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Abstract

Machine learning solved many challenging problems in computer-assisted synthe-

sis prediction (CASP). We formulate a reaction prediction problem in terms of node-

classification in a disconnected graph of source molecules and generalize a graph convo-

lution neural network for disconnected graphs. Here we demonstrate that our approach

can successfully predict reaction outcome and atom-mapping during a chemical trans-

formation. A set of experiments using the USPTO dataset demonstrates excellent per-

formance and interpretability of the proposed model. Implicitly learned latent vector

representation of chemical reactions strongly correlates with the class of the chemical

reaction. Reactions with similar templates group together in the latent vector space.

Introduction

Drug discovery is a challenging multi-dimensional problem in which various characteristics of

compounds need to be optimized together to provide drug candidates. The idea for a target

can come from a variety of sources, including academic and clinical research. Advances

in computer science and machine learning have changed how the drug discovery process is
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performed.1–4 Recent works aimed at the prediction of new chemical compounds with the

desired profile of properties, including efficacy, pharmacokinetics, and safety.1,5,6 This is a

computationally hard problem because the space of available molecules is huge.7 Machine

learning methods make this problem tractable.8–11 Generative models for molecules were

built with a recurrent neural network that generates SMILES12 representation of target

compound character by character.6,13,14 Variational autoencoders and graph neural networks

were successfully applied to the problem.9,10,15 The generative algorithms explore chemical

space beyond the currently enumerated libraries. Therefore, we rarely know a priori how

these molecules could be synthesized.

Today, CASP16 is a particularly active field of chemical research. Organic chemists

recognized the potential of computational methods in practice and developed the first rule-

based method (OCSS) 50 years ago.17 Similar works are CAMEO,18 EROS,19 IGOR,20

SOPHIA.21 Medical chemists use a huge set of unstructured rules to predict products in the

reaction. Computer-aided retrosynthesis would be a valuable tool, but at present, it is slow

and provides results of unsatisfactory quality.22

Modern approaches to the problem rely on deep learning methods. Neural network

architectures for Neural Machine Translation23 were adapted to the forward synthesis prob-

lem.22,24,25 These methods use SMILES representation of the reagents, reactants, and prod-

ucts. It translates the source string to the product string character by character. RNNs

and Transformer26 architectures for NMT demonstrate the excellent performance of the out-

come prediction problem. The Transformer architecture is now the state of the art solution

for many tasks. These sequence-to-sequence methods have several disadvantages. They do

not take advantage of the graph structure of molecules, SMILES language construction and

depth of chemical knowledge. Therefore, graph convolution neural networks (GCNNs) were

proposed to evaluate the probability of a bond between two nodes.8

The sequence-to-sequence models use SMILES strings of reagents and products.27 More

sophisticated methods require the atom mapping.28 The atom mapping of a chemical reac-
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tion is a bijection of the reactant atoms to the product atoms that specifies the terminus

of each reactant atom. Finding the atom mapping in reactions is essential in classifying

reactions, facilitating substructure searches, identifying metabolic pathways.29–31 Labeling

atom mapping requires tedious manual annotation by human domain experts. Most of the

reactions in databases are not mass-balanced and not atom-mapped. It creates problems for

automated machine understanding of chemical reactions.32

Figure 1: A chemical reaction maps reagents into products. On the molecules of reagents,
two types of atoms are labeled: atoms of the main product and centers of the chemical
reaction. Centers are the atoms that change their characteristics.

We propose a model that affords both predicting reaction outcomes and finding atom

mapping at the same time. Two specific tasks are solved in parallel (see Fig. 1). Atoms of

the main product and reaction centers are found. Centers of the reaction are atoms of the

main product. The atoms change their configuration during the reaction. The configuration

of an atom is an aggregate of characteristics of the atom and adjacent bonds. In terms

of graph theory, both tasks are node-classification in a disconnected graph of reactant and

product molecules. The novel Disconnected Graph Attention Convolution neural network

(DRACON) solves the node-classification tasks. Atoms of the main product and centers of

the reaction determine the outcome in the majority of reactions.
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Figure 2: The DRACON architecture. Each step in this pipeline naturally corresponds to the
structure of given molecular graphs. It uses different local features of atoms in molecules to
construct an initial representation of nodes. The final atom representation is given according
to the adjacent node and edges, and other molecular graphs in the reaction. Each atom and
molecules impact the final probabilities with specific weights.

