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The vibronic coupling constants of the cyclopentadienyl radical have been calculated

with G0W0, HF, and DFT with various exchange-correlation functionals such as PBE,

PBE0, LC-ωPBE, and the non-empirically tuned LC-ωPBE*. The vibronic coupling

constants for HF and DFT were derived using the gradients of the eigenvalues of the

degenerate HOMOs of the closed-shell cyclopentadienyl anion, while the gradients of

the corresponding quasiparticle energy levels were used in the case of G0W0. The

differences between the linear vibronic constants obtained using HF and DFT were

found to be small, and reduced further when the G0W0 correction is applied to HF

and DFT. Finally, the linear vibronic coupling constants calculated with G0W0 were

found to agree well with the values obtained using high level wave function methods

in the literature, which suggests that G0W0 can be a useful tool towards the study

of vibronic coupling.
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I. INTRODUCTION

The adiabatic potential energy surface1 (APES) is an important concept in the study of

various problems of interest in chemistry. For example, a static study of reaction mechanisms

would involve mapping out the APES of the system to determine the possible pathways

between the reactants and products.2–4 A thorough comparison of the saddle points found

on the APES would then allow one to propose a likely mechanism for the reaction of interest.

Other than that, studies of the protein folding process in biological systems require a precise

knowledge of the energies of the system with respect to its conformational space.5–7

It is thus of great interest to be able to determine the APES of a chemical system

accurately. Ideally, the basis of ‘accuracy’ in the context of a computational result should be

its performance with regards to experiment.8 However, as an auxiliary concept in theoretical

chemistry, the APES has no experimental counterpart that is directly measurable. Instead,

the gradient and curvature of the APES have to be related to spectroscopic observables to

ascertain the accuracy of the computed APES. In particular, the derivatives of the APES

along the normal modes of a molecule is equivalent to the vibronic coupling, or the coupling

between a molecule’s electronic and vibrational motion.9–11 Hence, the aim of this work is

to examine the use of computation towards the calculation of vibronic coupling constants.

Computationally, vibronic coupling constants have been derived using density functional

theory (DFT),12–21 Hartree-Fock (HF),22,23 and post HF methods such as complete active

space self-consistent field (CASSCF),20,24–32 equation-of-motion ionization potential coupled-

cluster singles and doubles (EOMIP-CCSD).33–35, or multireference configuration interaction

(MRCI).36–38 Nevertheless, there exist some challenges with the use of these computational

methods.

First, it is a well-known fact that HF does not account for electron correlation, i.e.

individual electrons do not ‘see’ another individual electron within the HF method.39 Because

of that, the so-called HF orbital energies (strictly, the eigenvalues of the one-electron Fock

operator) are overstabilised due to the neglect of inter-electronic repulsion. As a result,

Koopmans’ theorem,40 which states that the magnitude of the energy of the highest occupied

molecular orbital (HOMO) should be equal to the ionisation potential of the molecule,

usually does not hold. As the calculation of vibronic coupling constants can be directly

related to the computed orbital energies (see Section II A below), this in turn implies that
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the use of HF orbital energies to calculate vibronic coupling constants might be problematic.

Next, starting with a HF wave function, post HF methods attempt to alleviate the lack

of electron correlation in HF by adding more terms to give a more complete treatment

of electron-electron repulsion. For instance, the electronic wave function is treated using

multiple Slater determinants in multireference methods such as CASSCF, instead of a single

determinant in HF.39,41,42 This is often necessary for systems such as diradicals or metal

complexes, where HF is insufficient.43–45 However, the computational cost of such methods

are usually significantly higher; the cost of CASSCF scales exponentially with the system

size.41,42 As such, the usage of post HF methods is often limited to small and medium sized

molecules.

Because of the limitations of these wave function methods, DFT is often the computa-

tional tool of choice for larger molecules. One major issue with DFT lies with the use of ap-

proximate exchange-correlation functionals within the Kohn-Sham formalism of DFT. More

specifically, these approximate exchange-correlation functionals are developed by parametris-

ing against some theoretical constraints46 and/or experimental data.47–49 As a result, there is

often a strong dependence of the computed properties on the choice of exchange-correlation

functional used, where functionals usually perform well against systems similar to those used

in its parametrisation, but not necessarily for systems with a different chemical motif.50–52

The issue with DFT is thus its reliability: the quality of the results obtained for the system

and property of interest using a particular exchange-correlation functional cannot be known

a priori, and each individual functional has to be tested rigorously before it can be used

with some confidence.

On the other hand, there has been a growing interest in the use of Green’s function-based

approaches in recent years. Many observables of interest are related to the expectation

value of a one-particle operator, which can be expressed in terms of the one-particle Green’s

function in turn.53–55 Thus, explicit knowledge of the one-particle Green’s function would in

principle allow these observables to be computed exactly. However, the one-particle Green’s

function for a real system has to be obtained by solving the Dyson equation relating the

interacting and non-interacting systems, which includes a self-energy term containing all

electron correlation effects. Similar to the problem of the exchange-correlation functional in

DFT, the exact self-energy term is unknown, and has to be treated approximately.

Hedin’s approach to this problem was to expand the self-energy in terms of the one-
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particle Green’s function G and a screened Coulomb interaction W .56 In contrast to the

approximate exchange-correlation functionals in DFT, there is a clear physical meaning in

the expansion of the self-energy in this approach, and it allows the treatment of electron

correlation to be systematically improved upon by increasing the number of terms in the

expansion of the self-energy. This is followed by the GW approximation, which neglects

the vertex correction and considers only the first term in the expansion of the self-energy.56

Making a rough comparison to the HF method, the Coulomb potential in HF is dependent

upon a static dielectric constant, while the screened Coulomb potential in GW allows the

polarisation of the electron cloud in the system with respect to an individual electron to be

accounted for.

In practice, carrying out a fully self-consistent GW approximation is still computationally

demanding, and the G0W0 method is frequently used instead. In G0W0, G and W are

calculated using the eigenvalues and orbitals obtained from a mean field (HF or DFT)

calculation, and the GW quasiparticle energies computed by applying a single correction

to the initial set of eigenvalues.57,58 Despite this simplification, the G0W0 approach has

shown some promise towards overcoming some of the aforementioned issues with the current

computational approaches. As mentioned, the use of HF orbital energies to calculate the

ionisation potential of a molecule usually results in a overestimation of the actual value,

while for DFT a ‘pure’ exchange-correlation functional without any HF exchange results

in an underestimation instead.59,60 These systematic errors have been shown to be reduced

upon applying the G0W0 correction,61–67 which supports the use of the G0W0 approximation

to improve upon HF or DFT calculations.

It is thus of interest to examine the applicability of the G0W0 method towards the cal-

culation of vibronic coupling constants. The number of studies using G0W0 to describe

vibronic coupling is still relatively limited.68–73 In particular, the vibronic coupling con-

stants of the C60 anion have been calculated using the G0W0 correction to the local density

approximation (LDA), and the computed results shown to agree well with those derived

from experiment.18,19,68 To the best of our knowledge, this is the only molecular system that

has been examined to compare the vibronic coupling constants derived with G0W0 and ex-

periment so far. Hence, there is still a need to examine the use of G0W0 towards describing

vibronic coupling, and we will thus apply G0W0 and DFT to calculate the vibronic coupling

constants of the cyclopentadienyl radical in this work.
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The cyclopentadienyl radical has been subject to a large number of experimental and

theoretical studies in the context of the Jahn-Teller (JT) effect,9,15,17,22,29–32,34,74–84 some of

which are discussed here. Applegate et al. have used both high level wave function methods

(CASSCF/6-31G*) and dispersed fluorescence spectroscopy to determine the vibronic cou-

pling constants of the cyclopentadienyl radical.30 Sato et al. used generalised restricted HF

theory and CASSCF to compute vibronic coupling constants as the matrix elements of the

electronic operator of a vibronic Hamiltonian.22 Zlatar and co-workers have used DFT to

compute the JT stabilisation energy of the cyclopentadienyl radical.15,17 Ichino et al. mea-

sured the photoelectron spectrum of the cyclopentadienyl anion and used EOMIP-CCSD

calculations to construct a model JT potential for the cyclopentadienyl radical.34 Finally,

Sharma et al. presented a theoretical and computational framework to calculate the rota-

tional parameters for molecules subject to a JT distortion, including the cyclopentadienyl

radical.75

The abundance of previous studies looking at the cyclopentadienyl radical thus makes it

an excellent test case to check the applicability of theG0W0 approximation for the calculation

of vibronic coupling constants. In addition, as the G0W0 quasiparticle energies have been

shown to be significantly affected by the exchange-correlation functional used as its starting

point,61,62,65 we will also examine the effect of the exchange-correlation functional on the

calculated vibronic coupling constants, as well as the result of applying the G0W0 correction

on top of the DFT results.

