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Abstract

Biomedical information mining is increasingly recognized as a promising technique to accelerate
drug  discovery  and  development.  Especially,  integrative  approaches  which  mine  data  from
several  (open)  data  sources  have become more attractive  with  the  increasing possibilities  to
programmatically access data through Application Programming Interfaces. The use of open data
in conjunction with free, platform-independent analytic tools provides the additional advantage
of flexibility, re-usability, and transparency. Here, we present a strategy for performing in silico
drug repurposing with the analytics platform KNIME, using data for  38 suggested COVID-19
drug targets as a timely use case. The workflow includes a targeted download of data through
web services, data curation (including chemical structure standardization), detection of enriched
structural patterns, as well as substructure searches in DrugBank and a recently deposited dataset
of antiviral drugs provided by Chemical Abstracts Service. Developed workflows, tutorials with
detailed step-by-step instructions, and the information gained by the analysis of COVID-19 data
are made freely available to the scientific community. The provided framework can be reused by
researchers  for  other  in  silico drug  repurposing  projects,  and  it  should  serve  as  a  valuable
teaching resource for conveying integrative data mining strategies.
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List of Abbreviations

API                        Application Programming Interface

KNIME                  Konstanz Information Miner

CDK                      Chemistry Development Kit

UniProtKB            The Universal Protein Resource KnowledgeBase

COVID-19            Coronavirus Disease 2019

SARS-CoV-2         Severe Acute Respiratory Syndrome Coronavirus 2

PDB                       Protein Data Bank

NMR                      Nuclear Magnetic Resonance

Cryo-EM               Cryo-Electron Microscopy

RCSB                    Research Collaboratory for Structural Bioinformatics

AID                       Assay ID

CID                      Compound ID

CAS                     Chemical Abstract Service

MCS                    Maximum Common Substructure

PCA                     Principal Component Analysis

ACE2_HUMAN  Angiotensin-Converting Enzyme 2 in Human

R1AB_CVHSA   Replicase polyprotein 1ab in SARS-COV

R1AB_SARS2    Replicase polyprotein 1ab in SARS-COV

R1A_CVHSA     Replicase polyprotein 1a in SARS-COV

ITAL_HUMAN  Integrin L-Alpha in Human

LabuteASA        Labute’s Accessible Surface Area

SMR                   Molecular Refractivity

TPSA                 Topological Polar Surface Area
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Background

Computer-aided mining of biomedical data is an emerging field in cheminformatics and drug
design which has reshaped current drug development. (1–3) Open access to various life-science
repositories, such as ChEMBL (4), PubChem (5), UniProt (6), or DrugBank (7),  has provided a
competitive advantage when using data-driven drug discovery approaches as opposed to non-
integrative  approaches (8). Furthermore,  many  databases  enable programmatic  access  of  the
stored  data  through  an  Application  Programming  Interface  (API).  Consequently,  it  is  of
importance to find appropriate tools to analyze gathered data in an automated way. The Konstanz
Integration  Miner  (KNIME) is  an  open-source  data  pipelining  and analytics  platform which
enables the creation of (semi)automated workflows to process, transform, analyze, and visualize
the data as well as the generation and deployment of approximative mathematical models. (9) In
the recent past, the KNIME community has released a plethora of cheminformatics extensions,
such as the RDKit,  (10) Chemistry Development Kit (CDK), (11) Indigo, (12) or Vernalis (13)
toolkits.

In this study, we are providing a general strategy and a step-by-step tutorial for automated data
access and data integration from multiple open data sources (which are providing an API), along
with  extensive data  curation and cheminformatics  data  analysis  by using the pipelining tool
KNIME.  Individual  operations,  such  as  the  specification  and  execution  of  API  requests,
extraction  of  properties  through  JSON/XPath  queries,  structural  data  standardization,
identification  of  enriched  structural  fragments,  and  substructure  searches  in  external  data
sources, are thoroughly described and demonstrated herein.

Large-scale data fusion supplied with cheminformatics data analyses can uncover underlying
patterns within the data and can pave the way for the development of novel medicine. Such a
strategy can be leveraged for drug repurposing (also known as drug repositioning) strategies, in
which a re-evaluation of an already approved drug can lead to a treatment for another disease.
(14) This approach is particularly useful to, e.g., discover a cure for orphan diseases, (15) or to
find a rapid solution for an ongoing pandemic, such as Coronavirus disease 2019 (COVID-19).
(16) COVID-19 is a viral disease caused by the Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) which currently represents a global health threat. (17) Up to now, no efficient
treatment has been unraveled to combat COVID-19. In addition to the other research initiatives,
such  as  the  development  of  a  vaccine, (18) or  convalescent  plasma  therapy,  (19) drug
repurposing is a way to investigate already known drugs for treating novel diseases.  

