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Abstract 

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, and more than 15 million 

people across the globe have been infected with it. Currently, no antiviral drug or vaccine is 

available to treat this disease. This underscores an urgent need for developing a drug against 

SARS-CoV-2. The main protease or chymotrypsin-like cysteine protease (3CLpro) of SARS-

CoV-2 is considered an essential protein for maintaining the viral life cycle and, therefore, a 

potential target for drug development. Recently, Ton and co-workers1 have identified the top 

1,000 potential ligands for 3CLpro by screening 1.3 billion compounds from the ZINC15 

library. In the current study, we have further screened these 1000 compounds using structure-

based virtual screening and identified 9 compounds having glide score ~ -11.0 kcal/mol or less. 

Top 5 screened inhibitors are found to display good pharmacological profiles revealing better 

absorption, proper permeability across the membrane, uniform distribution, and non-toxic. 

Further, we conducted 100 ns molecular dynamics simulation of the top 5 docked complexes, 

and our simulation revealed that one of the ligands dissociates from the binding pocket. 

However, four molecules, namely ZINC001062406583, ZINC000571366263, 

ZINC000452260308, and ZINC000680430230, displayed stable binding against 3CLpro. The 

molecular mechanics generalized Born surface area (MM/GBSA) method is used to calculate 

the binding free energy of the four ligands and found that ZINC000452260308 is more potent 

(ΔG = -14.31 kcal/mol) compared to the other three compounds. For all cases, the binding is 

mainly driven by the van der Waals interactions. This new compound may have a great 

potential as a lead molecule for the development of new antiviral drug to fight against COVID-

19. 
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Introduction 

The current global crisis due to Coronavirus-2019 (COVID-19) has almost brought healthy life 

to a standstill in most parts of the world, infecting more than 10 million people in just five 

months. The outbreak has been declared a global pandemic by the World Health Organization 

(WHO) on March 11, 2020 (https://www.who.int/emergencies/diseases/novel-coronavirus-

2019). Its economic consequences are impacting the whole world with unprecedented speed 

and severity since many countries have to impose lockdowns and close borders to contain the 

spread of the virus because, to date, there is no efficient and specific antiviral treatment for 

COVID-192, 3. So far, more than 0.6 million deaths due to COVID-19 have been reported 

worldwide. In India, more than 1.2 million people have been infected by the novel coronavirus, 

including more than 30000 deaths (https://www.mohfw.gov.in/). COVID-19 is caused by a 

new pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which 

is from the family of the beta-corona virus with a positive-sense single-stranded RNA genome 
4-11. The genome size of SARS-CoV-2 is large, which ranges from approximately 27 to 37 

kilobases. SARS-CoV-2, emerged from the Wuhan city of China in late 2019, has drawn 

considerable attention from the scientific community globally, due to its severity and rapid 

spread of disease 12-17. The infection with the new pathogenic SARS-CoV-2 can result in long 

term reduction in lung function, arrhythmia, and death.  

Main protease (Mpro), also known as 3-C like protease (3CLpro) received significant attention 

due to its vital function in post-translational processing of replicase polyproteins 9-13, 18-20. The 

enzymatic activity of 3CLpro leads to the processing of viral new polyproteins, i.e., it digests 

the specific peptide bonds in ten conserved glutamine residues in the c-terminal region of the 

same21-23. The SARS-COV-2 3CLpro has high structural and sequence similarity (~96%) to that 

of SARS-CoV 3CLpro and ~306 residues long, including three domains, folded into helices and 

β-strands4. The monomer of SARS-COV-2 3CLpro consists of N-terminal domain-I (residues 

1-101), and domain-II (residues 102-184) consists of an anti-parallel beta-barrel and C-terminal 

α-helical domain-III (residues 201-303) is required for enzymatic activity24. This protein shares 

a similar conformation with cysteine protease with an active site lacking the third catalytic 

residue; it comprises a catalytic dyad, His41 and Cys145 7, 10, 15 are placed at the junction of 

domain-I and domain-II. 

Recently, Jin and his coworker solved the X-ray crystal structure of COVID-19 3CLpro in 

complex with an N3 inhibitor (PDB ID 6LU7)15.  This structure can be used as a potential 

screening tool for probable inhibitory molecules in the in-silico method, which further could 

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
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be validated using different computational and experimental methods1. As this protease lack 

enough homology to any human protease, the use of different inhibitors of the same can be safe 

and very less harmful to the body14. Therefore, identification of the inhibitory molecules of this 

protease is an urgent need to overcome the number of infections and reduce the inflammatory 

response of infected patients. Currently, remdesivir is one of the most favourable drugs which 

initially developed to treat Ebola-infected patients25. Already several studies have done by the 

repurposing of different FDA approve drugs in all possible targets like N-protein, 2’-O-ribose 

methyltransferase, envelope protein ion channel, spike protein as well as the 3CLpro protease 

of COVID-1926-30. In case of 3CLpro, several approved drugs such as disomin, hesperidine, 

dihydroergocristina, ditercalinium, teniposide, velpastasvir, saquinavir, lopinavir, oseltamivir, 

ritonavir was analysed using several in-silico techniques which can further help to develop 

potent inhibitors against COVID-1931, 32. Apart from the approved drugs, some drug-like 

molecule shows excellent potential to inhibit the mechanism of the protease like 

ZINC000000702323 and ZINC000012481889 from the study of Elmezayen et al. .33 as well 

as the several molecules by the rapid screening method of Ton et al. .1. Later one studies 1.3 

billion drugs like molecules using their newly developed deep learning method, i.e. Deep 

Docking (DD) and narrowed that number to 1000 potential molecules to further analysed 

against COVID-19 protease1. 