The remainder of this paper is structured as follows. The protocol used to derive the

vibronic coupling constants of the cyclopentadienyl radical and a brief overview of the G0W0

approximation is given in the following section. Computational details are then given in

Section III, followed by the results and discussion in Section IV, and concluding remarks in

Section V.
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II. THEORY

A. Vibronic coupling

We follow the protocol used by Sato and co-workers.22 The Hamiltonian Hmol for a molec-

ular system can be expressed as

Hmol(r,R) = Tn(R) + Te(r) + U(r,R), (1)

where R and r represent the nuclear and electronic coordinates of the molecule respectively,

Tn and Te are the nuclear and electronic kinetic energy operators respectively, and the

U(r,R) potential term is given as a sum of electrostatic electron-electron, electron-nuclear,

and nuclear-nuclear interactions

U(r,R) = Uee(r) + Une(r,R) + Unn(R). (2)

The electronic Hamiltonian He for the molecule is then

He(r,R) = Te(r) + U(r,R). (3)

Within the adiabatic approximation, the electronic wave function ϕm(r;R) is the solution

to the electronic Hamiltonian He:

Ĥeϕm(r;R) = Em(R)ϕm(r;R), (4)

where Em(R) is the potential energy surface associated with electronic state m. The elec-

tronic Hamiltonian can then be written in terms of the electronic Hamiltonian about a set

of reference nuclear coordinates R0 as

He(r;R) = Te(r) + U(r;R)

= Te(r) + U(r;R0) + (U(r;R)− U(r;R0))

= He(r;R0) + ∆U(r;R). (5)

The difference between the distorted and reference nuclear coordinates for a small change

in the molecular geometry can be expressed as a Taylor series in the basis of mass-weighted

normal coordinates Qi about R0.85 The ∆U(r;R) term can then be written as

∆U =
∑
i

(
∂U

∂Qi

)
R0

Qi +
1

2!

∑
i

∑
j

(
∂2U

∂Qi∂Qj

)
R0

QiQj + . . .

=
∑
i

V
(1)
i Qi +

1

2!

∑
i

∑
j

V
(2)
ij QiQj + · · · , (6)

6



where i, j = 1, 2, . . . , 3N − 6 refers to the vibrational normal modes of the molecule (3N − 5

in the case of a linear molecule), and V
(n)
i1i2···in is the nth order vibronic coupling constant:

V
(n)
i1i2···in =

(
∂nU

∂Qi1∂Qi2 · · · ∂Qin

)
R0

. (7)

Note that only terms that are dependent on the nuclear coordinates, Une(r,R) and Unn(R),

appear in V
(n)
i1i2···in .

Equation (6) thus describes the coupling between the electronic and vibrational motion

of a molecule. In the theory of vibronic coupling, the crude adiabatic approximation is

used instead of the Born-Oppenheimer or Born-Huang adiabatic approximations;11 i.e. the

change in the electronic energy of the molecule as it is deformed from its reference structure

is accounted for by the potential ∆U term, while the electronic wave functions at R0,

ϕm(r;R0) are used as the basis of the electronic operators in the vibronic Hamiltonian.

To calculate V
(n)
i1i2···in , we can write Equation (6) explicitly as a sum of one-electron oper-

ators and a nuclear-nuclear repulsion term, which correspond to the derivatives of Une and

Unn respectively. For example, the first order vibronic coupling operator with respect to a

normal mode Qi can be written as

V̂
(1)
i = −

∑
a

∑
α

[
∂

∂Qi

(
Zαe

2

|ra −Rα|

)]
R0

+
∂Unn
∂Qi

=
∑
a

v̂
(1)
i +

∂Unn
∂Qi

(8)

with the one-electron operator

v̂
(1)
i = −

∑
α

[
∂

∂Qi

(
Zαe

2

|ra −Rα|

)]
R0

. (9)

The indices a and α runs over the electrons and nuclei respectively, Zα refers to the charge

of nucleus α, and e is the electronic charge. Finally, note that the nuclear repulsion term

will be zero except for normal modes with the totally symmetric representation.

We now consider the system of interest in this work, the cyclopentadienyl radical, C5H5.

The equilibrium geometry of the cyclopentadienyl anion, which has D5h symmetry, is used

as the reference structure R0 (Figure 1). The cyclopentadienyl radical with D5h symmetry

has a degenerate electronic state 2E
′′
1 in its ground state, and will undergo a JT distortion to

lower its symmetry to the C2v point group.84 We will denote the two degenerate electronic
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FIG. 1. PBE0/cc-pVTZ optimised structure of the cyclopentadienyl anion

states as |E ′′1 θ〉 and |E ′′1 ε〉, which decompose into the b1 and a2 states respectively when the

molecular symmetry is lowered from D5h to the C2v point group.86

The selection rules to determine which vibrational normal modes are JT active can be

obtained from the symmetric product of the irreducible representations of the degenerate

electronic states87 as

E
′′

1 ⊗ E
′′

1 = A
′

1 ⊕ E
′

2. (10)

As such, only normal modes with a′1 or e′2 symmetry have a non-zero linear vibronic coupling

constant, i.e. are linear JT active. There are a total of ten such normal modes for the

cyclopentadienyl radical: two a′1 normal modes and four pairs of e′2 degenerate normal

modes.

The first order vibronic coupling matrix for the e′2 normal modes can be written as

V
(1)
i =

〈E ′′1 θ|V̂ (1)
i |E

′′
1 θ〉 〈E

′′
1 θ|V̂

(1)
i |E

′′
1 ε〉

〈E ′′1 ε|V̂
(1)
i |E

′′
1 θ〉 〈E

′′
1 ε|V̂

(1)
i |E

′′
1 ε〉

 . (11)

Here, a bold V is used to refer to the matrix representation of V̂
(1)
i in the space spanned by

the two degenerate electronic states |E ′′1 θ〉 and |E ′′1 ε〉.

Under the Wigner-Eckart theorem,85 the vibronic coupling matrix for the ith pair of e
′
2

degenerate vibrational modes (e
′
2(iθ) and e

′
2(iε)) can be reduced as

V
(1)

e′2(iθ) =
1√
2
〈E ′′1 ‖V̂

(1)

e
′
2(i)
‖E ′′1 〉

 1√
2

0

0 − 1√
2


=

1

2
〈E ′′1 ‖V̂

(1)

e
′
2(i)
‖E ′′1 〉

1 0

0 −1

 (12)
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and

V
(1)

e′2(iε)
=

1√
2
〈E ′′1 ‖V̂

(1)

e
′
2(i)
‖E ′′1 〉

 0 1√
2

1√
2

0


=

1

2
〈E ′′1 ‖V̂

(1)

e
′
2(i)
‖E ′′1 〉

0 1

1 0

 (13)

where 〈E ′′1 ‖V̂
(1)

e
′
2(i)
‖E ′′1 〉 is the reduced matrix element. The vibronic coupling constant V

(1)

e
′
2(i)

for this pair of degenerate modes is then

V
(1)

e
′
2(i)

=
1

2
〈E ′′1 ‖V̂

(1)

e
′
2(i)
‖E ′′1 〉

= 〈E ′′1 θ|V̂
(1)

e
′
2(iθ)
|E ′′1 θ〉

= −〈E ′′1 ε|V̂
(1)

e
′
2(iθ)
|E ′′1 ε〉

= 〈E ′′1 θ|V̂
(1)

e
′
2(iε)
|E ′′1 ε〉

= 〈E ′′1 ε|V̂
(1)

e
′
2(iε)
|E ′′1 θ〉. (14)

If the electronic wave function of the cyclopentadienyl radical is treated as a single Slater

determinant, Equation (8) then allows the relevant elements of the vibronic coupling matrix

to be calculated as the sum of the integrals of the one-electron operators v̂
(1)
i over all occupied

spatial orbitals m, or the orbital vibronic coupling integrals:

V
(1)

e′2(i) = 〈E ′′1 θ|V̂
(1)

e
′
2(iθ)
|E ′′1 θ〉

=
∑
m

nm〈ψm|v̂(1)

e′2(iθ)|ψm〉. (15)

Here, nm is the occupation number of spatial orbital ψm in the Slater determinant |E ′′1θ〉. By

considering the symmetric product of the irreducible representations of the spatial orbitals,

this sum can be reduced to the orbitals with E ′1 and E ′′1 symmetry. Finally, because of the

symmetry of the matrix elements in Equation (12), the orbital vibronic coupling integrals for

a degenerate pair of doubly occupied orbitals cancel each other out, and do not contribute

to the overall sum in Equation (15). As a result, the vibronic coupling constants can thus

be reduced to the orbital vibronic coupling constants of the doubly occupied frontier orbital,
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e.g. ψε in |E ′′1 θ〉:

V
(1)

e′2(i) = 〈E ′′1 θ|V̂
(1)

e
′
2(iθ)
|E ′′1 θ〉

=
∑
m

nm〈ψm|v̂(1)

e′2(iθ)|ψm〉

=
∑

m∈E′1⊕E
′′
1

nm〈ψm|v̂(1)

e′2(iθ)|ψm〉

= 〈ψε|v̂(1)

e′2(iθ)|ψε〉. (16)

Computationally, the electronic degeneracy in the neutral radical implies the necessity of

using methods that account for multireference effects as well as dynamic electron correlation.

Indeed, the use of single-determinant computational methods has been shown to result in

symmetry-breaking in the computed electronic states of the open-shell cyclopentadienyl rad-

ical, and vibronic coupling matrices with the wrong symmetry in turn.22 Therefore, instead

of the cyclopentadienyl radical, we will calculate the orbital vibronic coupling constants of

the two degenerate HOMOs for the cyclopentadienyl anion to derive the vibronic coupling

constants of the cyclopentadienyl radical in this work.

Here, the orbitals of interest are the degenerate HOMOs of the cyclopentadienyl radi-

cal/anion (Figure 3). These are the π-orbitals of a highly symmetric D5h system, and are

energetically far from the other occupied orbitals in the system. As such, we expect that

they should remain largely unchanged with respect to the addition or removal of an electron.

Thus, as the orbitals for the radical and anion are largely similar to one another, the use

of the orbitals obtained with calculations on the closed-shell anion should not affect the

computed vibronic coupling constants significantly. In addition, unlike the neutral radical,

the cyclopentadienyl anion is a closed-shell system, which allows us to avoid the problem of

symmetry-breaking in DFT.88

Summarising this section, the vibronic coupling constant V
(1)

e′2(i) has thus been derived to

be

V
(1)

e′2(i) = 〈ψε|v̂(1)

e′2(iθ)|ψε〉, (17)

where the orbital vibronic coupling constant 〈ψε|v̂(1)

e′2(iθ)|ψε〉 is calculated as the gradient of

the Kohn-Sham orbital or G0W0 quasiparticle energies for the closed-shell cyclopentadienyl

anion..
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B. G0W0 approximation

A brief overview of the the G0W0 method is presented here.55,63,89 The Green’s function

for a system of non-interacting electrons treated with a single Slater determinant can be

written as

Gnon−int(r1, r2, ω) =
∑
i

ψi(r1)ψi(r2)

ω − εi − iη
+
∑
a

ψa(r1)ψa(r2)

ω − εa + iη
(18)

where ε and ψ are the one-electron eigenvalues and eigenstates respectively, ω is the fre-

quency with respect to a Fourier transformation of the time difference t1 − t2, the indices

i and a refer to the occupied and unoccupied orbitals respectively, and η is a positive in-

finitesimal. Using the simplified notation 1 = (r1, t1), the Green’s function for an interacting

system can be written with the Dyson equation:

G(1,2) = Gnon−int(1,2) +

∫
d(34)Gnon−int(1,3)Σ(3,4)G(4,2). (19)

The Σ term contains all inter-electronic effects and is known as the self-energy term. Sim-

ilar to the challenge of determining the exact exchange-correlation functional in DFT, the

problem is then to find a suitable approximation for the self-energy.

Hedin’s approach was to expand the self-energy perturbatively in terms of a screened

Coulomb interaction W ,56 with the first order term given by

Σ(1,2) = i

∫
d(34)G(1,3+)W (1,4)Γ(3,2,4) (20)

where W is the screened Coulomb interaction

W (1,2) = V (1,2) +

∫
d(34)V (1,3)P (3,4)W (4,2) (21)

and Γ is the vertex function

Γ(1,2,3) = δ(1− 2)δ(2− 3) +

∫
d(4567)

δΣ(1,2)

δG(4,5)
G(4,6)Γ(7,5)Γ(6,7,3). (22)

W is calculated using the bare Coulomb interaction V (r1, r2) = e2/|r1−r2| and a polarisation

term P

P (1,2) = −i
∫
d(34)G(1,3)G(4,1+)Γ(3,2,4). (23)

Equations (19) to (23) are known as the Hedin equations56 and have to be solved self-

consistently.
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Next, the GW approximation assumes the second term of the vertex function in Equation

(22) to be zero, which allows Equations (20) and (23) to be simplified to

Σ(1,2) = iG(1,2+)W (1,2+) (24)

and

P (1,2) = −iG(1,2)G(2,1+). (25)

Within the random phase approximation, the density response function for a non-interacting

system, χ0, is taken to be P directly, and can be calculated using Equations (18) and (25).

The dielectric function ε is then

ε(1,2) = δ(1,2)−
∫
d(3)V (1,3)χ0(3,2)

= δ(1,2)−
∫
d(3)V (1,3)P (3,2). (26)

W can then be obtained as

W (1,2) =

∫
d(3)ε−1(1,3)V (3,2). (27)

In practice, a GW calculation would start with a mean field calculation, and uses the con-

verged orbitals and eigenvalues to compute the Green’s function for the non-interacting

system (Equation (18)); i.e. the non-interacting system is treated with a mean field calcu-

lation. From that starting point, it is then possible in principle to solve the coupled integral

equations (19) and (24) to (27) self-consistently to obtain the GW self-energy of the system,

albeit the process of doing so remains very computationally challenging.

The G0W0 approach is then a further simplification to the GW approximation, and only

computes the GW self-energy once. This is usually denoted as G0W0@XCF, where XCF is

the starting point of the G0W0 calculation; e.g. G0W0@PBE0 for a calculation using the

PBE0 functional as a starting point.

The molecular property of interest, the quasiparticle energies in this case, can then be

calculated using the self-energy by applying first-order perturbation theory with respect to

the eigenvalues of the mean-field calculation, εi

εQPi = εi + 〈ψi|Σ(εQPi )− VXC |ψi〉. (28)

Here, VXC is the exchange-correlation potential used in the mean-field calculation and the

quasiparticle wave function is assumed to be equal to the HF or DFT wave function ψi.
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Equation (28) can be either be solved iteratively, or linearised to give

εQPi = εi + Zi〈ψi|Σ(εi)− VXC |ψi〉, (29)

where Σ is assumed to be approximately linear about the quasiparticle energy εQPi , and the

renormalisation factor Zi is given as

Zi =

(
1−

(
δΣ(ω)

δω

)
ω=εi

)−1

. (30)

III. COMPUTATIONAL DETAILS

As mentioned in Section II A, all calculations in this work were spin restricted calculations

on the closed-shell cyclopentadienyl anion. The optimised D5h geometry (Figure 1, C-C:

1.407 Å, C-H: 1.086 Å) and vibrational normal modes (Table I and Figure 2) of the parent

cyclopentadienyl anion system was first obtained at the PBE0/cc-pVTZ90,91 level of theory

using Gaussian16.92

CP2K6.193,94 was then used to obtain the energies of the degenerate HOMOs of the cy-

clopentadienyl anion (Figure 3) as the parent system is distorted with respect to each e
′
2

normal mode individually, and the results fit to a polynomial (Figure 4 and Supplementary

Material S1 A). A similar fitting procedure was also used with the total energy of the parent

