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ABSTRACT 9 

The COVID-19 pandemic has stressed healthcare systems and supply lines, forcing medical doctors to 10 

risk infection by decontaminating and reusing single-use medical personal protective equipment. The 11 

uncertain future of the pandemic is compounded by limited data on the ability of the responsible virus, 12 

SARS-CoV-2, to survive across various climates, preventing epidemiologists from accurately modeling 13 

its spread. However, a detailed thermodynamic analysis of experimental data on the inactivation of 14 

SARS-CoV-2 and related coronaviruses can enable a fundamental understanding of their thermal 15 

degradation that will help model the COVID-19 pandemic and mitigate future outbreaks. This paper 16 

introduces a thermodynamic model that synthesizes existing data into an analytical framework built on 17 

first principles, including the rate law and the Arrhenius equation, to accurately predict the temperature-18 

dependent inactivation of coronaviruses. The model provides much-needed thermal decontamination 19 

guidelines for personal protective equipment, including masks. For example, at 70 °C, a 3-log (99.9%) 20 

reduction in virus concentration can be achieved in ≈ 3 minutes and can be performed in most home 21 

ovens without reducing the efficacy of typical N95 masks. The model will also allow for epidemiologists 22 

to incorporate the lifetime of SARS-CoV-2 as a continuous function of environmental temperature into 23 

models forecasting the spread of coronaviruses across different climates and seasons.  24 
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INTRODUCTION 25 

The COVID-19 pandemic has spread quickly and overwhelmed medical facilities worldwide, often 26 

resulting in a lack of intensive care beds and ventilators. These circumstances have forced doctors to 27 

decide which patients to provide with life-saving equipment—and which patients to leave without.
1
  The 28 

shortages have not only affected patients; facing a lack of masks, face shields, gowns, and other typically-29 

disposable personal protective equipment (PPE), medical workers have had to reuse PPE or work without 30 

proper protection.
2,3

 As a result, many of them have been infected with SARS-CoV-2, the virus that 31 

causes COVID-19, despite the potential for effective decontamination techniques, including dry heat 32 

decontamination.
4
 Furthermore, as COVID-19 spreads to almost every region of the globe, 33 

epidemiologists need to know how long the virus survives in different climates in order to determine 34 

where to focus limited resources, how to model further spread, and how to predict future seasonal flare-35 

ups.
5
 36 

37 

During previous viral outbreaks, regional shortages of PPE led researchers to explore decontamination 38 

procedures that might allow PPE to be reused safely.
6,7

 Facing an unprecedented nationwide lack of PPE 39 

brought on by the COVID-19 pandemic, medical workers have begun implementing these procedures: 40 

For example, The University of Nebraska Medical Center in Omaha began attempting in March 2020 to 41 

reuse masks after decontamination with ultraviolet (UV) irradiation.
8
 However, UV decontamination 42 

faces several drawbacks, including an inability to kill viruses trapped within crevices that are not 43 

illuminated and a lack of availability in clinics in low-income areas and in most peoples’ homes.
9
  Other 44 

methods of decontamination, namely steam sterilization, alcohol washing, and bleach washing, are useful 45 

for items like glassware and other durable materials, but have been reported to degrade surgical masks 46 

and other delicate PPE not intended for reuse.
7,10,11

 Dry heat decontamination, on the other hand, can be 47 

performed almost anywhere (including in home ovens intended for cooking), and viruses inside of 48 

crevices or within fabrics are easily inactivated. In addition, while dry heat decontamination is often 49 

performed at 160 °C or higher, it can effectively inactivate viruses at much lower temperatures as well 50 
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(albeit over longer periods of time), enabling decontamination and reuse of delicate PPE intended for 51 

disposal after a single use.
12

 However, at this time, dry heat decontamination guidelines for single-use 52 

PPE contaminated with SARS-CoV-2 remain limited to only a few experimental measurements 53 

constrained to specific temperatures
13

 and are not directly applicable to the temperatures encountered in 54 

home ovens and other heating devices.  A predictive model that generates the necessary decontamination 55 

time would enable more robust guidelines applicable to any heating temperature.   56 