In this present work, we illustrated an in-silico approach for 1000 drug-like molecules which 

has been successfully screened across 1.3 billion molecules by Ton et al. .1. Here we used 

virtual screening and ADMET profile analyses to screen these molecules in more significant 

details further. Further, we extended our study by using molecular dynamics simulation in the 

top few molecules obtained from the screening and also use molecular mechanics generalized 

Born surface area (MM/GBSA) method to estimate the binding free energies between drug-

like molecules and protease. Therefore, our study aimed to summarise the potential 

pharmacological relationship as well as structural details along with the binding mechanism of 

selected drug-like molecules against the COVID-19 protease target. 

Materials and Method 

Selection and the preparation of target protein: 

In this study, we desire to design potential inhibitors of the main protease of COVID-19, i.e. 

3CLpro. For that, the crystal structure of 3CLpro was retrieved from the protein data bank34 

solvated in complex with the N3 inhibitor (synthetic construct) having a resolution around 2.16 

Å (PDB ID: 6LU7)35. Preparation of the receptor protein, protein preparation wizard36, 37 of 
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Schrödinger software with the help of maestro platform38 of the same. Missing hydrogen atoms 

were added, and the crystallographic water beyond 3 Å from the protease was removed. The 

structure was refined in the presence of sample water orientations and optimized at pH 7.0 with 

the help of PROPKA software39.  Finally, under the default settings and the presence of the 

OPLS340 force field, the protein was minimized. 

Preparation of the ligand database: 

Our study is focused on the further refinement of the top 1000 hit obtained from the 1.3 billion 

compounds screened by the deep docking method by the Cherkasov group1. Those molecules 

were downloaded in SDF format, which is freely available in their server for further use. 

Ligands were imported in the maestro portal38 and subjected to the Ligprep module41 to 

generate all the ligands conformer along with their tautomeric combination under pH 7.0 ± 

2.0.  The ligands were minimized and optimized using the OPLS340 force field after the 

addition of hydrogens. All ligand conformers were used in the virtual screening method which 

is discussed in the next section. 

Virtual screening: 

All 1000 molecules were screened against the 3CLpro through the virtual screening workflow 

under Glide module42-45 of the Schrödinger suite, which is a grid-based ligand docking 

procedure. This workflow includes the preparation of ligand (discussed in the previous 

section), filtering using relevant pharmacological parameters, and three different protocol of 

docking. Before this, the receptor grid was generated using Glide45 taking N3 inhibitor of the 

protease in centre Å with a 12 cubic space around it. Three tiers of virtual screening are high 

throughput virtual screening (HTVS), standard precession (SP) and extra precession (XP) was 

used sequentially to achieve a set of potential lead molecules with high accuracy. Top 50 % 

docked complex from HTVS were used in the SP docking method. Again top 20 % of SP 

docking were used as input to the XP docking procedure. Finally, 10 % of top lead molecules 

were kept after XP docking method. The remaining parameter of the workflow was kept on 

default. Top lead molecules were ranked according to Glide-XP score and selected for the 

further analysis. 

Pharmacokinetic and toxicological profiling: 

QikProp46 module of the Schrödinger suite was used to compute the ADME (Absorption, 

distribution, metabolism and excretion) properties of our top lead compounds from the virtual 

screening method. It predicts physically significant and pharmaceutically relevant properties 
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of organic molecules. This module predicts 35 principal properties such as CNS activity, 

brain/blood penetration, Madin-Darby Canine Kidney cell permeability, % human oral 

absorption etc which are used a filter for drug candidate molecules in the drug design program. 

We also used pkCSM server47 to validate and estimate various other parameters related to drug-

likeness and ADME analysis. Bioactivity of all lead molecules was analysed by using the 

molinspiration webserver (https://www.molinspiration.com). Estimation of the toxicity of 

drug-like molecule is one of the critical factors in the field of drug development48. 

Hepatotoxicity, Carcinogenicity, Mutagenicity, and Cytotoxicity of the selected compounds 

were predicted by using ProTox-II webserver49. Predicated results were also revalidated using 

the pkCSM server toxicity profiling47. Finally, comparing all the parameter of ADMET 

analysis from several servers, we filter the lead molecules of Glide-XP and further processed 

to the molecular dynamic’s simulation. 

Molecular dynamics (MD) simulation: 

All complex structures which were filter from the virtual screening and ADMET analysis were 

loaded into the leap module of Ambertool1950, and the adequate number of ions were added to 

neutralize the systems. A periodic octahedron TIP3P water box51 was used to solvate the 

systems which have 10 Å buffer distance from all the directions. A Linux based GPU 

workstation (GPU-GTX 2080-Ti card) was used to simulated all the systems using 

pmemd.cuda module of Assisted Model Building with Energy Refinement (AMBER) suite50.  

We used amber ff14SB force field52 and the updated generalized Amber force field (GAFF2)53 

for simulate protein and ligand molecule, respectively. Bond lengths having hydrogen atoms 

were kept fixed using the SHAKE algorithm54, and particle mesh Ewald summation (PME)55 

was also used to compute long-range interaction with a non-bonded cut off of 10 Å. Timestep, 

in all cases, was fixed to 2.0 fs. We followed the same simulation protocol from our previous 

work on the potency of drug binding of 3CLpro of COVID 1956. All the simulations were carried 

out up to 100 ns under the NPT ensemble generating a total of 10,000 snapshots. Further, these 

trajectories were used to analyze root means square deviation, the radius of gyration, solvent 

accessible surface area (SASA), protein-ligand hydrogen bonds using Cpptraj module57 of 

AMBER1850. 

Binding free energy analysis using MM-GBSA scheme: 

Determination of binding free energy of the protein-ligand system can be done using molecular 

mechanics generalized Born surface area (MM-GBSA) scheme, which widely used 

https://www.molinspiration.com/


7 
 

techniques58-63. Free energy is comprised of three critical factors i.e. gas-phase molecular 

mechanics energy (Δ𝐸𝐸𝑀𝑀𝑀𝑀), desolvation free energy (Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and the configuration entropy 

(𝑇𝑇Δ𝑆𝑆) related by the following formula; 

Δ𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = Δ𝐻𝐻 − 𝑇𝑇Δ𝑆𝑆 ≈ Δ𝐸𝐸𝑀𝑀𝑀𝑀 + Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇Δ𝑆𝑆 1 

Detail description of the MM-GBSA method was discussed in our previous work63-70 and here 

we used the same. Herein, for all the energy estimations, we used 2500 frames from the last 50 

ns trajectories and MMPBSA.py script implemented in Ambertool1950. Configurational 

entropy was calculated using normal mode analysis method using the same script and due high 

computational cost, only 25 frames are considered from the same region which is used in the 

free energy calculation. Contribution from each amino acid in the binding free energy was also 

performed using the MM-GBSA pair-wise decomposition scheme.  