TABLE I. Harmonic vibrational frequencies (cm−1) of the cyclopentadienyl anion normal modes

νi at the PBE0/cc-pVTZ level of theory

i Symmetry Frequency i Symmetry Frequency

1 a
′
1 1167.9 8 e

′′
1 613.9

2 3188.7 9 e′2 844.3

3 a
′
2 1269.2 10 1060.8

4 a
′′
2 660.9 11 1410.0

5 e
′
1 1023.0 12 3138.5

6 1477.6 13 e
′′
2 628.4

7 3164.4 14 771.7
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ν9(θ) ν9(ε)

ν10(θ) ν10(ε)

ν11(θ) ν11(ε)

ν12(θ) ν12(ε)

FIG. 2. e′2 normal modes of the cyclopentadienyl anion within PBE0/cc-pVTZ. Under the

subduction D5h → C2v, the e′2 representation is reduced to a1⊕b2. e′2(θ) and e′2(ε) then correspond

to a1 and b2 respectively
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ψθ ψε

FIG. 3. Degenerate HOMOs of the cyclopentadienyl anion. ψθ and ψε correspond to the singly

occupied HOMO in the |E′′1 (θ)〉 and |E′′1 (ε)〉 electronic states of the cyclopentadienyl radical re-

spectively.

system to obtain the frequencies of each e′2 normal mode for the exchange-correlation func-

tionals tested in this work other than PBE0. The effect of using the optimised geometries

and vibrational normal modes obtained within PBE46 to determine the vibronic coupling

constants was also tested, and found to be minimal (Supplementary Material S1 B).

The PBE, PBE0, LC-ωPBE95, and LC-ωPBE* functionals, as well as HF39 were used

to calculate the orbital vibronic coupling constants with the cc-pVTZ basis set, where the

LC-ωPBE* functional refers to the IP-tuned LC-ωPBE functional.

In a range-separated functional, the exact exchange can be decomposed into separate

short and long range components using the error function (erf).

1

r12

=
1− [α + βerf(γr12)]

r12

+
α + βerf(γr12)

r12

(31)

r12 is the inter-electronic distance, α is the fraction of exact exchange present in the short

range, which increases to α+β in the long range. γ then determines the partitioning between

the short and long range regions. The parameters α, β and γ are then usually determined

by parametrisation against some experimental data, and set as fixed constants defining a

functional.96–98

Alternatively, it has been suggested that these range-separation parameters could be
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FIG. 4. PBE0 orbital energies of ψθ and ψε with respect to the distortion along ν10(θ). The full

set of ab initio results are given in Supplementary Material S1 E.

determined non-empirically for each individual molecule instead, such that the resulting

calculation with the functional obeys a particular theorem or physical condition.99–102 For

example, in what is known as IP-tuning,101–103 Koopmans’ theorem is used as the basis to

derive the range-separation parameters, such that the energy of the HOMO of a molecule

matches its ionisation potential (IP) calculated as the energy difference between the N and

N − 1 electron systems, where N is the total number of electrons in the molecule.

Körzdörfer and co-workers have carried out a series of works looking at the effect of

using IP-tuned functionals on G0W0, and concluded that the tuning procedure leads to an

improvement in the performance of DFT and G0W0 with respect to the computation of

vertical IPs and electron affinities.61,104,105 As a result, we also tested the use of the IP-tuned

LC-ωPBE* functional to calculate vibronic coupling constants. Further details about the

IP-tuning process in this work are given in the Supplementary Material S1 C.
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Finally, the G0W0 correction was applied on top of these functionals, and the gradients

of the quasiparticle energies corresponding to the energies of the degenerate HOMOs used

to calculate the orbital vibronic coupling constants. The RI-cc-pVTZ basis set106 was used

in the resolution of identity approach to the random phase approximation in the G0W0

calculations.107 All basis sets were taken from the Basis Set Exchange.108 Additional details

regarding the CP2K parameters used to ensure the numerical convergence of our results are

given in the Supplementary Material S1 D.

IV. RESULTS AND DISCUSSION

A. Ionisation potential of the cyclopentadienyl anion

We start our discussion of the results by looking at the IP of the cyclopentadienyl anion

calculated using the DFT orbital energies and G0W0 quasiparticle energies (Table II). A

number of studies62,63,65,107,110 have found a strong dependence of the G0W0 quasiparticle

energies on the basis set, hence we also calculated the IPs using the cc-pVDZ and cc-

pVQZ basis sets.91 Our findings regarding the basis set effect is largely in agreement with

the findings of these earlier studies. The cc-pVDZ basis set is clearly insufficient for the

calculation of ionisation energies, with differences of about 0.4 eV to the largest cc-pVQZ

basis set for HF and DFT, while the respective differences for G0W0 are even higher at about

0.8 eV. The difference between the G0W0 IPs calculated with the cc-pVTZ and cc-pVQZ

basis sets were found to be a lot smaller in comparison, with differences for the HF and

TABLE II. Negative G0W0 quasiparticle energies (eV) of ψθ. The negative orbital energies of the

method used as the input for the G0W0 calculations is given in parentheses. Experiment: 1.808 ±

0.006,34 CCSDT/CBS: 1.785/1.816 for the two separate JT distorted geometries109

G0W0@HF G0W0@PBE G0W0@PBE0 G0W0@LC-ωPBE G0W0@LC-ωPBE∗

cc-pVDZ 1.441(1.515) 0.788(-1.561) 0.998(-0.517) 1.152(2.068) 1.128(1.472)

cc-pVTZ 1.951(1.714) 1.391(-1.219) 1.573(-0.232) 1.729(2.310) 1.721(1.754)

cc-pVQZ 2.200(1.825) 1.631(-1.066) 1.817(-0.100) 1.975(2.412) 1.976(1.874)
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DFT values lying slightly above 0.1 eV on average, and about 0.2 eV for the corresponding

G0W0 differences.

We will thus use the results obtained using the largest cc-pVQZ basis set for the rest of this

part of the discussion. The experimental IP of the cyclopentadienyl anion has been measured

to be 1.808 eV using photoelectron spectroscopy,34 which agrees well with the computational

value of 1.785/1.816 eV at the CCSDT/CBS level of theory.109 In this work, although the

accuracy of the IPs computed using DFT and HF were found to vary extensively, with the

exception of G0W0@HF, the results after applying the G0W0 correction were found to lie

within 0.2 eV of the literature values. We thus conclude that the IPs calculated within

G0W0 were found to be in good agreement with the literature.

The utility of the G0W0 correction to DFT can be further seen from the G0W0@PBE

and G0W0@PBE0 results. The PBE and PBE0 functionals were found to give physically

inaccurate negative values for the IP (PBE: -1.066 eV, PBE0: -0.100 eV), which can be

explained by the inability of these functionals to properly account for the self-interaction

or delocalisation error in DFT.111–114 The application of the G0W0 correction to PBE and

PBE0 then gives rise to a substantial improvement in the computed values, with positive

IPs calculated for both the G0W0@PBE (1.631 eV) and G0W0@PBE0 (1.817 eV) values,

and an excellent agreement between the G0W0@PBE0 result and the literature values on

top of that.

The overestimation of the IP calculated with LC-ωPBE is also reduced from 2.412 eV to

1.975 eV with the use of G0W0, but the G0W0@HF result is worsened compared to its initial

value. We note that the initial HF value was found to match the literature value closely,

which suggests that there could be some error cancellation between the lack of electron

correlation and the use of an incomplete basis set. The application of the G0W0 correction

then improves upon the treatment of electron correlation, which results in the reduction of

this error cancellation, and thus a more inaccurate IP for G0W0@HF as compared to the

initial HF result.

A final point to note is the superior accuracy of the IP computed using the LC-ωPBE*

functional compared to the original LC-ωPBE functional. The IP calculated within LC-

ωPBE (2.412 eV) severely overestimates the literature value, but the accuracy of the IP

is considerably improved upon IP-tuning in LC-ωPBE* (1.874 eV), which is in excellent

agreement with the literature. The superior performance of cc-pVTZ over cc-pVQZ for the
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IP-tuned LC-ωPBE* functional can be explained by the difference between the basis sets

used in the tuning of the range-separation parameter (cc-pVTZ) and the calculation of the

IPs.

