

• If Rij < ri + rj + ∆sb then Bij = 1.

• If Rij < ri + rj −∆db then Bij = 2.

• If Rij < ri + rj −∆tb then Bij = 3.

• else Bij = 0.

(5) Catch the first non-hydrogen atom. The first such atom is assigned to group 1 (in fact,

group 0 in C++).

(6) Assign the remaining non-H atoms. Starting the first non-H atom make a loop over

atom pairs i, j. If Bij > 1, then assign j to the group of i-th atom, Gi. Otherwise, assign

it to the next group, Gi+1.
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(7) Catch double/triple bonded non-H atoms in different groups and merge them.

(8) Assign the hydrogen atoms to each group according to values of Bij.

(9) Form the group connectivity matrix: Lab. If two groups are connected two each other

then Lab=1, otherwise it is equal to zero. Further, determine the bonded atoms of two

connected groups: LAab.

(10) Determine the number of caps per group.

(11) Form bonded and nonbonded domains for each group.

(12) Form lists of groups, and bonded and nonbonded fragments according to the SMF level.

(13) Write Psi4 input files for groups, and bonded and nonbonded fragments.

In each final fragment, bonds that are connecting groups in the fragment to other groups

that are not in the fragment are “missing". These missing bonds are replaced by bonds to

hydrogen atoms. The total number of hydrogen atoms added to fragments with a sign of +1

is exactly equal to the number added to fragments with a sign of −1. The position of each

H atom is taken to lie along the missing bond vector at a distance which is proportional to

the expected ratio of bond lengths. That is,

XH = Xi +
ri + rH
ri + rj

[
Xj −Xi

]
, (18)

where Xi denotes the Cartesian position of the atom in the fragment and Xj denotes the

Cartesian position of the atom that is not available in the fragment.

Our fragmentation algorithm is identical to the one suggested by Deev and Collins55 for

unbranched chain-like molecules. However, in the case of branched molecules we propose a

new algorithm. In order to illustrate the difference between two algorithms let us consider

the 2,4-dimethylheptane (24DMH) molecule (Figure 1) for which the fragmentation result

at level 3 was reported by Deev and Collins.55
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In the 24DMH molecule each carbon atom defines a group, totally seven groups. Frag-

mentation suggested by Deev and Collins yields to the following bonded fragments at level

3:55

G1G2G3G4G5G6G7 = G1G2G3G4G5 + G1G4G5G6G7 − G1G4G5, (19)

whereG1G2G3G4G5G6G7 represents the whole molecule. In this case, fragmentsG1G2G3G4G5

and G1G4G5G6G7 are formed from the combination of 5 groups. However, in the case of an

open chain analog, the fragments form from the combination of 4 groups. Hence, Deev and

Collins’ algorithm yields fragments at different sizes for open chain and branched molecules.

In the latter case, it yields much larger fragments, which may be a problem for high-level

CC methods, where the computational cost increases steeply. Therefore, one of the authors

(U.B.) suggests a new fragmentation algorithm for branched molecules, in which smaller sized

fragments form as in the case of open chain molecules. Our algorithm yields the following

bonded fragments for the 24DMH molecule at level 3:

G1G2G3G4G5G6G7 = G1G2G3G4 + G1G2G4G5 + G1G3G4G5

+ G1G4G5G6 + G1G4G5G7 + G4G5G6G7

− G1G2G4 − G1G3G4 − 3 ∗G1G4G5 − G4G5G6

− G4G5G7 + G1G4 + G4G5. (20)

In the fragmentation in Eq.(20), fragments formed by the combination of 4 groups are called

as the main fragments. The remaining fragments are considered for chemical balance. Hence,

we may call them as neutralizing fragments or renormalization terms, reminiscent of the

many-body perturbation theory. Our algorithm produces 6F4 + 5F3 + 2F2, where Fi

denotes a fragment formed from i different groups, whereas Deev and Collins’s algorithm

produces 2F5 + F3. Hence, our algorithm yields lower size fragments, while Deev and
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Collins’ algorithm yields a smaller number of fragments. For high-level CC computations

with large basis sets, the size of a fragment is more important than the number of additional

small fragments. Moreover, a group can be as small as CH4 and H2O but can be as large

as benzene and naphthalene. Hence, in the case of large groups, such as benzene and

naphthalene, decreasing the size of the fragment from F5 to F4 is still very important to

reduce the cost even though small basis sets are employed. Therefore, our algorithm is

more efficient in terms of computational cost and better fits high-level CC methods, such as

CCSD(T).