Result and Discussion 

The steps involved in our study are summarized schematically in Figure 2. We used the top 

1000 molecules screened by Cherkasov group1 form 1.3 billion compounds of ZINC15 

database71 and further filtered by virtual screening, several pharmacological studies and 

molecular dynamics. The best lead was selected based on MM-GBSA calculated using the MD 

simulation trajectories. 

Virtual screening of compounds against COVID-19 protease: 

Before the virtual screening, we used the QikProp module46 and Lipinski rule of 5 for filtering 

these molecules based on drug-likeness properties. After screening, a total of 938 molecules 

were obtained and further docked to the protease using HTVS protocol. Subsequently, we 

reduced the number of molecules using SP and XP docking algorithm in the above-discussed 

pattern. Finally, we obtained the top nine molecules, results of the XP protocol, which are 

shown in Figure 1 along with their chemical formula, ZINC IDs and molecular weights. G 

scores, found from the Glide XP for top nine ligands, ZINC000541677852, 

ZINC001062406583, ZINC000571366263, ZINC000452260308, ZINC000679651603, 

ZINC000680430230, ZINC000527019428, ZINC000544491494 are listed in the Table 1, 

along with the other important terms. XP gives us better accuracy and precision compare to SP  

as it uses an anchor and grows sampling method72.  This accuracy comes with a cost in docking 

time i.e. approximately 2 min/compound which is significantly lower in case of SP algorithm 

(10 sec/compound). All the nine listed compounds have G score more than equals to -11 

kcal/mol. Among these compounds, ZINC000541677852 and ZINC001062406583 have --
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11.57 kcal/mol and -11.56 kcal/mol, which are the best lead found through the virtual screening 

workflow. Through our virtual screening set-up, our selected lead molecules accounts less than 

1% percent of the input database. 

Physicochemical and pharmacokinetic features of the lead molecules: 

We calculated the ADME properties i.e. absorption, distribution, metabolism and excretion of 

the top nine lead molecules obtained from the virtual screening workflow by the use of QikProp 

module46. Significant properties of the ADME analysis, i.e. octanol/water partition coefficient, 

aqueous solubility, Caco-2 cell permeability, IC 50 value for the blockage of HERG K+ 

channels, MDCK cell permeability, and human oral absorption are listed in Table 2. All the 

parameters obtained from QikPRop are also listed in the supplementary information (Table S1-

S3). We further verified the ADMET properties using the pkCSM software by studying 

absorption, distribution, metabolism, excretion, and toxicity properties individually, which are 

listed in the supporting information (Table S4 -S7). Molecular weights of all lead molecules 

are below 500 Dalton, as listed in Table 1, which is an indication of better absorption than the 

higher molecular weight molecules73.  Predicted water-octanol partition co-efficient for all the 

molecules are in between the acceptable range, which indicates an excellent permeability of 

those across the cell membranes. Caco2 permeability is a well-established in-silico technique 

to screen oral absorption as well as the transport mechanism of the drugs, where the 

permeability of a compound is checked across Caco2 monolayer cell74. All nine molecules 

have a good score in this analysis, whereas ZINC000679651603 shows the best permeability. 

  

Analysis of the distribution of all lead molecules involves the volume of distribution (VDss), 

blood-brain barrier (BBB) permeability, central nervous system (CNS) permeability shows all 

molecules are in the good pharmacological reference ranges (Table S4). Among all, 

ZINC001062406583 shows the lowest BBB and CNS permeability, which is a good indication 

of a functioning drug. Metabolism studies show that ZINC001062406583 is a non-substrate of 

any possible cytochrome P450 isoform i.e. CYP2D6, CYP3A4, CYP1A2, CYP2C19, 

CYP2C9, CYP2D6, CYP3A4 indicating a proper metabolism (see Table S5). The rest of them 

also show almost no interaction except for 1-2 isoforms. We also calculated the excretion 

properties of all inhibitors (Table S6) and classified the data according to Paine et al. i.e. high 

(>1 mL/min/kg), medium (> 0.1 to <1 mL/min/kg) and low (≤0.1 mL/min/kg)75.  

ZINC001062406583, ZINC000679651603, ZINC000680430230 have high renal clearance 

compare to other molecules.  The toxicity analysis of these molecules is also listed in Table 
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S7. Except for two molecules, the rest of them are found to be non-Ames toxic i.e., they have 

less chance to create mutation, which leads to cancer. These are ZINC000541676760, 

ZINC000 527019428, ZINC000544491494.  Inhibition of HERG-1 channel leads to QT 

syndrome whereas all molecules in our studies are found to be non-inhibitor of the same. 

Besides, all of them are negative in sensitizing of the skin. 

We also determine the bio-activity score of all drug-like molecules in our study using the 

molinspiration portal and listed in Table 3. Molecules having more than 0, said to be bioactive, 

score in between 0 to -0.5 terms as moderate bioactive and finally, less than -0.5 are inactive. 

All ligands molecules pass the bioactive criteria except ZINC000527019428 and 

ZINC000544491494 which have less than -0.5 against nuclear receptors. 

Toxicity assessment of potential inhibitors via in-silico method: 

Clinical safety of novel therapeutic agent is one of the key concerns for successful drug 

development76. Carcinogenicity, mutagenicity and cytotoxicity are one of the major concerns 

in the toxicity profiling after successful delivery of a specific drug77, 78. Also, we estimated the 

toxicity profiles for all our lead molecules by estimating their hepatotoxicity, carcinogenicity, 

mutagenicity and cytotoxicity with the help of ProTox-II server49 and shown in Table 4. 