In this study, protein and ligand information related to potential treatment options for COVID-19
as a use case are gathered and analyzed to demonstrate the usefulness of automated workflows
for data integration and cheminformatics analysis using programmatic data access from multiple
open data sources. Just recently, about 66 druggable protein targets of SARS-CoV-2 have been
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reported. (20) Here,  proteins  listed  in  the  UniProtKB  pre-release  web  page  (available  at
https://covid-19.uniprot.org/uniprotkb) are used as a starting point. API calls are specified to map
UniProt IDs of COVID-19 targets to available structural data in the Protein Data Bank (PDB).
(21) Ligands co-resolved with a protein structure are extracted as a separate entity. For sake of
data augmentation, ligand bioactivity measurements (such as Ki, IC50, or Km end-points) for the
protein  targets  under  study  are  retrieved  from  ChEMBL (4),  PubChem (5),  and  Guide-to-
Pharmacology  (IUPHAR). (22) After  data  cleaning  and  chemical  structure  standardization,
Murcko  scaffolds (23) are  being  extracted  from the  ligands  in  the  dataset  and  grouped  by
similarity into structural queries for subsequent substructure searches in DrugBank (7) and the
CAS  COVID-19  antiviral  candidate  compounds  dataset (available  upon  request  at
https://www.cas.org/covid-19-antiviral-compounds-dataset).  These  searches  allow  for  the
identification  of  structurally  analogous  compounds  which  could  potentially  show  similar
pharmacological action at suggested COVID-19 drug targets. A list of identified hits, along with
a detailed analysis of COVID-19 data,  is provided as an output of the workflow. A schematic
overview of the whole data-driven drug repurposing workflow is depicted in Figure 1. 

Taken together, the developed data mining pipeline is a useful resource for any  in silico drug
repurposing  project  and  is  exemplified  on  basis  of  a  drug  repositioning  strategy  for  the
Coronavirus  Disease  2019  (COVID-19)  which  is  currently  representing  a  health  threat  of
enormous worldwide impact. The step-by-step instructions allow for an easy implementation for
other  drug  discovery  projects  along  these  lines  and  they  shall  give  especially  guidance  to
students or researchers new to the field of data-driven drug discovery. All workflows can be
accessed via an open GitHub Repository (available at https://github.com/AlzbetaTuerkova/Drug-
Repurposing-in-KNIME).
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Figure 1: Schematic overview of the data-driven drug-repurposing workflow.

5



Methods

1. Step: Programmatic access to UniProt and cross-referencing to retrieve structural
data from the Protein Data Bank

UniProt IDs are used to retrieve available protein structures stored in the Protein Data Bank in
Europe (PDBe). (21) When integrating data from diverse sources, it becomes beneficial to query
databases programmatically, i.e., without the need of laborious manual data download and data
integration. UniProtKB and other databases used in this example enable targeted access of the
stored data through an Application Programming Interface (API). UniProt entries are returned in
different file formats (.txt, .xml, .rdf, .fasta, .gff). 

In the KNIME workflow discussed herein, a triad of KNIME nodes is consecutively executed (1)
to specify the API request (via the ‘String Manipulation’ node),  (2) to retrieve data from web
services  (via  the  ‘GET request’  node),  and (3) to  perform  XPath  queries  to  extract  useful
properties  for  a  given  protein  (via  the  ‘XPath’  node).  The  respective  part  of  the  KNIME
workflow is depicted in Figure 2. 

Figure 2: Three nodes for creation, execution, and post-processing API requests. 

The input data is a list of UniProt IDs – in this use case for proteins that are listed to be of
potential interest for treating COVID-19 (38 entries) – that is read in by a ‘File Reader’ node.
Next, the ‘String Manipulation’ node is used to generate the API request for every UniProt ID
from the input table. The join() function in the ‘String Manipulation’ node is used and the
corresponding UniProt ID is forwarded to the string as a variable ($Uniprot ID$ column).
The  strip() function  removes  leading  and  trailing  blanks  from  the $Uniprot ID$
column:

join("https://www.ebi.ac.uk/uniprot/api/covid-
19/uniprotkb/accession/",strip($Uniprot ID$),".xml")

As an output of the ‘String Manipulation’ node, a column with the respective API requests is
appended to the output table, such as

https://www.ebi.ac.uk/uniprot/api/covid-
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19/uniprotkb/accession/O15393.xml

By executing the API requests (via the ‘GET Request’ node), the XML file is downloaded from
UniProt  and appended to  the output  table  as  XML cell.  Additionally, columns reporting  the
content type,  and the HTTP status code are appended (Figure 3).  There exist  five classes of
HTTP status codes: (1) Informational responses (100-199), (2) Successful responses (200-299),
(3) Redirects  (300-399),  (4)  Client  errors  (400-499),  and (5)  Server  errors  (500-599).  The
information provided about the status of the request can be used to filter out any useless data
entries.  It is recommended to increase the timeout in the ‘GET Request’ configuration as the
default specification (2 sec) is usually insufficient to receive all requested data. 

Figure 3: An example of the output table generated after the execution of the ‘GET Request’
node. Status, content type, and XML file are appended to the table as separate columns. 

Subsequently, the ‘Xpath’ node (XPath 1.0 version) is used to extract the information of interest
on basis of querying different XML elements and the associated XML attributes. One can either
define a Xpath query within the ‘Xpath’ node from scratch. Another way is to perform a double-
click on a specific section in the XML-Cell Preview table and the Xpath query is  generated
automatically. The XPath query below is used to retrieve all  available PDB IDs for a given
UniProt ID:

/dns:uniprot/dns0:entry/dns0:dbReference[@type='PDB']/@id

The  ‘dns0’  prefix  corresponds  to  the  namespace  used  in  the  XPath  query.  Here,
http://uniprot.org/uniprot’  is  used  as  a  namespace.  Namespaces  are  defined
automatically and are listed in the node configuration.

The example XPath query shows that PDB IDs are integrated within the  <dbReference>
XML element. However, UniProt entries consist of multiple <dbReference> elements which
are pointing to different data sources, such as PubMed, GO, InterPro, Pfam, or PDB:

<dbReference type="PubMed" id="12730500"/>
<dbReference type="GO" id="GO:0039579">
<dbReference type="InterPro" id="IPR036333">
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<dbReference type="Pfam" id="PF06478">
<dbReference type="PDB" id="6NUR">

A  key  task  is  to  query  data  from  XML  elements  which  do  possess  the  ‘PDB’  attribute
exclusively. The ‘@’ character is used to specify certain XML attributes in the XPath query.
Therefore,  dbReference[@type='PDB'] is forwarded to the XPath query to get all PDB

IDs by querying the @id attribute. 