Methods

The overall model pipeline consists of four blocks (see Fig. 2). Firstly, each atom is mapped

to a real vector according to its characteristics in the molecule. The model uses numerical

characteristics of atoms. Secondly, the vectors are updated with Relational Graph Con-

volution Neural Network (RGCNN).33 The RGCNN generalizes Graph Convolution Neural

Network34 for graphs with different edge types that correspond to chemical bonds. In this

work, we use extended molecular graphs with molecules’ and reaction’s level nodes to pass in-

formation across different molecules.11 Then, the Transformer encoder processes the vectors.

The block simulates intermolecular interaction, which is a mechanism of chemical reactions.

Finally, the fully-connected neural network (FCNN) gives probabilities for each atom in the

node classification problems.

Compared with other works, DRACON has several novel aspects in terms of neural

network architecture. DRACON generalizes the graph convolution neural network for the

disconnected molecular graphs. The natural structure of the DRACON is suitable to add

features of molecules, atoms like valencies, hybridization, types of chemical bonds, etc.
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Experiments conducted on the dataset of reactions, which were extracted from the US

patents (USPTO). The model demonstrates excellent performance in both node-classification

tasks. It is a generalization of RGCNN architecture for disconnected graphs. DRACON

uses an unsupervised approach to atom-mapping and bridges the gap between data-driven

approaches and traditional rule-based systems. Finally, the model analysis illustrates that it

gains substantial chemical insight, and one could differentiate and group chemical reactions

by their types in a fully unsupervised fashion.

Problem statement. Molecules in a chemical reaction can be considered as a disconnected

graph G with features of nodes and edges. Our model F maps this graph G to the labels ŷ of

its nodes, y are ground-truth labels. Let L is an internal criterion of the model quality. Then

the problem of model selection for node classification in a disconnected graph is formulated,

F : G→ ŷ

min
F
L(y, ŷ).

Initialization of vector representation for nodes. The description of the atom consists

of K categorical features. Each feature of the atom is represented as boolean vector bik with

one-hot encoding.35 The vector embeds into real value space with multiplying by the real

value weight matrix Wk.

h
(0)
ik = Wkbik.

Where i is an atom, k is an index of the feature, and a higher index shows an index of

the layer in the entire neural network.
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The final vector representation is a concatenation of embeddings of all features,

h
(0)
i = concat[h

(0)
i0 ,h

(0)
i1 ,h

(0)
i2 , . . . ,h

(0)
iK ].

Updating of vector representation of nodes. In graph convolutional neural network,

vector representation of nodes is updated according to equation,

h
(l+1)
i = ReLU

(
W(l)h

(l)
i +

∑
j∈Ni

1

ci
W(l)h

(l)
j

)
. (1)

Where ReLU is a rectified linear unit, Ni is a set of atoms which is adjacent with i, ci is

a normalising factor,34 which is often the number of input edges.

One disadvantage of the model (1) is the assumption that edges in the graph are the

same. The type of chemical bond is an important feature of a molecular graph. In Relational

Graph Convolution Neural network (RGCNN33), a vector representation of node is updated

according to the equation,

h
(l+1)
i = ReLU

(
W(l)h

(l)
i +

∑
r∈R

∑
j∈Ni

1

ci,r
W(l)

r h
(l)
j

)
.

Where for each type of edge r, there is a unique weight matrix W
(l)
r .

Passing information between graph components. The core of the proposed model is

Graph Neural Network.36 The output of the model must depend on all atom’s representation

in source molecules. Therefore, the updating mechanism of RGCNN must be generalized to

work with disconnected graphs. The authors offer two methods of generalization of original

GCNN for disconnected graphs.

The main idea of the first method is constructing additional vector representations of

molecules h
(l)
mi and reaction h

(l)
r . Vector representations of atoms in molecule h

(l)
i is connected
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with corresponding molecule representation h
(l)
mi and the molecule representation connected

with the reaction representation h
(l)
r (see Fig. 3a). Modified updating rules are displayed in

equations,

h
(l+1)
i = ReLU

(
W(l)h

(l)
i + W

(l)
mlh

(l)
mk

+
∑
r∈R

∑
j∈Ni

1

ci,r
W(l)

r h
(l)
j

)
,

h(l+1)
mk

= ReLU

(
W(l)h(l)

mk
+ W

(l)
rl h(l)

r +
∑
j∈mk

1

|mk|
W

(l)
mlh

(l)
j

)
,

h(l+1)
r = ReLU

W(l)h(l)
r +

∑
mj∈M

1

|M |
W

(l)
rl h(l)

mj

 ,

Where |mk| is a number of atoms in a molecule, |M | is a number of molecules in a

reaction.