Results from the HF, MP2, CCSD, CCSD(T), LSSMF-HF, LSSMF-MP2, LSSMF-CCSD,

and LSSMF-CCSD(T) methods were obtained for a set of alkanes, CnH2n+2 (n=5–20), for

comparison of the absolute energies. To further illustrate the efficiency of the LSSMF-

CC methods, we additionally consider polyethylene structures, CnH2n+2 (n=100–3334), for

computations of polymerization energies per unit at zero Kelvin. The optimized geome-

tries and zero-point vibrational corrections for polyethylene (PE) structures were computed

with the universal force field (UFF) approach.83 For the alkanes Dunning’s correlation-

consistent polarized valence double, triple, and quadruple-ζ basis sets (cc-pVDZ, cc-pVTZ,

and cc-pVQZ) were employed with the frozen core approximation.84,85 The density-fitting

approach was used for LSSMF methods considered.24,72,76,77 For the cc-pVXZ primary basis

sets, cc-pVXZ-JKFIT86 and cc-pVXZ-RI87 auxiliary basis sets were employed for reference

and correlation energies, respectively.

Previous studies demonstrated that accuracy of level 1 and level 2 approaches are not

satisfactory.44,60 Further, level 4 and higher levels yield high computational costs. Therefore,

considering the balance of accuracy and cost, level 3 appears to be the best fit for high-level

CC approaches. Hence, in this study, all LSSMF energies were computed at level 3.

To assess the accuracy of the LSSMF approach with respect to the canonical methods

we consider a set of alkanes, CnH2n+2 (n=6–10). For the first step of our assessment, we

choose a safe cutoff value for nonbonded interactions: ∆nb = 10.0 Å. In the next section
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effects of different ∆nb values will be evaluated. Mean absolute errors (MAEs) of the LSSMF-

HF, LSSMF-MP2, LSSMF-CCSD, and LSSMF-CCSD(T) methods with respect to canonical

methods are depicted in Figure 2. For the C6H14 isomers, total energies from MP2, CCSD,

CCSD(T), LSSMF-MP2, LSSMF-CCSD, and LSSMF-CCSD(T) methods, and percentages

of the LSSMF energies with respect to the canonical methods are reported in Table S1.

The percent coverage values are in %99.9998–%100.0002. Hence, all considered LSSMF

methods cover a satisfactory portion of the total energy of the full methods. The MAE values

(Figure 2) in total energies are 0.17 (LSSMF-HF), 0.21 (LSSMF-MP2), 0.19 (LSSMF-CCSD),

and 0.20 [LSSMF-CCSD(T)] kcal mol-1. Further, the maximum absolute errors (∆max) for

total energies are 0.26 (LSSMF-HF), 0.29 (LSSMF-MP2), 0.28 (LSSMF-CCSD), and 0.28

[LSSMF-CCSD(T)] kcal mol-1. Hence, considering both error measures, MAE and ∆max,

the results of the LSSMF methods are in very good agreement with the canonical methods.

For the C7H16 isomers, total energies fromMP2, CCSD, CCSD(T), LSSMF-MP2, LSSMF-

CCSD, and LSSMF-CCSD(T) methods, and percentages of the LSSMF energies with respect

to the canonical methods are reported in Table S2. For the correlated methods, the per-

cent coverage values are in %99.9997–%100.0003, while that of LSSMF-HF is in %99.9992–

%100.0001. Hence, all considered LSSMF methods, especially correlated methods, cover a

satisfactory portion of the total energy of the full methods. The MAE values (Figure 2) in

total energies are 0.49 (LSSMF-HF), 0.30 (LSSMF-MP2), 0.26 (LSSMF-CCSD), and 0.26

[LSSMF-CCSD(T)] kcal mol-1. Further, the ∆max values for total energies are 1.40 (LSSMF-

HF), 0.55 (LSSMF-MP2), 0.49 (LSSMF-CCSD), and 0.45 [LSSMF-CCSD(T)] kcal mol-1.

Hence, considering both error measures, MAE and ∆max, the results of the LSSMF methods

are in very good agreement with the full methods. Further, these results also show that the

post-HF methods yield lower errors.

For the C8H18 isomers, total energies fromMP2, CCSD, CCSD(T), LSSMF-MP2, LSSMF-

CCSD, and LSSMF-CCSD(T) methods, and percentages of the LSSMF energies with respect

to the canonical methods are reported in Table S3. For the correlated methods, the per-
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cent coverage values are in %99.9997–%100.0003, while that of LSSMF-HF is in %99.9992–

%100.0001. Hence, all considered LSSMF methods cover a satisfactory portion of the total

energy of the full methods. The MAE values (Figure 2) in total energies are 0.58 (LSSMF-

HF), 0.30 (LSSMF-MP2), 0.27 (LSSMF-CCSD), and 0.31 [LSSMF-CCSD(T)] kcal mol-1.