On the whole, we can conclude that the use of the G0W0 correction does indeed return

more accurate IPs compared to the initial HF or DFT calculations. As discussed in Section

II A, the computed orbital or quasiparticle energies are linked to the calculation of vibronic

coupling constants. In the following subsection, we then examine if this improvement in the

computed IPs computed using the orbitals of the cyclopentadienyl anion results in a cor-

responding improvement in the derived vibronic coupling constants of the cyclopentadienyl

radical.

B. Linear vibronic coupling constants

First, although the G0W0 quasiparticle energies were observed to be strongly dependent

on the basis set (Section IV A), the basis set effect on the calculation of the linear vibronic

coupling constants was found to be significantly weaker in comparison (Supplementary Ma-

terial S2 A). This can be rationalised by considering the method of determining the linear

vibronic coupling constants, which is reliant on the gradients of the orbital or quasiparticle

energies instead of their absolute values. As the energy gradients are determined numerically

with respect to the distortion of the parent cyclopentadienyl anion, there is likely to be some

cancellation in the basis set errors, thus reducing the dependence of the calculated vibronic

coupling constants on the basis set. We thus used the cc-pVTZ basis set for the rest of this

work.

The present results for the computed linear vibronic coupling constants are given in

Tables III and V. We first note that our results satisfy the Wigner-Eckart theorem, with the

magnitudes of the linear coupling constants calculated using the e′2(θ) or e′2(ε) normal modes

and the gradients of the energies of ψθ and ψε effectively equal throughout (Supplementary

Material S2 B). As per earlier work,22,30,34,74 the vibronic coupling constants of ν12 (C–

H stretching) was found to be a lot smaller than the other three e′2 normal modes, and

should not contribute significantly to the JT distortion in the cyclopentadienyl radical.

Our discussion of the vibronic coupling constants obtained using the different exchange-

correlation functionals and G0W0 will thus focus on the other three e′2 normal modes: ν9,
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TABLE III. Linear vibronic coupling constants of the e′2(θ) normal modes calculated using the gradients of

the G0W0 quasiparticle energies for ψθ: (orbital) vibronic coupling constant V (1) (10−4 a.u.), dimensionless

vibronic coupling constant g(1) = V (1)/
√
~ω3, and the JT stabilisation energy E

(1)
JT = (1/2)(V (1)/ω)2 (cm−1).

ω (cm−1) is the second order derivative of the total HF/DFT energies of the cyclopentadienyl anion along the

PBE0/cc-pVTZ vibrational eigenmodes, and are taken to be the harmonic frequencies within the respective

methods. The corresponding values obtained with the mean-field DFT/HF method used as the input to the

G0W0 calculations are given in parentheses, while the results obtained using ψε is given in the Supplementary

Material S2 B

Mode
G0W0@

HF

G0W0@

PBE

G0W0@

PBE0

G0W0@

LC-ωPBE

G0W0@

LC-ωPBE∗
Expt.a CASSCFb CASSCFc

EOMIP-

CCSDd

ν9 ω 915 816 844 854 835 872[830] 817 914 834

V (1) 1.75(1.90) 1.59(1.62) 1.65(1.68) 1.69(1.61) 1.67(1.56) 1.54[1.68] 1.76 2.12 1.42

g(1) 0.651(0.705) 0.701(0.715) 0.691(0.702) 0.695(0.661) 0.710(0.666) 0.66[0.72] 0.77 0.79 0.60

E
(1)
JT 194(227) 201(208) 202(208) 206(187) 211(185) 166[216] 245 285 153

ν10 ω 1146 1030 1061 1066 1044 1041[1058] 1061 1144 1063

V (1) 2.98(3.14) 2.64(2.53) 2.77(2.72) 2.92(2.94) 2.87(2.76) 3.49[2.41] 3.29 4.89 2.94

g(1) 0.791(0.834) 0.823(0.786) 0.825(0.810) 0.862(0.870) 0.874(0.842) 1.07[0.72] 0.98 1.30 0.87

E
(1)
JT 358(398) 349(318) 361(348) 396(404) 398(370) 594[275] 509 977 404

ν11 ω 1446 1395 1410 1422 1413 1320[1410] 1415 1497 1434

V (1) 6.68(7.34) 5.51(5.04) 5.89(5.69) 6.32(6.61) 6.15(5.97) 3.96[6.01] 7.25 5.97 6.31

g(1) 1.25(1.37) 1.09(0.994) 1.14(1.10) 1.21(1.27) 1.19(1.16) 0.85[1.17] 1.40 1.06 1.20

E
(1)
JT 1128(1362) 825(690) 921(860) 1044(1141) 1002(944) 477[959] 1387 841 1025

ν12 ω 3239 3189 3139 3235 3214 3040 3263 3169

V (1) -0.136(0.043) 0.329(0.260) 0.289(0.200) 0.270(0.058) 0.297(0.117) 1.45 0.24

g(1) -0.008(0.002) 0.019(0.015) 0.017(0.012) 0.015(0.003) 0.017(0.007) 0.08 0.01

E
(1)
JT <1(<1) <1(<1) <1(<1) <1(<1) <1(<1) <1 10 <1

a Reference 74. The values obtained using an alternative fit to the measured spectra are given in brackets

(see text).
b Scaled CAS(5, 5) results. Method I in Reference 30. Frequencies were calculated within generalised

restricted HF in this work, and scaled by 0.89.
c Scaled CAS(5, 8) results in Reference 22. Frequencies ω were calculated within restricted HF in this

work.
d Reference 34, effectively identical to the EOMIP-CCSD values in reference 75.

ν10, and ν11.
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TABLE IV. Comparison of the standard deviation in the linear vibronic coupling constant V (1)

(10−4 a.u.) calculated using the mean-field HF/DFT methods, and G0W0.

Mean-field methods G0W0

ν9 0.132 0.059

ν10 0.235 0.132

ν11 0.881 0.442

In contrast to the computed IP of the cyclopentadienyl anion discussed earlier in Section

IV A, the effect of the exchange-correlation functional was found to be small, with the mag-

nitude of the vibronic coupling constants of the individual normal modes roughly following

the order: PBE < PBE0, LC-ωPBE* < LC-ωPBE < HF. Thus, unlike the IPs discussed

in the preceding subsection, there does not appear to be any clear benefit in the use of an

IP-tuned functional for the linear vibronic coupling constant. The HF values of V (1) and

ω were clearly larger than those calculated with DFT, but the corresponding difference be-

tween the values for g(1) and E(1) is slightly reduced by the larger HF values of V (1) and ω

cancelling each other out. This follows the observed weakening of the basis set effect earlier,

which again suggests that the protocol used to derive the vibronic coupling constants in this

work appears to be relatively independent of the exact computational method used.

We then examine the linear vibronic coupling constants calculated with G0W0. G0W0

is the first order perturbative correction to a HF or DFT calculation, and the inclusion of

additional correction terms should eventually converge the results towards a self-consistent

GW value (Section II B). Thus, although our G0W0 results show a similar dependence on

the starting point as that observed in earlier studies,61,62,65 the difference between the G0W0

results is smaller compared to that of the DFT and HF values. As can be seen in Table

IV, the standard deviation in the G0W0 computed values of V (1) is about half the standard

deviation for the HF and DFT results. This clearly shows a benefit in the use of G0W0: the

dependence of the choice of exchange-correlation functional is reduced.

Next, we compare the linear vibronic coupling constants derived in this work to the

literature (Table III). The computational and experimental data for ν9 in the literature is

generally in agreement with each other, with Sato’s CASSCF calculations giving slightly
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higher values. Our DFT and G0W0 results for ν9 also agrees well with the literature, while

the higher HF values was alleviated by the G0W0 correction.

However, there is some uncertainty in the literature regarding the relative strengths of the

vibronic coupling in ν10 and ν11. The fitting of the dispersed fluorescence spectra measured

by Applegate et al.74 gave a larger vibronic coupling constant for ν10 than ν11, which disagrees

with their own CASSCF calculations.30 The EOMIP-CCSD results of Ichino et al.34 agree

with the CASSCF results of Applegate et al., while the observed trend by Sato et al.22

follows the experimental result more closely.