(a) Extended molecular graph with introduced reaction and
molecular level pseudo-nodes. The structure is suitable for ap-
plying GCNNs for disconnected graphs.

(b) Architecture of the Trans-
former Encoder layer (The
image from original paper26).

Figure 3: Two techniques that generalize GCNN on disconnected graphs. The figure 3a
demonstrates the extended molecular graph, which unites source molecules. The figure 3b
illustrates the encoder block of the Transformer architecture. Outputs of GCNN is processed
with the Transformer to exchange information between graph components.

The second proposed method uses an attention mechanism to aggregate information

across nodes in a disconnected graph of source molecules.26,37 The output of the method
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depends on all inputs with trainable coefficients. In this work we propose using encoder of

Transformer26 (see Fig. 3b) for aggregation information across nodes. The core feature of

the model is multi-head attention.

Multi-head attention transforms matrix of vector representation of nodes according to

the equation,

H(l+1) = concat[head1, head2, . . . , headh]WO, (2)

headi = Attention
(
H(l)WQ

i ,H
(l)WK

i ,H
(l)WV

i

)
.

In the equation (2), Attention is a matrix function,

Attention(Q,K,V) = softmax

(
KQ>
√
dmodel

)
V.

Where Q,K,V are queries, keys, values; dmodel is a dimension of key.

The model also takes advantage of several technical tricks that make the training process

faster and more efficient: residual connections, normalization layers, feed-forward layers.38,39

Construction of the endpoints. The final vector representations are passed to a fully-

connected neural network to get the probability of the node’s class,

h
(l+1)
i = ReLU

(
linear(h

(l)
i )
)
,

P̂(yi = 1) = sigmoid
(

linear(h
(n)
i )
)
.

Where the final non-linearity is a sigmoid function.

Loss function. Value of loss function for a reaction is an average cross-entropy,

L = − 1

n

n∑
i=1

(
yi log P̂(yi = 1) + (1− yi) log(1− P̂(yi = 0))

)
.
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General loss is an average of losses on each reaction.

Multi-task learning. Experiments demonstrate that learning multiple related tasks from

data at the same time increases model performance comped with learning these tasks inde-

pendently.40 We solve two correlated node classification problems. The multi-task learning

technique was adapted to the problems with sharing parameters in the first three blocks of

our model. The final value of loss function is a sum of losses for either classification problem.

Table 1: The USPTO STEREO dataset of chemical reactions. The dataset consists of one
million chemical reactions extracted from the US patents, which was registered between 1976
and 201541

Field Description Example
Source SMILES of source molecules CS(=O)(=O)Cl.OCCCBr>CCN(CC)CC.CCOCC

Target SMILES of the main product CS(=O)(=O)OCCCBr

Canonicalized Reaction SMILES of the chemical reaction
CS(=O)(=O)Cl.OCCCBr>CCN(CC)CC.CCOCC>

CS(=O)(=O)OCCCBr

Original Reaction SMARTS of the chemical reaction

[Br:1][CH2:2][CH2:3][CH2:4][OH:5].

[CH3:6][S:7](Cl)(=[O:9])=[O:8].

CCOCC>C(N(CC)CC)C>

[CH3:6][S:7]([O:5][CH2:4][CH2:3]

[CH2:2][Br:1])(=[O:9])=[O:8]

Patent Number Unique number of the patent US03930836
Paragraph Number Paragraph number in the patent 2
Year Year of publication 1976

.

Dataset of chemical reactions. Most of the publically available datasets are based on a

set of reactions that were extracted from United States patents published between 1976 and

September 2016 with text-mining.41 The original patent information describes a complex

chemical synthesis process consisting of multiple steps. The information summarised to a

SMARTS42 string (see Tab. 1), which includes three groups of molecules: the reactants,

the reagents, and the products. Any other information about the synthesis process, such as

a physical condition, was removed. The original dataset has noise and duplicate examples.