Programmatic access to the COVID-19 Data Portal is available through PDBe graph APIs. The
PDB entities are  returned in  JSON format  by default.  Below  an example is  provided for a
request  to  fetch  protein  structures  for  the  ACE2  receptor  (UniProt  ID:  Q9BYF1)  from the
COVID-19 Data Portal: 

https://www.ebi.ac.uk/pdbe/graph-
api/mappings/best_structures/Q9BYF1

Similar to the ‘XPath’ node for processing XML documents, KNIME also provides the ‘JSON
Path’ node which is used to process JSON data. The ‘JSON Path’ node enables to create JSON
Path queries in both dot notation and bracket notation (depending on how the properties on an
object  are  specified  in  the  syntax).  In  the  discussed  KNIME workflow  herein,  the  bracket
notation is applied to extract the PDB IDs:

$..[*].['pdb_id']

Since the data are listed as a collection column type, the ‘JSON Path’ node is followed by the
‘UnGroup’  node  to  list  multiple  PDB  IDs  per  protein  target  into  separate  rows.  After
concatenating data (‘Concatenate’ node) retrieved from PDB and the COVID-19 Data Portal,
duplicates for a respective target were removed by grouping the data by target UniProt ID and
PDB IDs  (‘GroupBy’ node).  The  ‘PDB ID’ column is used to create the URL path to extract
different properties by using the same strategy as shown in Figure 2. An example of such URL is
given below:

https://files.rcsb.org/view/2VYI.pdb

The ‘PDB Loader’ and the  ‘PDB Property  Extractor’  nodes  are  available  from the  KNIME
repository (created by Vernalis, Cambridge, UK) to facilitate analysis of PDB data in KNIME
(Figure 4). These nodes were employed in order to explore properties of the PDB files, such as
the experimental method used (X-ray diffraction, solution NMR, cryo-EM, theoretical models),
the number of stored models, the resolution of structures, Space groups, R-factor, and so on. 
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Figure 4: PDB nodes which enable to fetch and extract various properties of the deposited PDB 
structures.

Next, the available PDB structures  were examined for their availability of co-resolved ligands.
Ligand information can be received through the RCSB PDB RESTful Web services by creating
the following request:

https://www.rcsb.org/pdb/rest/ligandInfo?structureId=2VYI

The XML column is processed by the ‘XPath’ node by using the following XPath queries:

/structureId/ligandInfo/ligand/chemicalName    

/structureId/ligandInfo/ligand/@chemicalID    

/structureId/ligandInfo/ligand/@molecularWeight    

/structureId/ligandInfo/ligand/@structureId    

/structureId/ligandInfo/ligand/@type    

/structureId/ligandInfo/ligand/formula    

/structureId/ligandInfo/ligand/InChIKey    

/structureId/ligandInfo/ligand/InChI    

Subsequently,  PDB  entries  without  a  co-resolved  ligand  are  filtered  out  (by  applying  the
‘RowFilter’ node). Chemical structures of the ligands can be displayed by converting the string
format into a structural format (such as the SMILES notation) via the ‘Molecule Type Cast’ node.
The ‘GroupBy’ node is used to keep unique ligand structures per protein target (grouping by
UniProt ID and smiles string).
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2. Step:  Fetching  ligand  bioactivity  data from  open  bioactivity  data  sources  via
programmatic data access

Orthogonal to fetching ligand data for potential COVID-19 targets from their protein structures,
ligands and their bioactivities can also be collected from open pharmacological databases. In this
example, data is retrieved from ChEMBLdb (version 26), (4) PubChem, (5) and IUPHAR (also
known as Guide-to-Pharmacology, version 2020.2) (22) by using the respective web services via
the ‘Get Request’ and ‘XPath’ nodes in KNIME. Automated data access can be achieved by
using predefined identifiers for targets, ligands (such as ligand structure, available bioactivities,
or molecule names), biochemical assays, and so  on.

The KNIME workflow for fetching ChEMBL data allows to map UniProt IDs of COVID-19
drug targets to target ChEMBL IDs and subsequent retrieval of ligand bioactivities and  their
respective structural information (here: canonical smiles), document ChEMBL IDs, and Pubmed
IDs for the primary publication. A major challenge is the limited number of bioactivities (up to
1,000 bioactivities) that are being fetched per single call. The KNIME workflow therefore has to
be adopted to fetch all available data without manual intervention. The metanode that does the
trick  (termed ‘Get bioactivities per target’) works as follows:

1. A single XML file per target is downloaded and the number of bioactivities integrated within
the <total_count> XML element is extracted.

2. The number of iterations needed to fetch all available bioactivities per  target is calculated by
dividing the number of bioactivities by 1,000 and then rounding the result up (ceil() function

in the ‘Math Formula’ node).

3. A recursive loop is used in order to process protein targets one-by-one.

4. A nested loop is used within a recursive loop where the API call is modified in a way that it
dynamically  changes  the  ‘off-set’  parameter  per  each  iteration;  the  ‘off-set’  parameter
determines which is the number of bioactivities that should be skipped before downloading the
next portion of bioactivities for a given target. After the loop ends, all information needed is
extracted from the collected XML files by the ‘Xpath’ node.