To resolve this, we note that there has been some ambiguity regarding the assignments of

the vibronic peaks in the dispersed fluorescence spectra.74 An alternative fit to the measured

spectra “had a slightly worse RMS [root-mean-square] error of 6.3 cm−1, but is in better

agreement with the constants derived from ab initio calculations.”74 The values for the

vibronic coupling constants of ν9 remain mostly unchanged if the alternate fit is used, while

the corresponding values for ν10 and ν11 decreases and increases respectively (Table III). In

addition, the photoelectron spectrum of the cyclopentadienyl anion was simulated using the

vibronic coupling constants calculated within EOMIP-CCSD, and was found to reproduce

the experimentally measured photoelectron spectrum well.34 On the other hand, the use of

the vibronic coupling constants obtained with the original fit of the dispersed fluorescence

spectra to carry out a similar simulation “worsens the quality of the simulation significantly”.

Indeed, a recent paper by Tran et al. showed that a low RMS error in the fitting of a spectrum

is not necessarily correlated with a small error in the values of the vibronic coupling constants

obtained from the fit,33 and further emphasises the uncertainty in the vibronic assignment

of the dispersed fluorescence spectra.

Because of these issues with the experimental result, we do not compare our results for ν10

and ν11 to experiment, and will use the computational values as a benchmark instead. On

the whole, the HF and DFT results were found to agree quite well with the computational

values in the literature, with none of the methods tested found to outperform the others

substantially. The PBE, PBE0 and LC-ωPBE* functionals underestimate the reference

CASSCF and EOMIP-CCSD values, while the results for HF and LC-ωPBE are mixed,

depending on which vibronic constant is being compared. These trends for the individual

functionals and HF are balanced out upon applying the G0W0 correction, and we note

that there is an excellent agreement between our G0W0 results and the EOMIP-CCSD
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calculations of Ichino et al..

In the EOMIP-CCSD method, the electronic state of the (open-shell) system is described

by determinants with one less electron than the reference state, which is typically chosen to

be a closed-shell system.115 This allows for a balanced treatment of the determinants repre-

senting the electronic configurations of the N − 1 electron system, where N is the number

of electrons in the reference state.116 As a result, EOMIP-CCSD “can handle multirefer-

ence effects while dynamic electron correlation is also taken into account”,35,117 making it a

suitable computational method to study the neutral cyclopentadienyl radical directly.

In contrast, because we used the orbitals of the cyclopentadienyl anion to study the

JT effect of the neutral cyclopentadienyl radical, it would not be necessary to consider the

problem of static electron correlation in our work. TheG0W0 approximation was then used to

improve upon the treatment of dynamic electron correlation. Comparing the computational

costs of the two methods, EOMIP-CCSD and G0W0 scale on the order of O(N6) and O(N4)

respectively.107,115 Hence, despite the difference between the two approaches, the fact that the

G0W0 results in this work were found to be of EOMIP-CCSD quality is definitely noteworthy,

and supports the usage of G0W0 in the derivation of vibronic coupling constants.

We then examine the total JT stabilisation energies for the last part of the discussion

regarding the linear vibronic coupling constants (Table V). There are two approaches used to

obtain the total stabilisation energies in the literature. The first approach, which is used in

this work, fits ab initio data to a model vibronic Hamiltonian to extract the vibronic coupling

constants for each JT active normal mode, before summing up the individual stabilisation

energies for each normal mode to obtain the total stabilisation energy. The second approach

compares the difference in the energies of the cyclopentadienyl radical at the D5h and C2v

optimised geometries.

A point to note is that some vibronic coupling studies use a combination of the two

methods to derive the vibronic coupling constants. Vibronic coupling constants are ini-

tially obtained by fitting to ab initio results to a model Hamiltonian, before being scaled

such that the calculated energies matches the stabilisation energies computed in the second

approach.22,30 This is a possible explanation to the difference in the observed trends between

the computational results of Sato et al. and the present work.

The stabilisation energies obtained using the first method generally agree well with each

other as well as the experimental value obtained using the alternate fit of the dispersed
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TABLE V. Linear JT stabilisation energies E
(1)
JT (cm−1) calculated within G0W0. The values for

the mean-field method used as an input in the G0W0 calculations is given in parentheses.

Method E
(1)
total

G0W0@HF/cc-pVTZ 1680(1988)

G0W0@PBE/cc-pVTZ 1374(1217)

G0W0@PBE0/cc-pVTZ 1484(1417)

G0W0@LC-ωPBE/cc-pVTZ 1647(1732)

G0W0@LC-ωPBE*/cc-pVTZ 1612(1499)

Model potentiala

EOMIP-CCSD/DZP34 1510

EOMIP-CCSD/ANO075 1600

CASSCF/6-31G*30 1463

Energy differenceb

CCSDT/CBS109 1370

CCSD(T)/6-311+G*78 1600

CASSCF/6-31G*30 2147

CASSCF/cc-pVDZ32 2134

CASSCF/6-31G(d, p)22 2103

LDA/TZP15 1245

BP86/TZP15 1302

PW91/TZP15 1295

BLYP/TZP15 1303

OPBE/TZP15 1300

B3LYP/TZP15 1686

Expt.74 1237[1600]c

a Sum of the stabilisation energies over all linear JT active normal modes
b Difference in the energies of the cyclopentadienyl radical at the D5h and C2v geometries
c In brackets: stabilisation energy from an alternate fit of the dispersed fluorescence spectra (see text)

fluorescence spectra. On the other hand, the stabilisation energies calculated using the

second method was found to vary widely. The CCSDT and CCSD(T) stabilisation energies

(1370 cm−1 and 1600 cm−1 respectively) are lower than the CASSCF values, which are all

greater than 2100 cm−1. The DFT stabilisation energies of Andjelković et al.15 are in better

agreement with the lower CCSDT and CCSD(T) values, and exhibits a clear dependence

24



on the amount of HF exchange in the functional used, matching the trend observed in

our own DFT results. On the whole, the stabilisation energies calculated using CASSCF

with the second method appears to be an overestimation. We suggest that this could be

due to dynamic correlation, which is not accounted for in the CASSCF method,41,42 but is

accounted for in the CCSDT and CCSD(T) methods.118–120

As mentioned above, the DFT and HF stabilisation energies calculated in this work is

largely dependent on the amount of HF exchange present, and follows the order: PBE

< PBE0 < LC-ωPBE < LC-ωPBE* < HF. The difference between the total stabilisation

energies calculated using the various computational methods comes mostly from ν11, while

the differences for ν9 and ν10 are much smaller. A comparison of the the LC-ωPBE to LC-

ωPBE* results suggests that there is a slight improvement in the calculated stabilisation

energies upon IP-tuning. Similar to the other vibronic coupling constants, the spread of

the calculated DFT and HF values is reduced upon applying the G0W0 correction. The

total stabilisation energies for HF and LC-ωPBE is decreased, while the values for the

other functionals are increased. The resultant G0W0 stabilisation energies are again in

good agreement with the EOMIP-CCSD values, and exemplifies the potential of the G0W0

method.

Hence, to sum up the discussion of the linear vibronic coupling constants, the choice of

the exchange-correlation functional was not found to affect the derived vibronic coupling

constants of each normal mode significantly. Regardless of the starting point, the use of the

G0W0 correction was found to improve upon the HF and DFT results, and yielded results

of EOMIP-CCSD quality.

Finally, despite the good agreement between our results for the linear vibronic coupling

constants and those in the literature, some studies have shown that the inclusion of higher

order vibronic terms in the model Hamiltonian can affect the values of the fitted vibronic

coupling constants.33,37 Other than their effect on the fitting of linear vibronic coupling con-

stants, the inclusion of higher order vibronic coupling terms in the vibronic model potential

of a system also affects its APES directly.20,27,33,36–38 As a result, we extend our vibronic

Hamiltonian to go beyond the consideration of only linear vibronic coupling, and examine

the use of a higher order Hamiltonian to fit our ab initio data in the next subsection.
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C. Higher order vibronic coupling terms

The details of the derivation and fitting of the higher order vibronic Hamiltonians are

given in the Appendix, and the results are given in Table VI and the Supplementary Material

S2 C. Since we only consider symmetrized combinations of the e′2 normal modes in this work,

the quadratic vibronic Hamiltonian in this subsection is equivalent to the linear JT model

discussed in the previous section. As per the previous section, we do not include ν12 in the

discussion because it does not make a significant contribution to the JT distortion in the

cyclopentadienyl radical.