Predicted toxicity group for all molecules were 4 in 1-5 scale (higher the number lower the 

toxicity). Among all nine molecules, five of them are non-hepatotoxic, non-carcinogen, non-

mutagenic and non-cytotoxic. ZINC000541677852, ZINC000541676760, 

ZINC000541676760 and ZINC 000544491494   have slightly hepatoxicity and carcinogenic 

in nature.   

Finally, five molecules were selected by analysing all parameters, and then their binding 

mechanism was studied in detail via molecular dynamic simulation. These are 

ZINC001062406583, ZINC000571366263, ZINC000452260308, ZINC 000679651603 and 

ZINC000680430230. 

Molecular dynamics studies 

Followed the virtual screening and the ADMET screening, we obtained the best five 

compounds from the library of 1000 molecules. Then to investigate further the binding 

mechanism and dynamic behaviour of these molecules, we performed the MD simulations of 

complexes for 100 ns.  
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Structural stability and flexibility of the complexes 

Firstly, we computed the root-mean-square deviations (RMSD) of backbone atoms for all the 

complexes relative to their initial structures. The time evolution of the RMSD is shown in 

Figure 3A. RMSD values for 3CLpro complexes with ZINC000571366263 and 

ZINC000452260308 remain stable after 60 ns depicting the convergence of simulations. 

Similarly, the complex of ZINC001062406583 converged after 70 ns. However, for the 

complexes of ZINC000680430230 and ZINC000679651603 takes a longer time to converge 

approximately after 80 ns. Overall, within 100 ns, all systems got converged. The average 

values of RMSDs for all the complexes are listed in Table 5. The average values vary between 

1.44 Å and 3.22 Å. The highest deviation was observed for the 3CLpro/ZINC001062406583 

(3.22 Å), while the lowest was obtained for 3CLpro/ZINC000452260308 (1.44 Å). It suggests 

that the complex with ZINC000452260308 is more stable in the simulations. Besides, we 

computed the centre of the mass (COM) distance between inhibitor and protein and shown in 

Figure 3B. The average values vary between 17.34 Å and 24.20 Å. For which the highest 

average value was obtained for the 3CLpro/ZINC000679651603. In contrast, the lowest value 

was obtained for the 3CLpro/ZINC000452260308. The time evolution of the COM from Figure 

3B reveals that complexes 3CLpro/ZINC000452260308 and 3CLpro/ZINC000680430230 

showed less average distance compared with 3CLpro/ZINC001062406583 and 

3CLpro/ZINC000571366263, depicting the strong interaction of these inhibitors with the 

protein. However, the time evolution of the COM distance for the 3CLpro/ZINC000679651603 

showed that after 80 ns, the distance increases, depicting that interaction between the inhibitor 

and 3CLpro breaks, suggesting that the same ligand is no longer bonded with the 3CLpro. 

Furthermore, the RMSD of all inhibitors were computed and shown in Figure 3C.  The average 

values vary between 0.87 Å and 1.63 Å. The lowest was obtained for the complex 

3CLpro/ZINC000452260308, while the highest was obtained for the 

3CLpro/ZINC000679651603. It also agrees that ZINC000679651603 showed more significant 

deviations compared to other inhibitors and hence could not be considered as a potent inhibitor 

against 3CLpro. Besides, the potential of mean force (PMF) w.r.t RMSD of inhibitors were also 

calculated and shown in Figure 3D. It depicts that the lowest RMSD with a single narrow peak 

was observed for ZINC000452260308. ZINC000680430230 showed slightly higher RMSD 

compared to ZINC001062406583 but it showed a narrower peak than ZINC001062406583. 

Further increased RMSD with broader peak was observed for the ZINC000571366263. 

However, the highest RMSD peak value was obtained for the ZINC000679651603. Overall, it 
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suggests that among the screened inhibitors, ZINC000452260308 showed strong and stable 

binding with the 3CLpro, while the ZINC000679651603 showed the least.  Hence, for further 

analysis, we had discarded the ZINC000679651603 complex. For rest of the section, we term 

these top four molecules as lead 1 (ZINC001062406583), lead 2 (ZINC000571366263), lead 

3 (ZINC000452260308) and lead 4 (ZINC000680430230) for the ease of the discussion, 

Next, we investigated the flexibility of the different regions of all the complexes by calculating 

the root-mean-square-fluctuations (RMSF) of Cα atoms and shown in Figure 4A. It is evident 

from the RMSF plot that leads 1 complex exhibit more significant fluctuation in the different 

regions of 3CLpro compared to other complexes. Also, lead 2 exhibits relatively large variations 

around the 50 residues (domain I). However, the lead 3 and lead 4 complexes showed lesser 

fluctuations compared to other inhibitors. 

Furthermore, the compactness of all the complexes was estimated by calculating the radius of 

gyration (RoG) from the MD trajectories and shown in Figure 4B. The average values of RoG 

are reported in Table 5. It varies between 21.71 Å and 22.18 Å. It showed approximately similar 

RoG for all the systems. Also, the solvent-accessible-surface area (SASA) for all the systems 

were calculated from the MD trajectories and shown in Figure 4C. The reported average value 

of SASA (Table 5) varies between 137.52 Å2 and 142.93 Å2. The lead 2 complex showed the 

highest SASA value compared to other complexes. 

Binding free energy of protein-inhibitor complex 

To best describe the binding potency of the selected molecules against the 3CLpro from the 

virtual screening, we had computed the binding free energy and its various components using 

the MM/GBSA scheme. It provides the total binding energy (ΔGbind) components such as van 

der Waal interactions (ΔEvdW), electrostatic interactions (ΔEele), polar solvation energy (ΔGpol), 
non-polar solvation free energy (ΔGnp) and configurational entropy (TΔS). In total, 2500 

frames were chosen from the stable regions for the calculation of binding free energy, and 25 

frames were selected for the high-computational entropy calculation via nmode method. 