On basis of an example,  this  procedure shall  be illustrated: There are 2,410 bioactivities for
protein X available. Thus, three iterations are needed to fetch all data available for protein X.
Within  each iteration,  a  column  is  appended  to  the table  containing  the API  call  with  the
corresponding off-set parameter, i.e.

https://www.ebi.ac.uk/chembl/api/data/activity?
target_chembl_id=CHEMBL5118&limit=1000&offset=0 (iteration#1)

https://www.ebi.ac.uk/chembl/api/data/activity?
target_chembl_id=CHEMBL5118&limit=1000&offset=1000 (iteration#2)
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https://www.ebi.ac.uk/chembl/api/data/activity?
target_chembl_id=CHEMBL5118&limit=1000&offset=2000 (iteration#3)

At the end of  the  loop,  2,410 bioactivities  have  been collected for  protein X and these are
processed as indicated in the description above. 

Step 3 and 4 from the workflow described above  are visually depicted in Figure 5.

Figure 5: Nested recursive loops used to fetch the bioactivity data from ChEMBL.

In case of PubChem, UniProt IDs are mapped to ‘PubChem Assay IDs’ (AID) in the first step.
Further,  AIDs  are  mapped  to  available  compounds  by  ‘PubChem  Compound  ID’  (CID),
including  bioactivity  measurements  and  associated  PubMed  IDs.  Compound  structures  and
names are retrieved in the next step. In some cases, compound names in PubChem are included
in the form of molecule ChEMBL IDs. If this condition is true, the ChEMBLdb is additionally
queried to download a compound name, if available.

In order to query IUPHAR data, the UniProt ID is mapped to the IUPHAR target ID. API calls
have a specific syntax for accessing substrates, e.g.:

http://www.guidetopharmacology.org/services/targets/2421/substrates

and for accessing inhibitors, e.g.:

http://www.guidetopharmacology.org/services/targets/2421/interactions

where  “2421”  is  an  identifier  for  a  specific  target  ID.  Compound  ID,  PubMed ID,  affinity,
affinity  type  (corresponding  to  a  certain  end-point),  and  action  (corresponding  to  a  certain
activity  annotation)  were  retrieved  by  using  the  ‘JSON Path’ node.  Retrieval  of  the  ligand
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structural format is done by an additional API call on basis of the respective ligand ID. 

Bioactivity values are converted to their negative logarithmic representation and binary labels
(‘1’ for active and ‘0’ for inactive) are assigned on basis of an activity cut-off. In this example, all
compounds possessing a negative logarithmic value greater than 9 (i.e., < 1 nM) were labeled as
‘1’, while the rest was labeled as ‘0’. 

After merging the output tables from ChEMBL, PubChem, and IUPHAR, data are grouped to
keep  unique  ligands  per  target  and  median  values  for binary  activity  labels  (  by  using  the
‘GroupBy’ node). In addition, only active ligands per target (label ‘1’) are kept and the final table
is concatenated with ligand structures from PDB entries.

A  prerequisite  for  merging ligand  data  from  diverse  sources  is  the standardization  of the
molecular representation. A similar curation strategy  like the one published by Gadaleta et al.
(24) was applied:

1. Characters encoding stereoisomerism in SMILES format (@; \; /) are removed by using the
‘String Replacer’ node since for the subsequent operations this information is not needed.

2. Salts are stripped by using the ‘RDkit Salt Stripper’ node.  (This node works with pre-defined
sets of different salts/salt  mixtures by default.  If  requested,  additional salt  definitions can be
forwarded to the node.)

3. Salt components are listed in the output table using the ‘Connectivity’ node  (CDK plugin)
followed by the ‘Split Collection Column’ node. 

4. The ‘RDKit Structure Normalizer’ node neutralizes charges and checks for atomic clashes, etc.
Additional criteria for compound quality check can be adjusted in the ‘Advanced’ section of the
node configuration.

5.  The  ‘Element  Filter’  node  keeps  compounds  containing  the  following  elements  only:
H,C,N,O,F,Br,I,Cl,P,S).

6.  InChI,  InChiKey, and Canonical  smiles  formats  are  finally  created  from the  standardized
compounds.

Steps 2-4 are visually depicted in Figure 6. 
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Figure 6: A part of the standardization workflow used to strip salts and neutralize charges. 

3. Step: Substructure searches to identify potentially interesting compounds for drug
repurposing 

Finally, the merged datasets are used to generate structural queries in SMARTS format in  order
to perform substructure searches in DrugBank (version 5.1.6, approx. 10,000 compounds) and in
the COVID-19 antiviral candidate compound dataset provided by the Chemical Abstracts Service
(approx. 50,000 compounds, available upon request at  https://www.cas.org/covid-19-antiviral-
compounds-dataset).

Murcko scaffolds are extracted (‘RDKit Find Murcko Scaffolds’ node) in order  to get a quick
overview of  the  structural  diversity  of  the  curated  dataset.  Scaffolds  possessing  too  generic
structures (i.e.,  a single aromatic ring) can be filtered out   (by using the  ‘RDKit Descriptors
Calculator’  node  in  conjunction  with  the  ‘Row  Filter’  node) and  remaining  ones   can   be
explored with respect to their structural similarity in the context of a certain target. This step is
done  by  (1)  calculating  molecular  distances  using  the  maximum common substructure  as  a
metric of similarity (‘MoSS MCSS Molecule Similarity’ node),  (2) hierarchical clustering (the
‘Hierarchical  Clustering  [DistMatrix]’  node),  and  (3) assigning  a  threshold  (here:  distance
threshold = 0.5) for cluster assignment (the ‘Hierarchical Cluster Assigner’ node). The respective
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part of the workflow is depicted in Figure 7. 