In the previous studies, 8,24 quality of methods is evaluated on subsets. Reactions without

duplicates and with a single product make up the USPTO STEREO dataset, which contains

one million reactions. The USPTO MIT is obtained with more sophisticated filtering. It
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consists of 300 thousands of reactions. The USPTO 50k contains 50 thousands of reactions,

which has one of ten classes.

In the experiments, we use the USPTO STEREO dataset with the original split into

train, test, and validation parts. The USPTO 50k was used to analyze the model’s insights.

The SMARTS representation of a reaction is converted to a molecular graph with open-

source library RDKit.43 The library is used to calculate atom features: degree, hybridization,

aromaticity, implicitness, is a ring, number of radical electrons, formal charge.

Results and discussion

The model evaluation. The final model achieves 61% (see Table 3) full-match accuracy

on detection of the main product and 60% on detection centers in the reaction. We can not

compare the result with the previous works8,25,32 because our research focuses on finding

atoms of the main product and centers of reactions. We have not built a full solution for

the entire atom mapping problem or outcome prediction problem. The model was carefully

selected from the sequence of models of increasing expressivity (see Table 2). The selection

illustrates the importance of each proposed modification.

Table 2: Consecutive hypothesis testing during model design.

Modification
Model

BASE EG T EGT EGTB EGTBF MT EGTBF

Extended molecular graph - + - + + + +
Self-Attention - - + + + + +
Types of bonds - - - - + + +
Features of nodes
from RDKit

- - - - - + +

Multi-task learning - - - - - - +

The simplest model (BASE) consists of RGCNN and FCN blocks(see Fig. 2). It takes

a disconnected graph of source molecules where only types of nodes assume to be known.

The model does not use bond types and features of atoms and updates vector representation

of atoms only inside a component of a disconnected graph. Therefore, the BASE model
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Table 3: Results of the experiments. FM is an average full-match accuracy: the ratio
of reaction in which all atoms classified correctly. F1 is an average F1-measure between
ground-truth classes of atoms in the reaction and predicted classes.

Product mapping Center detection
FM F1 FM F1

BASE 0.21 0.92 0.15 0.502
EG 0.45 0.943 0.40 0.714
T 0.36 0.938 0.29 0.643
EGT 0.47 0.946 0.43 0.731
EGTB 0.53 0.950 0.55 0.809
EGTBF 0.59 0.959 0.60 0.838
MT EGTBF 0.60 0.963 0.61 0.841

demonstrates poor performance because the atom class’s final class depends only on the local

atomic environment in a single molecule. Most chemical reactions involve several reactants,

catalysts, and solvents. Therefore intermolecular interactions are of primary importance for

the mechanism. Using the extended molecular graph (EG) as an input of RGCNN expands

the receptive field to the whole disconnected graph of all reactants. A significant increase

in the model performance proves that introduced representation of molecules and whole

reaction mimics this chemistry. Another proposed generalization of RGCNN is using Encoder

of Transformer (T) architecture after convolution layers. The modification boosts the model

quality compared with BASE, but EG outperforms the T model. Both modifications (EGT)

makes the results better compared to EG and T individually.

The next model (EGTB) introduces different types of chemical bonds: single, double,

triple, and aromatic. The information results in yet another performance increase. EGTB

models encode prior knowledge that the type of chemical bonds impacts the mechanism of the

reaction. Finally, using different RDKit computed properties of the atoms while initializing

the embeddings of nodes in the extended molecular graph results in another performance

boost. The properties are connection degree, hybridization, aromaticity, is a ring, number of

radical electrons, formal charge. Adding the properties to the model (EGTBF) significantly

improves model quality. The main product mapping quality rises to 59% full-match accuracy;
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centers of the reaction is detected with 60% full-match accuracy. The experiment displays

that the model has an intuitive chemically-interpretable architecture that can take advantage

of different characteristics of atoms and chemical bonds.

The aforementioned models were trained separately for each task. However, prediction

of atoms in the main product also determines part of the centers of the reaction. Joint

learning of different correlated problems from data is a popular technique that increases

model quality in a variety of problems.40,44,45 We applied multi-task learning to our model

(MT EGTBF). The modification slightly increases model quality in both cases. Moreover,

the model is computationally efficient because it shares RGCNN and Transformer parts and

task-specific FCNNs. Described experiments were conducted on reactions with less than 50

atoms in source molecules to accelerate multiple experiments. Learning the best model for

higher limitation shows that model quality decrease slightly.