The details of the binding free energy and its various components are listed in Table 6 and 

shown graphically in Figure 5A. MM/GBSA method can also be used to rank the different 

compounds and as can be seen from Table 6 that the high binding affinity for the 3CLpro is 

observed for lead 3 (-14.31 kcal/mol) followed by lead 3 (-11.45 kcal/mol), lead 2 (-7.21 

kcal/mol), and lead 4 (-6.55 kcal/mol). Overall, it suggests that among the screened 

compounds, ZINC-000452260308 (lead 3) binds strongly with the 3CLpro. It is evident from 
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the binding energy calculation that the van der Waal interactions (ΔEvdW) and electrostatic 

interactions (ΔEele) favours the binding between all the inhibitors against 3CLpro. Besides, the 

non-polar solvation energy (ΔGnp) also supports complex formation. In contrast, the polar 

solvation energy (ΔGpol), as well as the configurational entropy (TΔS), opposes the 

complexation. It is noted that ΔEvdW varies between -36.31 kcal/mol and -42.56 kcal/mol, while 

ΔEele varies between -14.80 kcal/mol and -24.45 kcal/mol for all the complexes. It suggests that 

the van der Waal interaction plays a significant role in the complex formation between the 

inhibitors and 3CLpro. Among the screened compounds, the most favourable values for both 

ΔEvdW (-42.56 kcal/mol) and ΔEele (-24.45 kcal/mol) were found to be for the lead 3 complex. 

Although the overall net polar contributions (ΔEele + ΔGpol) for compounds lead 1, lead 2, lead 

3, and lead 4 were found to be nearly close and unfavourable as 13.06 kcal/mol, 13.38 kcal/mol, 

13.48 kcal/mol, and 12.22 kcal/mol, respectively. However, the overall net non-polar 

contributions (ΔEvdW + ΔGnp) for complexes such as compounds lead 1, lead 2, lead 3, and lead 

4 were found to be -40.97 kcal/mol, -41.13 kcal/mol, -47.97 kcal/mol, and -44.71 kcal/mol, 

respectively. This suggests that the higher binding affinity for the complex 3CLpro/lead 3 was 

due to its favourable non-polar energy components compared to other complexes. In comparing 

with our previous study with 3CLpro with α-ketomide,  ZINC000452260308  or lead 3 has 

overall higher finding affinity mostly because of the sharp decrease in the entropic 

contribution56. 

Per-residue contributions to binding free energy 

To provide further insights into the binding mechanism of the screened inhibitors and 3CLpro, 

the contributions from each residue was calculated using the MM/GBSA scheme and was listed 

in Table 7. The per-residue decomposition of free energy depicts the hot spot residues involved 

in the binding of a protein-inhibitor complex. The values higher than 1.0 kcal/mol were 

considered and shown in Table 7. The interaction spectra of all the protein-inhibitor complexes 

are also shown in Figure 5B. It is evident from Figure 5B that residues Met49, Met165, and 

Gln189 were found to be common critical residues for all the screened compounds. Besides, 

Asn142 and Ser144 were also observed to be crucial for the complexes 3CLpro/lead 3 and 

3CLpro/lead 4. This result also agrees with a higher binding affinity of lead 3 and lead 4 

compared to lead 1 and lead 2. However, the binding energy of these hot spot residues obtained 

for 3CLpro/lead 3 was found to be more favourable compared to the complex 3CLpro/lead 4 

Overall, the identification of these critical residues for the 3CLpro/inhibitors can facilitate the 

discovery of the new selective inhibitors against 3CLpro. 
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 Finally, we supplemented the above results by analysing the final conformation of each 

production simulation with the help of Schrodinger Maestro software, and different h-bonds 

and hydrophobic interactions were shown in Figure 6. Hydrogen bonds are depicted in a pink 

single arrow line, while dark lime-green residues are involved in hydrophobic interactions. For 

the 3CLpro/lead 1 complex, Figure 6A shows two very stable h-bonds with Gly143 and Asn142 

and displayed seven hydrophobic interactions with Leu27, Val42, Cys44, Met49, Met165 and 

Val186. Lead 2 or ZINC000571366263 formed hydrophobic interactions with  Met49, Cys145, 

Met165, Leu167 and Val186 and formed three H-bonds with Gly143, Asn142 and Gln189 (see 

in Figure 6B). In the case of lead 3, we noticed that there were four stable H-bonds with 

Leu141, Gly143, Ser144 and Cys145 and six hydrophobic interactions with Leu27, Met49, 

Phe140, Leu141, Cys145 and Met165 were formed as revealed by Figure 6C. Finally, Figure 

6D shows that 3CLpro/lead 4 formed hydrophobic interactions with Met49, Phe140, Leu141, 

Cys145 and Met165 and h-bonds forming residues are Gly143, Cys145 and Leu141. The 

hydrophobic and lipophilicity of four complexes were shown in Figure 7. Overall, lead 3 has a 

higher binding affinity toward main protease 3CLpro compared to the other lead small 

molecules due to a more significant number of stable hydrogen bonds and hydrophobic 

interactions. Also, we have analysed the number of hydrogen bonds, as well as their stability 

between protein-drug like molecules and are listed in Table 8 which also validate the above 

results. Lead 2 only has one strong hydrogen bond (Q189@NE2 and O2 atom of ligand) having 

occupancy around 46 %, which indicates the lesser amount of electrostatic contribution in the 

binding free energy of the same. On the other hand, there are 4-5 moderately strong H-bonds 

(above 15 %) for the other three cases show a significant increase in the electrostatic 

contribution (see Table 6). Overall, all the analysis summarise that the lead 3  or 

ZINC000452260308 drug-like molecule has a potent candidate to the COVID-19 protease 

target. 