57 

Meanwhile, virus transmission has been linked to both seasonal and regional variations in climate, where 58 

colder atmospheric temperatures typically lead to longer virus lifetimes outside of their hosts. A 59 

resurgence of COVID-19 cases in China’s seafood market was found by epidemiologists at the CDC to be 60 

linked to low temperatures.
14

 This effect has been reported for both influenza
15,16

 and the common cold,
17

 61 

and even the human coronaviruses SARS-CoV-2,
5,13

 SARS-CoV-1,
18,19

 and MERS-CoV
20,21

 have been 62 

shown to survive longer at lower temperatures. Unfortunately, existing data for SARS-CoV-2 is limited to 63 

specific experiments performed at only a small subset of temperatures encountered in typical climates.
13,22

 64 

Epidemiologists would benefit from knowledge of the lifespan of SARS-CoV-2 as a continuous function 65 

of atmospheric temperature in order to accurately model the spread of COVID-19. Furthermore, 66 

understanding this temperature-dictated inactivation time could help predict the resurgence of cases in 67 

autumn and winter  as colder weather returns to the Northern Hemisphere, following a similar trend to 68 

that of the seasonal flu.
23

  69 

70 

In this work, we introduce an analytical model based on the rate law and Arrhenius equation that enables 71 

prediction of the thermal inactivation rate and lifetime of coronaviruses, including SARS-CoV-2, as a 72 

function of temperature.  These viruses are treated as macromolecules undergoing thermal denaturation, 73 

and the time required to achieve a desired log-scale reduction in viable virions (e.g. by a factor of 10
3
 as 74 

typically used for viral decontamination
24–27

) can be determined at a given temperature. We confirm that 75 

coronaviruses undergo thermal denaturation because their inactivation behavior follows the Meyer-Neldel 76 
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rule.
28

 Our model provides system-specific dry heat decontamination guidelines that may be used to 77 

safely decontaminate PPE at temperatures encountered in commonly-available equipment like home-use 78 

cooking ovens and rice cookers. The model also predicts the inactivation rate of human coronaviruses as a 79 

continuous function of temperature in various climates; this ability will be of extreme importance to 80 

epidemiologists in predicting the regionally-dependent lifetime of the SARS-CoV-2 virus as well as the 81 

severity of the resurgence of COVID-19 that we may face this upcoming autumn and winter.  82 

 83 

RESULTS 84 

Reports in the literature describe the inactivation of many viruses over time, with experiments in different 85 

reports conducted over a range of temperatures, providing abundant data upon which a predictive 86 

analytical model capturing the influence of thermal effects on virus inactivation may be constructed.  In 87 

this work, we focused specifically on the inactivation of coronaviruses, a group of enveloped viruses that 88 

contain positive sense single-stranded RNA and are often responsible for respiratory or gastrointestinal 89 

diseases in mammals and birds.
29

 Specifically, we collected data on five types of coronaviruses, with 90 

subdivisions between types of viruses based on (i) strains of each virus, (ii) pH levels during experiments, 91 

and (iii) relative humidity conditions during experiments, resulting in fourteen sets of data (Figure 1(a)). 92 

These viruses include: (i) Severe Acute Respiratory Syndrome Coronavirus (both SARS CoV-1 and 93 

SARS-CoV-2);
13,19,22,30,31

 (ii) Middle East Respiratory Syndrome Coronavirus (MERS-CoV);
20,21

 (iii) 94 

Transmissible Gastroenteritis Virus (TGEV);
32

 (iv) Mouse Hepatitis Virus (MHV);
33,34

 and (v) Porcine 95 

Epidemic Diarrhea Virus (PEDV).
35

 The first two types of viruses are highly pathogenic and cause life-96 

threatening respiratory diseases in humans; SARS-CoV-2, the virus responsible for the COVID-19 97 

pandemic, is closely related to SARS-CoV-1 and exhibits many chemical and biological similarities.
36

 98 

The latter three viruses are zoonotic viruses known to cause mild to severe illnesses in humans.  In each 99 

of the referenced studies evaluating thermal inactivation characteristics of coronaviruses, viral inocula 100 

were exposed to different temperatures at varying time intervals. Samples were prepared by either 101 

suspending the viral stock in an appropriate test tube medium or depositing on a material surface. After 102 
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exposure to different temperatures, samples on surfaces were recovered to a minimum essential medium. 103 