Figure 7: Hierarchical scaffold clustering in KNIME.

Next, looping over distinct clusters of associated Murcko scaffolds for a certain target is done in
order to create a maximum common substructure (the ‘RDKit MCS’ node)  from all associated
Murcko scaffolds belonging to a respective cluster.  Recursive loops are extensions to regular
loops which can be used in conjunction with a ‘Row Splitter’ node to separate the current row
from the rest  of  the table.  After  termination  of  the  current  iteration,  the  rest  of  the  table  is
forwarded to the loop start and the next row is used for the subsequent iteration (see Figure 8).
Generated substructures for a certain target are appended to the output table in SMARTS format.

Figure 8: Looping through the scaffold clusters and generating a maximum common substructure
for a given cluster.

Also  for  the  substructure  searches  in  DrugBank  and  the  CAS dataset loops  are  being  used
(Figure 9). The ‘Table Row To Variable Loop Start’ forwards each substructure as aquery to the
‘RDKit Substructure Filter’ node as a flow variable which then examines whether a particular
substructure is  contained in the data sets from DrugBank or  CAS. Extracted compounds are
being forwarded to the ‘RDKit molecule highlighting’ node which visualizes the highlighted
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substructure within the respective compounds. 

Figure 9: Automated substructure searches in KNIME. 

Software

KNIME  workflows  were built  in  KNIME  version  4.1.  Box  plots,  cumulative  distribution
function, and principal  component  analysis,  and all  data  visualizations  were  performed in R
version  3.4.4.  (25) The  KNIME  workflows  are  freely  available  from  GitHub
(https://github.com/AlzbetaTuerkova/Drug-Repurposing-in-KNIME).  The  published  workflow
can be either used as a single pipeline, or as multiple stand-alone workflows (1) to gather data
from PDB, (2) to retrieve ligand bioactivities from ChEMBL, PubChem, and IUPHAR, and (3)
to perform substructure searches, by providing the needed data input, respectively.

Results and discussion

In this contribution, a semiautomatic KNIME workflow for drug repurposing based on publicly
available  ligand  data  is  presented.  The  pipeline  includes  automatic  mapping  of  UniProtKB
entries  and PDB via  cross-referencing,  programmatic  data  access  via  the  data  sources’ web
services  (exemplified  for  ChEMBL,  PubChem,  and IUPHAR),  fully  automatic  data  curation
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(including chemical data standardization, removal of duplicates, and cut off setting for assigning
activity  labels),  the  identification  of  common  structural  patterns  in  SMARTS  format,  and
substructure searches (here in DrugBank and the CAS dataset of antiviral  drugs) in order to
identify interesting compounds for further investigations.

Data retrieval

The Universal Protein Resource KnowledgeBase (UniProtKB) is a freely accessible database for
protein sequence  and annotation  data.  The UniProt  ID (e.g,  P59596,  P59637,  P0C6X7) is  a
protein identifier which can be used to retrieve comprehensive information about a given protein,
including  protein  names  and  synonyms,  taxonomy,  function,  cellular  localization,  available
three-dimensional  structures,  as  well  as cross-references  to  other  databases.  Cross-referenced
databases include (but are not limited to) sequence databases (e.g., EMBL (26), GenBank (27) ,
CCDS (28)),  3D  structure  databases  (e.g,  Protein  Data  Bank (29),  ModBase (30),  SWISS-
MODEL-Workspace (31)), protein-protein interaction databases (e.g, Biogrid (32), IntAct (33),
STRING (34)), and chemistry databases (e.g., BindingDB, (35) ChEMBL, (4) DrugBank (7)). In
the framework of this case study, content from a pre-release UniProt web page (available at
https://covid-19.uniprot.org/uniprotkb)  was used  as  an  input  for  the  data  mining  pipeline  to
gather and analyze  data for proteins potentially interesting for the treatment of infections with
human SARS-CoV2 (38 proteins; see Table 1). As seen from Table 1, available protein templates
include 14 SARS-CoV2,  15 SARS-CoV, and 9 structures with origin Homo Sapiens.  Listed
UniProt IDs were used to retrieve protein structures stored in PDB (428 structures, 386 unique
structures) and the COVID-19 Data Portal (421 structures, 404 unique structures) which has been
launched  just  recently  as  a  response  to  the  COVID-19  pandemic  (available  from
https://www.ebi.ac.uk/pdbe/covid-19), as well as available ligand bioactivities from ChEMBL,
PubChem, and IUPHAR (3,113 bioactivities).

Table  1:  Drug  targets  with  potential  interest  for  treatment  of  COVID-19 (available  from
https://www.ebi.ac.uk/pdbe/covid-19). 