We will illustrate our findings for the higher order vibronic coupling terms by considering

the results obtained using PBE0 (Table VI). There is a general consensus in the litera-

ture that there is no pseudorotation barrier in the cyclopentadienyl radical.29–32,34,77,82,83,109

The only exception is a pseudorotation barrier height of about 300 cm−1 predicted within

CISD,29,77 which has been “attributed to an artificial effect caused by the CISD computation.”77

Our results agree well with the reported trend in the general literature. It can be seen from

Table IX in the Appendix that only the fourth order V
(4)

e′2
term gives rise to a pseudorotation

barrier in the cyclopentadienyl radical. However, the magnitude of the contribution to the

JT stabilisation energy by the fourth order vibronic coupling constants at ρmin. were all

found to be < 1 cm−1 for each of the e′2 normal modes ν9, ν10 and ν11. As such, we find that

there is effectively no pseudorotation barrier in the cyclopentadienyl radical.

In addition, the same analysis of the third order vibronic coupling term revealed a similar

insignificance in terms of its contribution to the JT stabilisation energy. As can be seen from

Figure 5, we find that the APES determined using the second, third, and fourth order model

vibronic Hamiltonian are essentially identical in the case of the cyclopentadienyl radical.

The same trends were observed for HF and the other exchange-correlation functionals,

as well as G0W0 (Supplementary Material S2 C). It is thus clear that any JT distortion

originating from the e′2 normal modes will be largely dominated by the linear vibronic

coupling term, V
(1)

e′2
, which has been discussed in the preceding section. Hence, we do not

find it meaningful to examine the differences between the higher order vibronic coupling

terms derived using HF, the various DFT functionals and G0W0.

Finally, we examine the effect of using a higher order vibronic Hamiltonian on the derived

vibronic coupling constants. As expected, the RMS of the fitting error to the orbital energies
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TABLE VI. Higher order vibronic coupling constants derived using PBE0. V
(i)
γ refers to the ith

order vibronic coupling constant with respect to the symmetry representation γ, ρmin refers to the

molecular structure at which the energy of the system is at a minima with respect to the distortion

along a e′2 normal mode, and E
(i)
JT refers to the JT stabilisation energy, where i is the order of the

model Hamiltonian used. All values are in a.u. except for the stabilisation energies, which is given

in cm−1

Mode Order V
(1)

e′2
× 10−4 V

(2)

a
′
1

× 10−5 V
(3)

e′2
× 10−9 V

(4)

e′2
× 10−10 V

(4)

a
′
1

× 10−9 ρmin. E
(i)
JT

a

ν9(θ) 2 1.6756 2.0953 11.309 207.94

3 1.6753 2.0953 1.4622 11.310 207.90

4 1.6753 2.0950 1.4622 0.3349 1.6215 11.304 207.96

ν9(ε) 2 1.6763 2.0953 11.314 208.11

3 1.6760 2.0953 1.4430 11.315 208.08

4 1.6760 2.0950 1.4430 1.6175 11.309 208.14

ν10(θ) 2 2.7214 3.3298 11.558 345.18

3 2.7205 3.3298 4.6618 11.561 345.08

4 2.7205 3.3040 4.6618 0.0355 17.8736 11.514 345.69

ν10(ε) 2 2.7221 3.3298 11.561 345.35

3 2.7212 3.3298 4.5872 11.564 345.24

4 2.7212 3.3040 4.5872 17.8856 11.516 345.86

ν11(θ) 2 5.6879 5.8738 13.695 854.79

3 5.6898 5.8738 −9.1704 13.689 854.92

4 5.6898 5.8398 −9.1704 15.7283 23.5324 13.589 854.20

ν11(ε) 2 5.6874 5.8738 13.693 854.63

3 5.6892 5.8738 −9.0769 13.688 854.76

4 5.6892 5.8398 −9.0769 23.5420 13.598 854.39

a The value of E
(2)
JT differs slightly from E

(1)
JT in Table III because the PBE0 analytical frequencies were

used in the calculation of E
(1)
JT earlier, while the fitted second order derivative of the SCF energies was

used to compute E
(2)
JT here in order to compare the differences between the higher order vibronic

Hamiltonians.

decreases with respect to the order of the vibronic Hamiltonian used to fit the ab initio data

(Table VII). However, we note that the RMS errors of the smallest second order model are

already about two to three orders of magnitude smaller than the derived linear vibronic
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Energy
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3

4

FIG. 5. APES of the cyclopentadienyl radical calculated using a quadratic, cubic, and quartic

vibronic Hamiltonian. The vibronic coupling constants were determined using PBE0 (Table VI).

coupling constants, which implies that the quality of the quadratic fit is already excellent.

As such, the linear vibronic coupling constant were found to remain virtually unchanged

going from the quadratic to the quartic model Hamiltonian (Table VI). Considering that

the JT distortion in the cyclopentadienyl radical is essentially due to linear vibronic coupling

only, it is thus not surprising that the effect of using a higher order vibronic model was not

found to affect the derived vibronic coupling constants significantly.

To conclude the discussion of using a higher order vibronic Hamiltonian, we agree with

the conclusions in Tran et al ’s work: a low RMS error of the fitted model does not necessarily

correlate with the quality of the derived vibronic coupling constants.33 However, because the

higher order vibronic coupling of the e′2 normal modes is very weak compared to the linear

vibronic coupling terms, the effect of including higher order e′2 terms in the model vibronic

Hamiltonian cannot be clearly observed in this case. Hence, we did not observe any change
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TABLE VII. RMS error (10−8 a.u.) of the fit to the PBE0 orbital energy corresponding to the

E
′′
1 (θ) electronic state.

Order of vibronic model

Mode Quadratic Cubic Quartic

ν9(θ) 14.79 0.88 0.83

ν9(ε) 14.70 1.87 1.66

ν10(θ) 47.94 12.58 1.69

ν10(ε) 48.56 12.51 0.84

ν11(θ) 98.30 32.29 1.74

ν11(ε) 91.26 3.70 1.25

in the values of the linear vibronic coupling constants upon the use of a higher order vibronic

Hamiltonian to fit ab initio calculations. As such, we find it sufficient to include only the

first order terms of the linear JT active e′2 normal modes to describe the JT distortion, and

by extension, the APES of the cyclopentadienyl radical.

Finally, we did not include normal modes that are not linear JT active, such as the e
′
1

normal modes in the cyclopentadienyl radical, within our model of vibronic coupling. The

higher order vibronic coupling terms of some of these normal modes are symmetry-allowed,

which suggests they could contribute to the JT distortion in the cyclopentadienyl radical.

Hence, possible future work to examine the effect of higher order vibronic coupling terms

could be to consider normal modes that are not linear JT active, such as the e
′
1 normal

modes in the cyclopentadienyl radical, in the vibronic model of the system of interest as

well.

V. CONCLUSION

The use of HF, DFT with various exchange-correlation functionals and G0W0 to derive

the vibronic coupling constants of the cyclopentadienyl radical has been investigated in this

work. Towards that end, the IP of the cyclopentadienyl anion was first calculated, and a
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notable improvement to the HF and DFT values upon applying the G0W0 correction was

found.

Next, the linear vibronic coupling constants were calculated from the gradients of the

degenerate HOMOs of the cyclopentadienyl anion for HF and DFT, with the gradients of

the corresponding quasiparticle energies used for G0W0. However, unlike the results for the

IP, the choice of the specific computational method (HF or the various DFT functionals)

was not found to have a significant effect on the obtained linear vibronic coupling constants.

Applying the G0W0 correction then further reduces the differences between the linear vi-

bronic coupling constants derived using the various computational methods, and were found

to yield values that agree well with EOMIP-CCSD values from the literature.

Finally, the vibronic coupling model was expanded to include higher order vibronic cou-

pling terms up to the fourth order. The higher order vibronic coupling constants in the

cyclopentadienyl radical were found to be negligible in comparison to the linear vibronic

coupling constants. Consequently, our results show that there is effectively no pseudorota-

tion barrier in the cyclopentadienyl radical, in good agreement with what has been observed

in the literature.