Conclusion 

Our study on the top 1000 molecules database constructed by Ton et al. .1 estimated four drug-

like molecules which are passed all the criteria of pharmacology and also show a promising 

binding against the COVID-19 protease. Surprisingly our prediction ruled out the top leads of 

the same database i.e. ZINC000541677852 as because of the toxicity pattern of it. At first, from 

the 1000 molecules, a virtual screening protocol was conducted by the glide module of 

Schrodinger45 leads to nine molecules. Further analysis of different properties of ADMET 

using several servers leads to 5 molecules. All these five molecules showed better 
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pharmacological and pharmacokinetic properties such as cell membrane permeability, BBB 

permeability, proper metabolism against cytochrome isoforms, non-Ames toxicity and others. 

Also, these molecules are non-carcinogenic, non-cytotoxic, non-hepatotoxic and non-

carcinogenic. We also extended our studies with these molecules through MD simulation and 

found out one of them i.e. ZINC000679651603, detached from the protease on a long time 

scale. Our study of the top four molecules up to 100 ns along with the binding free energy 

calculation mechanism scheme MM/GBSA stated the mechanism of binding. A combination 

of the non-polar and the van der Waals distinguish the best lead molecule i.e. 

ZINC000452260308 from rest of the other. Less penalty from the entropic side also has a 

significant effect on achieving higher binding affinity in all four cases and makes a strong 

candidate for further drug design. So, this lead molecule can be used for the backbone of further 

modification of their functional groups and other pharmacological parameters to a potent 

candidate of the drug development against the novel coronavirus pandemic.  
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Table 1: Different components of docking scores obtained from Glide-XP docking protocol. 

Lead 
Molecule 

Molecular 
Weight 

G-Scorea Glide- 
lipob 

Glide-
hbondc 

Glide- 
evdwd 

ZINC 
000541677852 

394.397 -11.5702 -3.0529 -1.648 -44.2723 

ZINC 
000541676760 

380.37 -11.5567 -3.00123 -1.57357 -44.6861 

ZINC 
001062406583 

323.437 -11.2196 -2.21994 -1.31262 -30.7709 

ZINC 
000571366263 

368.399 -11.1854 -3.23713 -1.59783 -44.513 

ZINC 
000452260308 

370.371 -11.1382 -2.96289 -1.52686 -38.3051 

ZINC 
000679651603 

330.428 -11.0647 -3.22382 -1.57569 -39.3433 

ZINC 
000680430230 

344.455 -11.0198 -3.43388 -1.57329 -41.1864 

ZINC 
000527019428 

330.363 -11.0055 -3.19259 -0.50507 -37.7579 

ZINC 
000544491494 

391.269 -10.9977 -3.24318 -1.5716 -44.8975 

a-Glide Score (kcal/mol) 
b-Lipophilic term derived from hydrophobic grid potential 
c-hydrophilic term 
d-protein-ligand steric contact information 
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Table 2:  Prediction of essential ADME properties of all lead molecules obtained from the 
QikProp. 

Lead 
Molecule 

logP(o/w)a logSb Caco-2dc logHERGd PMDCKe %Human Oral 
absorption 

ZINC 
000541677852 

3.001 -4.028 354.857 -3.567 1111.358 90.161 

ZINC 
000541676760 

3.097 -4.877 394.405 -4.225 1933.238 91.54 

ZINC 
001062406583 

0.204 -1.169 256.239 0.246 453.297 71.25 

ZINC 
000571366263 

2.887 -4.193 497.153 -2.082 3360.944 92.111 

ZINC 
000452260308 

2.868 -3.93 422.98 -2.291 3162.588 90.744 

ZINC 
000679651603 

1.978 -3.077 526.344 -1.858 750.711 87.235 

ZINC 
000680430230 

2.377 -3.369 498.185 -2.147 767.939 89.141 

ZINC 
000527019428 

1.959 -3.388 268.696 -3.805 529.453 81.892 

ZINC 
000544491494 

2.695 -4.318 392.973 -4.201 1171.076 89.157 

a-Predicted octanol/water partition coefficient log P (acceptable range −2.0 to 6.5) 
b—Predicted aqueous solubility log S in mol/L (acceptable range: −6.5 to 0.5) 
c—Predicted Caco-2 cell permeability in nm/s (acceptable range: < 25 is poor and > 500 is great) 
d—Predicted IC 50 value for blockage of HERG K+ channels (concern below −5.0) 
e—Predicted apparent MDCK cell permeability in nm/s (acceptable range: < 25 is poor > 500 is great) 
f—Percentage of human oral absorption (acceptable range: < 25% is poor and > 80% is high) 
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Table 3: Bioactivity of lead molecules using Molinspiration webserver. 

Lead 
Molecule 

GPCR 
ligand 

Ion 
channel 

modulator 

Kinase 
Inhibitor 

Nuclear 
receptor 
ligand 

Protease 
Inhibitor 

Enzyme 
Inhibitor 

ZINC 
000541677852 

0.02 -0.28 -0.03 -0.43 0.10 -0.34 

ZINC 
000541676760 

-0.01 -0.32 -0.04 -0.42 0.08 -0.36 

ZINC 
001062406583 

0.31 -0.03 -0.32 -0.27 0.55 0.03 

ZINC 
000571366263 

0.17 0.09 -0.32 -0.26 0.40 -0.02 

ZINC 
000452260308 

0.28 0.27 -0.42 -0.17 0.58 0.03 

ZINC 
000679651603 

0.08 -0.06 -0.45 -0.45 0.33 -0.07 

ZINC 
000680430230 

0.10 -0.04 -0.42 -0.46 0.36 -0.05 

ZINC 
000527019428 

0.09 -0.18 0.13 -0.63 0.07 -0.12 

ZINC 
000544491494 

-0.20 -0.49 -0.18 -0.81 -0.14 -0.48 
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Table 4: Toxicity prediction of all lead molecules using ProTox-II webserver. 