UniProt ID Target Name Organism Target Shortcut
O15393

Q92499

Q9BYF1

O43765

P20701

P35232

Transmembrane protease serine 2

ATP-dependent RNA helicase DDX1

Angiotensin-converting enzyme 2

Small glutamine-rich tetratricopeptide repeat-

containing protein alpha

Integrin alpha-L

Homo sapiens 

Homo sapiens 

Homo sapiens 

Homo sapiens

Homo sapiens

Homo sapiens

TMPS2_HUMAN

DDX1_HUMAN

ACE2_HUMAN

SGTA_HUMAN

ITAL_HUMAN

PHB_HUMAN
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P84022

Q8N3R9

Q99623

P0C6U8

P0C6X7

P0DTC1

P0DTD1

P0DTC2

P59594

P59595

P59632

P59635

P59637

P59596

P59633

P0DTC3

P0DTC5

P0DTC7

P0DTC9

P59634

P59636

P0DTC4

P0DTC6

P0DTD2

Q7TFA1

Q80H93

P0DTC8

Prohibitin

Mothers against decapentaplegic homolog 3

MAGUK p55 subfamily member 5

Prohibitin-2

Replicase polyprotein 1a

Replicase polyprotein 1ab

Replicase polyprotein 1a

Replicase polyprotein 1ab

Spike glycoprotein

Spike glycoprotein

Nucleoprotein

Protein 3a

Protein 7a

Envelope small membrane protein

Membrane protein

Non-structural protein 3b

Protein 3a

Membrane protein

Protein 7a

Nucleoprotein

Non-structural protein 6

Protein 9b

Envelope small membrane protein

Non-structural protein 6

Protein 9b

Protein non-structural 7b

Non-structural protein 8b

Homo sapiens

Homo sapiens

Homo sapiens

SARS COV   

SARS COV   

SARS COV-2

SARS COV-2  

SARS COV-2  

SARS COV   

SARS COV   

SARS COV   

SARS COV   

SARS COV   

SARS COV   

SARS COV   

SARS COV-2  

SARS COV-2  

SARS COV-2  

SARS COV-2  

SARS COV   

SARS COV   

SARS COV-2  

SARS COV-2  

SARS COV-2  

SARS COV   

SARS COV   

SARS COV-2  

SMAD3_HUMAN

MPP5_HUMAN

PHB2_HUMAN

R1A_CVHSA

R1AB_CVHSA

R1A_SARS2

R1AB_SARS2

SPIKE_SARS2

SPIKE_CVHSA

NCAP_CVHSA

AP3A_CVHSA

NS7A_CVHSA

VEMP_CVHSA

VME1_CVHSA

NS3B_CVHSA

AP3A_SARS2

VME1_SARS2

NS7A_SARS2

NCAP_SARS2

NS6_CVHSA

ORF9B_CVHSA

VEMP_SARS2

NS6_SARS2

ORF9B_SARS2

NS7B_CVHSA

NS8B_CVHSA

NS8_SARS2
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P0DTD3

P0DTD8

Q7TFA0

Q7TLC7

A0A663DJA2

Non-structural protein 8

Uncharacterized protein 14

Protein non-structural 7b

Protein non-structural 8a

Uncharacterized protein 14

ORF10 protein

SARS COV-2  

SARS COV-2  

SARS COV   

SARS COV   

SARS COV-2  

Y14_SARS2

NS7B_SARS2

NS8A_CVHSA

Y14_CVHSA

A0A663DJA2_SARS2

In total, 429 unique protein structures were retrieved, with 362 of the structures being listed in
both sources, 24 in PDB only, and 43 in the COVID-19 Data Portal only. From these sources, 78
unique ligands could be extracted, yielding 47 unique Murcko scaffolds.

From  the  orthogonal  approach  –  the  automatic  gathering  of  ligand  bioactivity  data  from
ChEMBL, PubChem, and IUPHAR via its webservices -  1,114 unique ligands with (median)
activity value <1 nM were identified (522 unique Murcko scaffolds).

Analysis of compiled datasets

The final dataset used for generating structural queries for substructure searches is composed of
1,181 unique compounds. Numbers of unique compounds per individual COVID-19 drug target
and data source are listed in Table 2. As visible from the Venn diagram in Figure 10,  PubChem
is the predominant source of ligands (912 unique compounds corresponding to 77%). At the
other end of the scale, IUPHAR provides only nine unique compounds.

Table 2: Number of unique ligands gathered from PDB, ChEMBL, PubChem, and IUPHAR.

Target shortcut PDB ChEMB
L

IUPHAR PubChem # Unique compounds

ITAL_HUMAN 13 94 2 550 564

R1AB_CVHSA 37 187 0 47 227

ACE2_HUMAN 4 65 3 161 172

R1A_CVHSA 35 92 0 79 141

SMAD3_HUMAN 3 64 0 65 71
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DDX1_HUMAN 0 7 0 7 14

R1AB_SARS2 14 0 0 0 9

TMPS2_HUMAN 2 3 4 3 7

SPIKE_SARS2 5 0 0 0 5

SPIKE_CVHSA 5 0 0 0 5

SGTA_HUMAN 2 0 0 0 2

R1A_SARS2 2 0 0 0 2

VME1_CVHSA 2 0 0 0 2

MPP5_HUMAN 1 0 0 0 1

ORF9B_CVHSA 1 0 0 0 1

Figure 10: Constitution of the final dataset: Venn diagram showing compound overlap across
different data sources. 
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Figure  11:  Box- and whisker plots showing the range of values for selected physicochemical
properties in different data source: ChEMBL … green, IUPHAR … blue, PDB … red, PubChem
… yellow.
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Examining  the  distribution  of  different  drug  discovery  relevant  physicochemical  properties,
compound data extracted from PDB appears to possess compound structures chemically most
dissimilar from all other data sources (Figure 11). Co-resolved ligands from PDB structures are
in  general  smaller, less lipophilic, less aromatic, and less planar. Many PDB structures contain
endogenous  ligands  which  are  generally  of  smaller  size.  For  example,  spike  glycoprotein
(UniProt ID P59594, PDB IDs 2AJF, 6CRV, 6CRW, 6CRX, 6CRZ, 6CS0, 6CS1) contains beta-
D-mannose (12 heavy atoms) as co-resolved ligand (whereas 50% of the ligand data coming
from other sources than PDB do possess more than 25 heavy atoms; Figure 11).  