In sum, we have shown that the JT effect in the cyclopentadienyl radical can be well

understood by considering only the linear vibronic coupling terms, which can be derived

accurately with the use of G0W0. As such, we can thus conclude that computational ap-

proaches that rely on Hedin’s approximations, such as the G0W0 method examined in this

work, have the potential to be an excellent tool towards studying vibronic coupling, and

thus the APES of molecular systems.

SUPPLEMENTARY ONLINE MATERIAL

See Supplementary Material for additional details regarding the factors affecting the fit-

ting process, the numerical convergence of our computational results, and the IP-tuning

procedure used to obtain the range-separation parameter of the LC-ωPBE* functional. The

derived vibronic coupling constants and plots of the orbital and quasiparticle energies ob-

tained with the various exchange-correlation functionals and G0W0 are also included.
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Appendix: Higher order vibronic coupling terms

The details of the extension of the vibronic Hamiltonian to include cubic and quartic

terms is given here. The results from the same set of ab initio calculations were used in

the derivation of the linear and higher order vibronic coupling constants. As such, we only

consider the higher order vibronic coupling of the e′2 normal modes here, and ignore the

inter-mode coupling across different degenerate e′2 normal modes as well.

The symmetric product of the e′2 representation up to the fourth order is given in Table

VIII. As per Equation 10, only the terms with a
′
1 and e′2 symmetry will be JT active.

The contribution of each e′2 normal mode to ∆U in Equation 6 can then be grouped into

TABLE VIII. Symmetric products of the e′2 representation up to the fourth order

Order Product

1 e
′
2

2 e
′
2 ⊗ e

′
2 = a

′
1 ⊕ e

′
1

3 e
′
2 ⊗ e

′
2 ⊗ e

′
2 = e

′
1 ⊕ e

′
2

4 e
′
2 ⊗ e

′
2 ⊗ e

′
2 ⊗ e

′
2 = a

′
1 ⊕ e

′
1 ⊕ e

′
2
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symmetrized combinations of the e′2 normal coordinates, Qθ and Qε, up to the fourth order

as

∆U(Qθ, Qε) = V
(1)

e
′
2(θ)

Qθ + V
(1)

e
′
2(ε)
Qε +

V
(2)

a
′
1

2!

[
1√
2

(Q2
θ +Q2

ε)

]

+
V

(3)

e
′
2(θ)

3!

[
1

2
(Q3

θ +QθQ
2
ε)

]
+
V

(3)

e
′
2(ε)

3!

[
1

2
(Q3

ε +QεQ
2
θ)

]

+
V

(4)

e
′
2(θ)

4!

[
1

2
√

2
(Q4

θ − 6Q2
θQ

2
ε +Q4

ε)

]
+
V

(4)

e
′
2(ε)

4!

[
−4

2
√

2
(Q3

θQε −QθQ
3
ε)

]

+
V

(4)

a
′
1

4!

[
1

2
√

2
(Q4

θ + 2Q2
θQ

2
ε +Q4

ε)

]
, (A.1)

where V
(i)
γ is the ith order vibronic coupling term of the symmetrized combination of Qθ

and Qε with the representation γ = a
′
1 or e′2. We note that the third order e′2 term can be

derived from two possible products: e′2 ∈ e
′
1⊗e′2 or e′2 ∈ a

′
1⊗e′2. However, as the symmetrized

combinations of the two possible products are identical: (Q3
θ +QθQ

2
ε) and (Q3

ε +QεQ
2
θ), the

two terms can be combined for simplicity. The same was done for the fourth order a
′
1

(∈ e′1 ⊗ e
′
1 or ∈ a′1 ⊗ a

′
1) term.

Similar to the analysis of the linear JT active modes in Section II A, the Wigner-Eckart

theorem is then applied to simplify the vibronic coupling matrices, i.e.

V
(i)

e
′
2

= V
(i)

e
′
2(θ)

= V
(i)

e
′
2(ε)

(A.2)

for i = 1, 3, and 4. The matrix representation of the vibronic Hamiltonian up to the fourth

order is then

Hvib. = σe′2(θ)

[
V

(1)

e
′
2

Qθ +
V

(3)

e
′
2

3!

1

2
(Q3

θ +QθQ
2
ε) +

V
(4)

e
′
2

4!

1

2
√

2
(Q4

θ − 6Q2
θQ

2
ε +Q4

ε)

]

+ σe′2(ε)

[
V

(1)

e
′
2

Qε +
V

(3)

e
′
2

3!

1

2
(Q3

ε +Q2
θQε) +

V
(4)

e
′
2

4!

1

2
√

2
(Q3

θQε −QθQ
3
ε)

]

+ I

[V (2)

a
′
1

2!

1√
2

(Q2
θ +Q2

ε) +
V

(4)

a
′
1

4!

1

2
√

2
(Q4

θ + 2Q2
θQ

2
ε +Q4

ε)

]
(A.3)

using the matrices

σe′2(θ) =

1 0

0 −1

 , σe′2(ε) =

0 1

1 0

 , I =

1 0

0 1

 .
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TABLE IX. Derived expressions of the APES in terms of the polar coordinates ρ and φ. The

expressions for the second and third order models are exact, while the expression for the fourth

order here is obtained by truncating Equation (A.5).

i E
(i)
∓

2 ∓V (1)

e
′
2

ρ+
V

(2)

a
′
1

2!
ρ2√

2

3 ∓V (1)

e
′
2

ρ+
V

(2)

a
′
1

2!
ρ2√

2
∓

V
(3)

e
′
2

3!
ρ3

2

4 ∓V (1)

e
′
2

ρ+
V

(2)

a
′
1

2!
ρ2√

2
∓

V
(3)

e
′
2

3!
ρ3

2 ∓
V

(4)

e
′
2

4!
ρ4 cos 5φ

2
√

2
+

V
(4)

a
′
1

4!
ρ4

2
√

2

Diagonalising the Hamiltonian A.3 with polar coordinates Qθ = ρ cosφ and Qε = ρ sinφ

then gives the expression for the fourth order APES (E
(4)
∓ ) as

E
(4)
∓ (ρ, φ) =

V
(2)

a
′
1

2!

ρ2

√
2

+
V

(4)

a
′
1

4!

ρ4

2
√

2

∓

[(
V

(1)

e
′
2

ρ
)2

+
V

(1)

e
′
2

V
(3)

e
′
2

3!
ρ4 +

V
(1)

e
′
2

V
(4)

e
′
2

4!

ρ5 cos 5φ√
2

+

V (3)

e
′
2

3!

ρ3

2

2

+
V

(3)

e
′
2

3!

V
(4)

e
′
2

4!

ρ7 cos 5φ

2
√

2
+

V (4)

e
′
2

4!

ρ4

2
√

2

2 ]1/2

. (A.4)

Expanding the expression for the APES in Equation (A.4) as a series in ρ then gives

E
(i)
∓ (ρ, φ) = ∓V (1)

e
′
2

ρ+
V

(2)

a
′
1

2!

ρ2

√
2
∓
V

(3)

e
′
2

3!

ρ3

2
∓
V

(4)

e
′
2

4!

ρ4 cos 5φ

2
√

2
+
V

(4)

a
′
1

4!

ρ4

2
√

2
+ · · · . (A.5)

Similar expressions for the APES can be derived using a second and third order vibronic

Hamiltonian, and are given in Table IX.

It can be seen that the APES only exhibits a dependence on φ upon the inclusion of the

fourth order vibronic coupling term, which translates to a five-fold degeneracy in the APES

with respect to φ. It is thus necessary to include the fourth order vibronic coupling term

in order to explain the difference between the energies of the cyclopentadienyl radical with

respect to the distortion along Qθ and Qε. The pseudorotation barrier is then simply two

times of this energy difference.

The vibronic coupling constants V
(1)

e
′
2

and V
(3)

e
′
2

can be obtained using the orbital vibronic

coupling constants of the frontier orbitals directly (see Section II A). However, because of
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the totally symmetric fourth order V
(4)

a
′
1

term, the fourth order V
(4)

e
′
2

term has to be derived

as the difference of the fourth order orbital vibronic coupling constants of ψθ and ψε with

respect to Qθ. The constants with a
′
1 symmetry have to be obtained using the total energy

of the system. However, as there have been some issues with regards to the reliability of the

GW total energies of molecular systems,89,121,122 we restrict the derivation of the a
′
1 vibronic

coupling constants to the DFT and HF methods only.
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