Lead  
Molecule 

Hepato 
toxicity 

Carcino 
genicity 

Muta 
genicity 

Cyto 
toxicity 

Predicted 
LD50 (mg/kg) 

Acute 
Toxicity 

ZINC 
000541677852 

Active 
 (0.53) 

Active 
 (0.59) 

Inactive  
(0.61) 

Inactive  
(0.74) 

1000 IV 

ZINC 
000541676760 

Active 
 (0.57) 

Active 
 (0.59) 

Inactive 
 (0.60) 

Inactive 
 (0.74) 

1000 IV 

ZINC 
001062406583 

Inactive  
(0.84) 

Inactive  
(0.61) 

Inactive  
(0.75) 

Inactive 
 (0.73) 

400 IV 

ZINC 
000571366263 

Inactive  
(0.84) 

Inactive 
 (0.61) 

Inactive 
 (0.75) 

Inactive 
 (0.73) 

680 IV 

ZINC 
000452260308 

Inactive 
 (0.73) 

Inactive  
(0.59) 

Inactive 
 (0.62) 

Inactive 
 (0.70) 

1250 IV 

ZINC 
000679651603 

Inactive 
 (0.82) 

Inactive  
(0.58) 

Inactive 
 (0.73) 

Inactive 
 (0.74) 

1250 IV 

ZINC 
000680430230 

Inactive  
(0.82) 

Inactive 
 (0.61) 

Inactive 
 (0.70) 

Inactive 
 (0.70) 

1250 IV 

ZINC 
000527019428 

Active 
 (0.52) 

Active 
 (0.55) 

Inactive 
 (0.65) 

Inactive 
 (0.70) 

1000 IV 

ZINC 
000544491494 

Active 
 (0.52) 

Active 
 (0.50) 

Inactive 
 (0.61) 

Inactive 
 (0.69) 

1300 IV 
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Table 5: Average RMSD (backbone of protease, ligand), radius of gyration and solvent 
accessible surface area for all protein-drug complexes. 

Lead Molecule Backbone 
RMSD (Å) 

Ligand 
RMSD (Å) 

RoG 
 (Å) 

SASA 
(nm2) 

ZINC 
001062406583 

3.224 
(0.002) 

1.263 
(0.004) 

21.712 
(0.002) 

137.519 
(0.037) 

ZINC 
000571366263 

1.516 
(0.002) 

1.420 
(0.002) 

22.183 
(0.002) 

142.927 
(0.033) 

ZINC 
000452260308 

1.435 
(0.003) 

0.865 
(0.003) 

22.025 
(0.001) 

141.344 
(0.034) 

ZINC 
000680430230 

2.433 
(0.003) 

1.202 
(0.004) 

21.875 
(0.001) 

139.140 
(0.043) 

ZINC 
000679651603 

2.620 
(0.005) 

1.631 
(0.004) 
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Table 6: Components of the binding free energy for COVID-19 protein and inhibitors complex 
using MMGBSA scheme. Standrad errors of the mean are provided in the paraenthesis. 

Components ZINC 
001062406583 

ZINC 
000571366263 

ZINC 
000452260308 

ZINC 
000680430230 

ΔEvdW -36.47 
 (0.12) 

-36.31  
(0.07) 

-42.56 
 (0.06) 

-39.99 
 (0.09) 

ΔEelec -20.50  
(0.17) 

-14.80 
 (0.12) 

-24.45 
 (0.08) 

-24.03 
 (0.08) 

ΔGpol 33.56  
(0.14) 

28.18  
(0.10) 

37.93 
 (0.06) 

36.25 
(0.07) 

ΔGnp -4.50 
 (0.01) 

-4.82  
(0.00) 

-5.41 
 (0.00) 

-4.72 
 (0.01) 

ΔGsolv
a 29.06  

(0.13) 
23.36 
 (0.10) 

32.52 
 (0.05) 

31.53 
 (0.07) 

ΔEMM
b -56.97  

(0.25) 
-51.11 
 (0.15) 

-67.01 
 (0.10) 

-64.02 
 (0.12) 

-TΔS 21.36 
(0.88) 

20.54 
(0.74) 

20.18 
(0.88) 

21.04 
(0.65) 

ΔGTotal
c -27.91 

 (0.14) 
-27.75 
 (0.07) 

-34.49 
(0.07) 

-32.49 
 (0.08) 

ΔGBind
sim-d -6.55 

(0.89) 
-7.21 
(0.74) 

-14.31 
(0.88) 

-11.45 
(0.65) 

a- ΔGnp+ ΔGpol 
b- ΔEvdW+ ΔEelec 
c- ΔEvdW+ ΔEelec+ ΔGnp+ ΔGpol 
d- ΔEvdW+ ΔEelec+ ΔGnp+ ΔGpol-TΔS 
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Table 7: Decomposition of binding free energy of all four complexes by each amino acids of 
protease.  

Residue EvdW Eelec Gpol Gnp Gside_chain Gbackbone Gtotal 

3CLPRO/ ZINC001062406583 
M49 -2.08 -0.92 1.12 -0.21 -1.92 -0.17 -2.09 
Q189 -1.45 -1.54 1.91 -0.24 -1.05 -0.27 -1.32 
M165 -1.87 1.17 -0.42 -0.20 -1.46 0.14 -1.32 
S46 -0.83 -1.01 0.96 -0.19 -0.64 -0.43 -1.07 
H41 -1.57 -1.09 1.82 -0.16 -0.95 -0.05 -1.00 

3CLPRO/ ZINC000571366263 
Q189 -2.22 -3.03 2.90 -0.36 -2.26 -0.45 -2.71 
M165 -2.34 0.19 0.06 -0.27 -2.18 -0.18 -2.36 
M49 -1.44 -0.19 0.38 -0.11 -1.24 -0.12 -1.36 

3CLPRO/ ZINC000452260308 
M165 -2.61 0.12 0.58 -0.29 -2.11 -0.09 -2.20 
S144 -0.58 -2.64 1.28 -0.01 -0.67 -1.28 -1.95 
C145 -1.15 -0.73 0.42 -0.14 -0.84 -0.76 -1.60 
N142 -1.80 -1.25 1.85 -0.25 -0.56 0.89 -1.45 
G143 -0.26 -2.31 1.30 -0.03 -0.10 -1.20 -1.30 
M49 -1.19 0.07 0.06 -0.20 -1.18 -0.08 -1.26 
Q189 -1.81 -0.49 1.39 -0.27 -0.90 -0.28 -1.18 