Inspecting the origin of data for the respective protein targets, it becomes apparent that ligand
information for human SARS-CoV2 solely originates from PDB structures (see Table 2, entries
ending with  “_SARS2”). Notably, the majority of structures for SARS-CoV2 - such as PDB IDs
6W4B [to be published], 6Y2E, or 6Y2G for replicase polyprotein 1a  (36)) were refined via
molecular replacement based on the homology to SARS-COV. It therefore seems to be beneficial
to integrate data from diverse sources, especially including PDB as a source for most up-to-date
compound information.

Across all data sources, the largest number of ligand bioactivity measurements was gathered for
human  integrin  alpha-L  (UniProt  ID  P20701,  564  unique  compounds),  followed  by  SARS
replicase polyprotein 1ab (UniProt ID P0C6X7, 227 unique compounds), human angiotensin-
converting enzyme 2 (ACE2; UniProt ID Q9BYF1, 172 unique compounds),  SARS replicase
polyprotein  1a  (UniProt  ID  P0C6U8,  141  unique  compounds),  and  human  mothers  against
decapentaplegic  homolog  3  (UniProt  ID  P84022,  71  unique  compounds).  ACE2 receptor  is
considered  a  relevant  therapeutic  target  due  to  its  interaction  with  spike  glycoprotein  of
coronaviruses when entering host cells. (37) Replicase polyproteins 1a and 1ab are attractive
targets to treat COVID-19 given their crucial role in replication and transcription of viral RNAs.
(38) Surprisingly, integrin alpha-L protein ranked as a target with the most data does not belong
to the notoriously debated targets of COVID-19. A current study has suggested a potential role of
integrins  as  alternative  receptors  for  SARS-CoV-2,  as  the  spike  glycoprotein  contains  an
integrin-binding motif. (39)

Substructure searches in external datasets

Chemical (molecular) similarity is a traditional concept in the field of cheminformatics. (40) It is
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used   to  identify  structural  analogs  which  might  exert  similar  biological  action  on  similar
biological targets. (41) Common cheminformatics similarity approaches are based on the global
similarity  of  a  molecule.  For  example,  fingerprint-based  descriptors  are  used  to  evaluate
compound similarity by quantifying the presence/absence of the specific structural features (e.g.,
distinct functional groups in a molecule). On the contrary, molecular graph-based methods do
capture a specific molecular topology and hence account for the local similarity of molecules.
(42) Graph-based methods  are  therefore  a  robust  tool  to,  e.g.,  distinguish  between different
structural  isomers  (such  as  n-pentane  and  dimethylpropane).  Here,  Maximum  Common
Substructures (MCS) of a compound collection were used as structural keys for detecting new
potential drug candidates. Such substructure searches are especially useful for drug repositioning
strategies, since  they capture more  the  local similarity of chemical compounds and therefore
allow for more flexibility than global  similarity measures (especially if   there are  large size
differences of the chemical compounds  that are  compared). 

In  a  first  instance,  a  Murcko scaffold for  identified ligands was calculated.  For  each target,
Murcko  scaffolds  were  grouped  into  hierarchical  clusters  by  considering  their  Maximum
Common Substructure (MCS) as a measure of similarity. Afterwards, looping in KNIME was
applied to generate a MCS (in SMARTS) per cluster (and target). For details see the Methods
Section. In total, 91 distinct MCSs of a variable number of atoms (from 9 to 46) and bonds (from
9 to 50) were calculated. A complete list of MCSs can be found in Supplementary File S1. 

Structural  queries  generated  in  the  previous  step  have  identified  3,102 compounds  from
DrugBank and  18,135 compounds  from the CAS dataset. A complete list of hits found by the
substructure searches is provided in Supplementary File S2 (DrugBank) and S3 (CAS dataset).
Out of those hits,  128 compounds  were  retrieved from both DrugBank and the CAS dataset
(Supplementary  File  S4) and  were  identified  on  basis  of 11  distinct  MCSs  which  can  be
combined into six separate clusters (Table 3):  (1)  Nucleoside/nucleotide analogs  81 hits),  (2)
Miscellaneous, which contain ubiquitous substructures which partly overlap with each other (30
hits), (3) Peptide-based analogs (7 hits),  (4) Biphenyl analogs (5 hits),  (7) Indole derivatives (3
hit), (6) Statin analogs (1 hit), 

Table 3: Six clusters of MCSs (11 in total)  which were retrieved from DrugBank and the CAS
dataset. The structural fragment, SMARTS string, the number of identified hits, and the protein
target(s) for which these hits have been found, are given.
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Cluster 
number

Structural Fragment SMARTS String # Hits Targets

1
[#6]-1-[#6]-[#8]-[#6](-[#6]-
1)-n1cnc2cncnc12

59 R1A_CVHSA, 
R1AB_CVHSA, 
R1AB_SARS2

C1nc2cncnc2n1
21 R1AB_SARS2, 

ACE2_HUMAN

[#6]-1-[#6]-[#8]-[#6](-[#6]-
1)-c1ccc2cncnn12

1 R1AB_SARS2

2 [#6]-[#6]-[#6]-c1ccccc1 27 ACE2_HUMAN
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[#6]-[#6](=O)-[#7]-[#6]-[#6]-
[#6]-1-[#6]-[#6]-[#7]-[#6]-1=O