Further, the ∆max values for total energies are 1.38 (LSSMF-HF), 0.61 (LSSMF-MP2),

0.58 (LSSMF-CCSD), and 0.60 [LSSMF-CCSD(T)] kcal mol-1. Hence, considering both

error measures, MAE and ∆max, the results of the LSSMF methods are again in very good

agreement with the full methods. Further, these results also demonstrate that the electron

correlation methods better compensate for the fragmentation effects.

For the C9H20 isomers,total energies fromMP2, CCSD, CCSD(T), LSSMF-MP2, LSSMF-

CCSD, and LSSMF-CCSD(T) methods, and percentages of the LSSMF energies with respect

to the canonical methods are reported in Table S4. For the correlated methods, the per-

cent coverage values are in %99.9995–%100.0004, while that of LSSMF-HF is in %99.9991–

%100.0001. Hence, all considered LSSMF methods cover a satisfactory portion of the total

energy of the full methods. The MAE values (Figure 2) in total energies are 1.15 (LSSMF-

HF), 0.45 (LSSMF-MP2), 0.40 (LSSMF-CCSD), and 0.39 [LSSMF-CCSD(T)] kcal mol-1.

Further, the ∆max values for total energies are 3.56 (LSSMF-HF), 1.51 (LSSMF-MP2), 1.32

(LSSMF-CCSD), and 1.14 [LSSMF-CCSD(T)] kcal mol-1. Hence, considering both error

measures, MAE and ∆max, the results of the correlated LSSMF methods are in very good

agreement with the full methods. Further, the results of C9H20 isomers clearly show that

the electron correlation methods can better tolerate fragmentation errors.

For the C10H22 isomers,total energies fromMP2, CCSD, CCSD(T), LSSMF-MP2, LSSMF-

CCSD, and LSSMF-CCSD(T) methods, and percentages of the LSSMF energies with respect

to the canonical methods are reported in Tables S5 and S6. For the correlated methods,

the percent coverage values are in %99.9990–%100.0005, while that of LSSMF-HF is in

%99.9978–%100.0001. Hence, all considered LSSMF methods cover a satisfactory portion

of the total energy of the full methods. The MAE values (Figure 2) in total energies are
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1.61 (LSSMF-HF), 0.59 (LSSMF-MP2), 0.58 (LSSMF-CCSD), and 0.59 [LSSMF-CCSD(T)]

kcal mol-1. Further, the ∆max values for total energies are 5.30 (LSSMF-HF), 2.56 (LSSMF-

MP2), 2.27 (LSSMF-CCSD), and 2.01 [LSSMF-CCSD(T)] kcal mol-1. Hence, considering

both error measures, MAE and ∆max, the results of the correlated LSSMF methods are in

good agreement with the canonical methods. These results demonstrate that the high-level

electron correlation methods are less prone to fragmentation errors. Considering the re-

sults obtained for the whole alkane set, one can safely rely on the LSSMF-CC methods for

high-accuracy studies in large-sized chemical systems, where the canonical methods are not

computationally affordable.

In the second step of our assessment of the LSSMF approaches, we investigate the effect

of nonbonded cutoff tolerances on the accuracy. For this purpose we consider five isomers

of C10H22: 2,2,3,3-tetramethylhexane (2233TMH), 2,4-dimethyl-4-ethylhexane (24DM4E), 4-

isopropylheptane (4IPH), 5-methylnonane (5MN), and n-decane (decane). For these molecules,

the total energies of the LSSMF-CCSD(T) approach are computed with ∆nb = 3−10 Å. The

errors at each ∆nb value with respect to full methods are depicted in Figure 3. Our results

indicate that the maximum error is generally obtained at 3 Å, as expected, and errors are

kept constant starting with 6 Å. In the case of the n-decane molecule, we obtain the lowest

errors at ∆nb = 3 Å. The reason why the lowest error is obtained at the shortest distance

is that for the n-decane molecule bonded energy closer to CCSD(T) energy compared with

the total LSSMF energy, which covers %100.0005 of the CCSD(T) energy. In other words,

adding more nonbonded contribution, by increasing ∆nb, one obtains lower energies com-

pared with CCSD(T). Overall, even though we use ∆nb = 10 Å throughout this study, a ∆nb

value of 6.0 Å appears to be enough for the most purposes, which corresponds to a DCRR

value of ∼ 4.0.