Error analysis. We investigate the dependency of the model quality on the length of

source molecules and the number of centers in a reaction (see Fig. 5). Overall, the quality

of the model does not depend on the number of atoms in source molecules. However, the

quality dramatically decreases with increasing the number of centers. Multiple centers in a

reaction hint to a complex reaction mechanism, where chemical compounds undergo multiple

transformation steps (see Fig. 4). Such reaction center analysis could be useful for detection

of questionable reactions, like transformations with zero centers.

Chemical insights. Model interpretation is a significant component in any ML study.46

In this section, we demonstrate how DRACON learns and memorizes useful information

from disconnected reaction graphs. First, we investigate the learned latent vector represen-

tations of reactions. The best model (MT EGTBF) demonstrates that pseudo-nodes in

the extended graph (see Fig. 3a) of source molecules learn chemical information about the

whole reaction. Looking for close neighbors in this space, we see that they share the same

mechanism. In Fig. 6 we list two examples with corresponding L2 distances. As the distance
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Figure 4: Examples of reactions with different number of centres.

Figure 5: The analysis of the dependency of the MT EGTBF model quality on the number of
atoms in source molecules and the number of centers. The color in the heatmaps illustrates
the distribution of reactions in the test part of the USPTO STEREO dataset. Annotated
values are the percent of the right predictions in terms of full-match accuracy. The left figure
demonstrates the quality of the main product mapping. The right figure displays the quality
of detection of the centers

grows, the similarity drops, by the 50-th neighbor, you start to encounter very different

reactions.

In other to visualize the chemical space of reactions, we selected the USPTO 50k dataset,27,47

which contains 50 thousands of reactions that were annotated to ten different classes. Un-
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Figure 6: Examples of nearest reactions. The figure shows that a similar vector representa-
tion of chemical reactions corresponds to reactions with the same mechanism.

fortunately, this dataset is highly imbalanced. We separately visualized the five largest and

smallest classes for clarity. TSNE48 maps (see. Fig. 7) show significant correlation of reac-

tion’s representation with the class of reaction. The separation into classes is not perfect

because the properties of the reaction representation space were learned fully unsupervised.

However, the result demonstrates that the model has the potential to create high-quality

descriptors for molecules, reactions, molecular sets.
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(a) (b)

Figure 7: The TSNE maps of vector representations of reactions are here. Colors correspond
to classes of chemical reactions in the USPTO 50k dataset. The figure 7a displays reactions
from five most frequent classes. The reactions make up 90% of USPTO 50k dataset. The
figure 7b represents five less frequent classes.

Conclusions

We developed an interpretable and accurate model for outcome prediction and atom map-

ping in chemical reactions. A novel neural network architecture, DRACON were proposed

for node classification problem in disconnected graphs. It generalizes graph convolution neu-

ral network for a disconnected graph with self-attention mechanism and learning hierarchical

representations of source graphs. The model also generalizes the idea of graph representation

learning with pseudo-nodes, which is state-of-the-art for a variety of problems in drug dis-

covery.11 The model was analyzed on the large-scale USPTO STEREO dataset. The results

demonstrate that DRACON predicts atoms of the main product and centers in a chemical

reaction with high accuracy.

DRACON has an interpretable structure: it uses types of chemical bonds and character-

istics of atoms in source molecules. The introduced pseudo-nodes of chemical reactions (see

Fig. 3a) implicitly learn the similarity of chemical reactions.
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This paper considers the application of DRACON to molecular graphs in chemical reac-

tions. The approach presented can be applied to disconnected graphs in general. It expands

the graph convolution neural networks for various problems in computational chemistry such

as atom classification in molecular graphs, classification of molecular graphs, different predic-

tion of atom’s properties in reactions and solutions. Using local features of source molecular

graphs increases the accuracy of the model for more complex tasks.

In this paper, we focus on finding atoms of the main product and centers of reaction. We

plan to extend the methods for entire atom mapping and outcome prediction in chemical

reactions in the future work. The model has several limitations. The proposed architecture is

not suitable for multiple mappings detection like equivalent symmetric atoms in the molecule.
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