2 R1A_CVHSA, 
R1AB_CVHSA, 
ACE2_HUMAN

[#6](-[#8]-c1ccccc1)-c1ccccc1 1 ACE2_HUMAN

O=[#6](-[#7]-[#6]-[#6]-[#6]-1-
[#6]-[#6]-[#6]-1)-[#6]-1-[#7]-
[#6]-[#6]-2-[#6]-[#6]-1-2

1 R1AB_SARS2
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3 [#6][#6][#6][#6][#6][#6]-[#6]
(=O)-[#7]-[#6]-[#6]-[#6][#6]

7 ACE2_HUMAN

4 c1ccc(cc1)-c1ccccc1 5 ACE2_HUMAN

5 c1cc2ccccc2[nH1]1 3 ACE2_HUMAN

6 O=[#6]-1-[#6]-[#6]-[#6]-[#6](-
[#6]-[#6]-[#6]-2-[#6]-
[#6]=[#6]-[#6]-3=[#6]-[#6]-
[#6]-[#6]-[#6]-2-3)-[#8]-1

1 ITAL_HUMAN
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Using the automated data mining and integration pipeline we were able to pinpoint drugs which
are currently under clinical trials and/or investigation in relation to COVID-19. Some of the hits
found are described below. These findings approve our methodology for finding therapeutics for
drug repositioning. In addition, we are providing a list of drugs to the research community that
could  be interesting to investigate further in the framework  of COVID-19 drug repurposing
strategies. Figure 14 shows examples of identified hits for the most pronounced clusters. 

Nucleoside/nucleotide  analog  inhibitors  are  a  class  of  medicals  which  mimic  nucleotide
substrates. Such therapeutics are having crucial implications in the treatment of viral infections,
as they interact with polymerase and thus induce the termination of replication or transcription of
viral  RNAs. Nucleoside/nucleotide analogs  were found for SARS-Cov/SARS-Cov2 proteases
(Table 3). One of the identified hits is Remdesivir (DrugBank ID DB14761) which is considered
a  top  candidate  for  the  treatment  of  COVID-19  to  date.  (38) Delavirdine  (  DrugBank  ID
DB00705) was identified as a sole representative of indole derivatives. Delavirdine belongs to
the  class  of  non-nucleoside  reverse  transcriptase  inhibitors.  Multiple  computer-based studies
were performed to exemplify its effect on the COVID-19 drug targets.  (43) Next, Dasabuvir
(DrugBank  ID  DB09183)  is  an  antiviral  drug  used  to  treat  hepatitis  C  type-1.  It  has  been
identified due to the presence of a biphenyl scaffold. Molecular modeling approaches have been
used to elucidate the potential role of Dasabuvir to combat COVID-19. (44–46) However, these
studies  require  additional  investigations  to  validate  the  results.  Lovastatin  (DrugBank  ID
DB00227) was identified as the only analog of statins, suggesting the interaction with Integrin
alpha-L  (UniProt  ID  P20701).  Interestingly,  statin  therapy  was  suggested  for  patients  with
COVID-19  just  recently.  (47) In  addition,  a  cluster  of  compounds  showing  macrocyclic
structures  was  identified  from  ChEMBL  and  PubChem.  These  compounds  are  showing  a
pronounced activity profile against ACE2 receptors and/or integrin alpha-L receptors. To the best
of  our  knowledge,  macrocyclic-like  compounds  have  not  been  investigated  in  relation  to
COVID-19  so  far.  A cluster  of  miscellaneous  substructures  has  delivered  drugs  which  are
currently under experimental investigations. For example, Ritonavir (DrugBank ID DB00503)  is
a HIV protease inhibitor used in combination with other drugs. (48) However, the effectiveness
of Ritonavir/Lopinavir in the treatment of COVID-19 is still debated, as the current study shows
that there is no significant improvement observed compared to the patients who were not treated
by this  drug combination.  (49) Other  potential  candidates  under  investigation  are  Darunavir
(DrugBank ID DB01264) or Rupintrivir (DrugBank ID DB05102). (56) Rupintrivir is commonly
known  protease  inhibitor  belonging  to  the  class  of  antiviral  agents.  Rupintrivir  has  been
predicted to be an interesting candidate not only for SARS-Cov/SARS-Cov2 proteases, but also
for ACE2 receptor (Table 3). These findings suggest Rupintrivir as a promising candidate for
experimental testing, since it could potentially possess the ability to interact with more than a
single COVID-19 target which could potentially lead to a higher efficacy of  that  drug.
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Figure 14: Examples of identified drugs with the highlighted structural query. 
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Summary and conclusions

In this educational paper, we are describing a semi-automatic KNIME workflow for in silico
drug repurposing. The consecutive data mining steps include integration, curation, and analysis
of bioassay data from the open domain for specific  targets of interest, as well as the generation
of structural queries for automated substructure searches in collections of approved, withdrawn,
and/or  experimental  drugs.  Targeted  access  of  data  through  APIs  has  been  implemented  at
several stages of the KNME workflow. Incorporation of API calls into KNIME allows repeating
the whole procedure in an automated fashion, e.g., when new data is becoming available. As a
consequence of the current COVID-19 pandemic, the cheminformatics analyses performed as a
use case herein was tailored to ligand and protein data currently available for drug repurposing
strategies in the  framework of this life-threatening disease. As a side effect of analyzing the data,
we are  providing insights  into  enriched chemical  substructures  for  proposed drug targets  of
SARS-CoV-2. The material has been used successfully for teaching undergraduate students the
use of programmatic data access via KNIME workflows and subsequent data analyses steps. The
workflows, tutorials, and the information gained on COVID-19 data are  freely available to the
scientific community for follow-up studies or may be tailored to specific needs of other use cases
(available at https://github.com/AlzbetaTuerkova/Drug-Repurposing-in-KNIME).
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