To further increase the applicability of the LSSMF-CCSD(T) approach, we also consider

frozen natural orbitals (FNOs).88–91 The FNO approximation is very helpful to reduce the

computational cost of CCSD(T), while it introduces negligible errors with tight enough
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occupation tolerances, such as 10−5. To improve the FNO-CC results, we employ the δMP2

correction as suggested by DePrince and Sherrill.91 With the FNO approximation, we can

consider larger basis sets for the canonical methods; hence, we employ the cc-pVTZ basis

set. For the n-decane and four lowest energy isomers, we obtain MAE and ∆max values of

0.74 and 1.04 kcal mol-1 for the LSSMF-FNO-CCSD(T) approach. Hence, the fragmentation

error is tolerable for the FNO-CCSD(T) method, as in the case of CCSD(T).

To investigate the effect of basis sets, we also carry out total energy computations for

the LSSMF-FNO-CCSD(T) method with cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets for

three C7H16 isomers. One of these isomers is n-heptane, and others are the lowest energy

isomers: 2,2,3-trimethylbutane and 2,2-dimethylhexane. The MAE values with respect to

LSSMF-FNO-CCSD(T) for different basis sets are depicted in Figure 4. The MAE values

are 0.33 (cc-pVDZ), 0.38 (cc-pVTZ), and 0.45 (cc-pVQZ) kcal mol-1. Even though there is

a slight increase with basis set size, the errors are still at the tolerable magnitudes.

To illustrate the accuracy of the LSSMF-CCSD(T) approach we also consider the C100H102,

C200H402, C350H702, C700H1402, and C1000H2002 molecules as polyethylene (PE) models. For

the CnH2n+2 structures, the experimental polymerization energies per unit at 0 K were

reported92 as −21.482, −21.675, −21.758, −21.813, −21.830, and −21.868 kcal mol-1 for

n = 100, 200, 350, 700, 1000, and ∞, respectively. Errors of the LSSMF-CCSD(T) method

with respect to the experimental values are depicted in Figure 5. The error values are 0.08

(C100H102), 0.39 (C200H402), 0.51 (C350H702), 0.59 (C700H1402), and 0.63 (C1000H2002) kcal

mol-1. Even though there is a slight increase with the molecule size, the errors are still at the

tolerable magnitudes. Hence, this result demonstrate that the LSSMF-CCSD(T) method

can be reliably used for large scale chemical systems.

In our LSSMF implementation, we form groups, bonded, and nonbonded fragments at

first; then, we write all fragment input files to disk. In the third step, we simultaneously

submit all fragment jobs to our Linux clusters. Finally, we collect the energy values from

output files, merge them, and compute the final LSSMF energy. Hence, our implementation
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is naturally parallel. The fragment formation procedure is the fastest step (Step 1). We

can form all fragments just in a few minutes owing to our efficient fragmentation algorithm.

Writing fragment input files generally takes several minutes (Step 2). Hence, the cost of

overall computation is depend on the cost of CC jobs (Step 3), which is depend on the

number of cores that available.

To illustrate the efficiency of our fragmentation algorithm we consider a set of alkanes,

which includes 10004–50012 atoms. Total wall-time (in min) for the LSSMF code (Step 1 +

Step 2) for the CnH2n+2 (n =3334,6668,10002,13336,16670) set are depicted in Figure 6. For

the largest member of the alkanes set considered, C16670H33342, the total time for the LSSMF

code is just 8.4 minutes on a single node (1 core) computer. Hence, our LSSMF code is very

efficient to form fragments and prepare necessary input files.

To illustrate the efficiency and applicability of the LSSMF-CCSD(T) approach, we con-

sider the C3334H6670 molecule, which includes 10004 atoms. For the C3334H6670 molecule, the

LSSMF-CCSD(T)/cc-pVTZ energy computation is performed in a Linux cluster with 100

nodes, 4 cores and 5 GB of memory are provided to each node. In this system, the total wall

time for energy computation is ∼ 24 hours, which indicates that the introduced method is

extremely efficient. As far as we know, the largest computation reported at the CCSD(T)

level is the study of Nagy and Kállay,93 where a protein molecule with 1023 atoms is studied

at the LNO-CCSD(T)/def2-QZVP level, which includes 44712 basis functions. In this re-

search, we report an alkane molecule with 10004 atoms at the LSSMF-CCSD(T)/cc-pVTZ,

which includes 193400 basis functions. Hence, we believe that our study is a significant

milestone in developing CC methods for large-scale chemical systems.