3CLPRO/ ZINC000680430230 
S144 -0.79 -2.24 1.20 -0.02 -0.70 -1.15 -1.85 
C145 -1.01 -1.24 0.68 -0.13 -0.82 -0.88 -1.70 
M49 -1.42 -0.42 0.52 -0.16 -1.35 -0.12 -1.48 
M165 -2.14 0.83 0.06 -0.23 -1.58 0.10 -1.48 
G143 -0.30 -2.53 1.45 -0.03 -0.10 -1.31 -1.41 
N142 -1.83 -1.19 1.97 -0.26 -0.48 -0.83 -1.31 
Q189 -2.01 -0.28 1.48 -0.34 -0.91 -0.24 -1.15 

Energetics contributions from the van der Waals (EvdW) and electrostatic interactions (Eelec) as well as polar 
(Gpol) and nonpolar solvation energy (Gnp) and the total contribution of given residue (Gtotal) for 3CLPRO-
inhibitor complexes are listed. Gside_chain and Gbackbone represent the side chain and backbone contributions. Only 
residues with | ∆G | ≥ 1.0 kcal/mol are shown. All values are given in kcal/mol.  
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Table 8: Occupancy of hydrogen bonds between protein and ligand complexes in each case 
during MD simulation. 

Acceptor Donor Distance (Å) Angle (˚) Occupancy (%) 
Lig: ZINC001062406583 

Lig@O1 C145@N 2.88 151.41 22.19 
Lig@O1 G143@N 2.85 149.15 21.82 
Lig@O1 S144@N 2.86 147.23 15.88 
Lig@O3 Q189@NE21 2.84 159.75 10.04 
Lig@O3 S46@OG 2.75 162.95 6.72 

N142@OD1 LIg@N1 2.86 162.52 27.96 
L141@O Lig@N1 2.88 162.55 10.77 

Lig: ZINC000571366263 
Lig@O2 Q189@NE2 2.84 160.14 46.42 
Lig@O2 Q189@NE2 2.86 155.56 5.91 
Lig@F3 Q192@NE2 2.88 155.89 5.41 
Lig@F1 Q192@NE2 2.88 155.33 5.37 
Lig@F2 Q192@NE2 2.87 155.98 5.27 

N142@OD1 Lig@N1 2.85 158.06 6.46 
Lig: ZINC000452260308 

Lig@O1 S144@N 2.85 149.40 32.61 
Lig@O1 C145@N 2.88 150.77 26.81 
Lig@O1 G143@N 2.84 146.19 26.04 
H164@O Lig@N2 2.87 160.09 24.83 

S144@OG Lig@N1 2.91 160.74 16.61 
S144@HG Lig@N1 2.91 156.37 8.27 

Lig: ZINC000680430230 
Lig@O1 C145@N 2.88 150.49 32.39 
Lig@O1 S144@N 2.86 147.58 25.29 
Lig@O1 G143@N 2.36 146.15 23.56 
H164@O Lig@N2 2.87 159.46 20.11 

S144@OG Lig@N1 2.92 159.64 10.52 
S144@HG Lig@N1 2.89 155.75 9.49 
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Figure 1: Cartoon representation of COVID-19 3CLpro along with inhibitor as shown in ball 
and stick. Top nine molecules that are used in our study also shown in ball and stick model 
along with their ZINC ID, chemical  formula and molecular weight. 
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Figure 2: Workflow of indentification of lead molecules against of COVID-19 protease via 
strucuture based virtual screening. * Intial databases is downloaded from the Ton et al study1. 
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Figure 3: A) Time evolution of root mean square deviation (RMSD) backbone atoms of 
COVID-19 3CLpro B) Centre of mass (COM) distance between 3CLpro and the inhibitors 
throughout the time scale C) time evolution of RMSD of inhibitors D) Potential mean force of 
ligand RMSD. PMF were calculated at 300 K. Inhibitors in the complexes as in legends are as 
follow: A) ZINC001062406583, B) ZINC000571366263, C) ZINC000452260308, D) 
ZINC000680430230, E) ZINC000679651603. 
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Figure 4: A) Root meand squre of fluctuations (RMSF) of Cα atoms of 3CLlpro, B) Radius of 
gyration of 3CLpro,  C) solvent accessible surface area of 3CLpro and D) numbrer of hydrogen 
bond between 3CLpro and inhibitos  for all four protein-inhibitor complexes. Inhibitors in the 
complexes as in legends are as follow: A) ZINC001062406583, B) ZINC000571366263, C) 
ZINC000452260308, D) ZINC000680430230. 
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Figure 5: A) Components of binding free energy (kcal/mol) for protien-inhibitors complex. 
Each drug-protein complexes are presented as follows: ZINC001062406583 (red (A)), 
ZINC000571366263 (blue (B)), ZINC000452260308 (green (C)), ZINC000680430230 
(yellow (D)) Decomposition of total binding free energy from individual amino acids B) 
ZINC001062406583, C) ZINC000571366263, D) ZINC000452260308, E) 
ZINC000680430230 
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Figure 6: 2D interaction image for top four protein-inhibitor complexes. A) 
ZINC001062406583, B) ZINC000571366263, C) ZINC000452260308, D) 
ZINC000680430230. 
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Figure 7: Surface representation of the drug bindiing portion of COVID-19 3CLpro. Here 
molecular lipophilicity potential of the protein is mapped to the surface ignoring the non-
protein atom in the calculation. Representation of the color-scheme is as follows: dark cyan 
(hydrophilic) to white to dark goldenrod (lipophilic). A) ZINC001062406583, B) 
ZINC000571366263, C) ZINC000452260308, D) ZINC000680430230. 
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