In this research, efficient implementations of linear-scaling coupled-cluster methods, which

employ the systematic molecular fragmentation approach, have been reported. For the

branched molecules a new fragmentation algorithm, which yields smaller sized fragments

compare with previous studies, has been introduced. The new linear-scaling SMF algo-

rithm is denoted by LSSMF. Performances of the developed LSSMF-CC approaches, such

17



as LSSMF-CCSD and LSSMF-CCSD(T), have been compared with their canonical versions

for a set of alkane molecules, CnH2n+2 (n=6–10), which includes 142 molecules. Our re-

sults demonstrate that the LSSMF approach introduces negligible errors compared with

the canonical methods. For the alkanes set, the MAE values are between 0.19–0.58 and

0.20–0.59 kcal mol-1 for the LSSMF-CCSD and LSSMF-CCSD(T) methods, respectively. A

similar performance has been observed in the case of frozen natural orbitals based CCSD(T)

approach [LSSMF-FNO-CCSD(T)]. Further, we investigate basis set effects on the LSSMF

methods using cc-pVXZ (X=D,T,Q) basis sets. Our results indicate that the performance of

LSSMF-FNO-CCSD(T) approach with large basis sets is similar to the small basis set cases.

To further assess the accuracy of the LSSMF-CCSD(T) approach, we also consider the

C100H102, C200H402, C350H702, C700H1402, and C1000H2002 molecules as polyethylene (PE) mod-

els. For the PE set, polymerization energies per unit (at 0 K) at LSSMF-CCSD(T)/cc-pVDZ

level have been computed and compared with the experimental values. For the PE set, the

error of LSSMF-CCSD(T) with respect to the experimental values are between 0.08–0.63

kcal mol-1. Hence, our results show that the LSSMF-CCSD(T) method can be reliably

used for large scale chemical systems, where the canonical methods are not computationally

affordable.

To illustrate the efficiency and applicability of the LSSMF-CCSD(T) approach, we con-

sider an alkane molecule with 10004 atoms. For the C3334H6670 molecule, the LSSMF-

CCSD(T)/cc-pVTZ energy computation on a Linux cluster with 100 nodes, 4 cores and

5 GB of memory are provided to each node, is performed just in ∼ 24 hours. Our results

demonstrate that the the LSSMF-CCSD(T) method is extremely efficient. As far as we know,

this computation is an application of the CCSD(T) method on the largest chemical system to

date. Hence, we believe that our study is a significant milestone in developing CC methods

for large-scale chemical systems. Overall, we conclude that the LSSMF-CCSD(T) method is

very promising for accurate computation of molecular properties in macromolecular systems.
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Figure 1: 2,4-dimethylheptane (24DMH) molecule.
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Figure 2: Mean absolute errors in the total energies of the CnH2n+2 (n=6–10) isomers for
the LSSMF-HF, LSSMF-MP2, LSSMF-CCSD, and LSSMF-CCSD(T) methods with respect
to canonical methods. All computations are performed with the cc-pVDZ basis set and with
the ∆nb = 10.0 Å.

31



-1.0

-0.5

0.0

0.5

1.0

1.5

3 4 5 6 7 8 9 10

E
rr

o
r 

(k
c
a
l/
m

o
l)

Rcut (Ang)

2233TMH

22DM4EH

4IPH

5MN

Decane

Figure 3: Errors of the LSSMF-CCSD(T) method with respect to the full method with differ-
ent cutoff distances for 2,2,3,3-tetramethylhexane (2233TMH), 2,4-dimethyl-4-ethylhexane
(24DM4E), 4-isopropylheptane (4IPH), 5-methylnonane (5MN), and n-decane (Decane)
molecules. All computations are performed with the cc-pVDZ basis set and with ∆nb = 10.0
Å.
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Figure 4: Mean absolute errors in the total energies of three C7H6 isomers for the LSSMF-
FNO-CCSD(T) method with respect to FNO-CCSD(T). All computations are performed
with the FNO occupation tolerance of 10−5 and ∆nb = 10.0 Å in the cc-pVXZ (X=D,T,Q)
basis sets.
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Figure 5: Errors in the polymerization energy per unit (at 0 K) for the LSSMF-CCSD(T)
method with respect to the experimental values for the C100H102, C200H402, C350H702,
C700H1402, and C1000H2002 molecules. All computations are performed with the ∆nb = 10.0
Å in a cc-pVDZ basis set.
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Figure 6: Total wall-time (in min) for the LSSMF code for a CnH2n+2 set. All procedures
were performed on a single node (1 core) Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz
computer.
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