Either a plaque assay or a 50% tissue culture infectious dose (TCID50) assay was used to evaluate the 104 

infectious titer; we converted TCID50 results to number of plaque forming units (PFU) by multiplying by 105 

0.69 based on theory, as performed in prior work.
37–39

 Some of these reports also explored the effects of 106 

pH and relative humidity on viral infectivity.
32,35,40

 107 

 108 

The inactivation behavior of microbes can be described accurately by the rate law.
41

 Non-first-order rate 109 

laws have been applied to inactivation of some microbes,
42–44

 particularly bacteria with heterogeneous 110 

populations,
45

 but the inactivation of most viruses—including the viruses considered in our analysis—111 

follows a first-order reaction, with viable virions as reactants and inactivated virions as products (Eq. 1): 112 

 [𝐶] = [𝐶0]𝑒−𝑘𝑡 (Eq. 1) 

The majority of primary experimental data for the inactivation of viruses is reported in plots of the log of 113 

concentration ln([C]) as a function of time, t, with C0 being the initial concentration of viable virions at a 114 

given temperature. We fitted the primary data using linear regression for each of the viruses studied here 115 

to determine the rate constants, k, for inactivation of each virus corresponding to a given temperature, T. 116 

The rate constant at a given temperature can be determined by calculating the slope, k = ∆ln([C])/∆t, of 117 

the fitted lines, with greater magnitudes of k implying faster rates of inactivation. Each of these pairs of 118 

(k, T) yields one data point in Figure 1(a). The linear fits are included in the Supplementary Information. 119 

  120 

Virus inactivation occurs due to thermal denaturation of the proteins that comprise each virion. The 121 

temperature dependence of this thermal denaturation process is captured by the Arrhenius equation,
46

  122 

which yields a linear relationship between ln(k) and 1/T (Eq. 2): 123 

 ln(𝑘)  = – 𝐸𝑎/𝑅𝑇 +  ln(𝐴)  (Eq. 2) 

where R is the gas constant, Ea is the activation energy associated with inactivation of the virus (i.e., the 124 

energy barrier that must be overcome for protein denaturation), and A is the frequency factor. Therefore, 125 
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in Figure 1(a), we applied linear fits to the data to enable continuous prediction of the reaction rates over 126 

the full range of temperatures. The activation energy, Ea, and natural log of the frequency factor, ln(A), 127 

were calculated for each virus by equating –Ea/R and ln(A) from Eq. 2 with the slopes and intercepts from 128 

the linear fits in Figure 1(a), respectively, according to the van’t Hoff equation, and are plotted in Figure 129 

1(b).  The correlation between ln(A) and Ea indicates that coronaviruses undergo a thermal denaturation 130 

process following the Meyer-Neldel rule,
28

 in support of our assertion that they are inactivated primarily 131 

by thermally-driven protein denaturation. In fact, the slope and intercept of a best-fit line applied to the 132 

data, for which we calculate [ln(A) = 0.394Ea – 5.63] from the dataset used in this work, are nearly 133 

identical to the slopes and intercepts of [ln(A) = 0.380Ea – 5.27]
28

 and [ln(A) = 0.383Ea – 5.95]
47

 reported 134 

in prior work on denaturation of tissues and cells.  135 

 136 

 137 

Figure 1. Thermal inactivation behavior of coronaviruses. The dependence of inactivation rate, k, on 138 

temperature was compiled from literature on several strains and under different relative humidity (RH) 139 

and pH conditions for SARS-CoV-2, SARS-CoV-1, MERS-CoV, TGEV, MHV, and PEDV, represented 140 

here in a van’t Hoff plot (a). Each dataset was fitted using linear regression according to Eq. 2, and the 141 

resulting activation energy, Ea, and frequency factor, ln(A), were back-calculated from each linear fit 142 

according to Eq. 2 and plotted (b); the linear correlation between the log of frequency factor versus 143 

activation energy for the set of coronaviruses considered here supports our hypothesis that they are 144 

inactivated due to protein denaturation, in agreement with prior work on tissues and cells.
28,47

  145 
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The degree of inactivation of a pathogen is defined by the ratio of the concentration (amount) of a 146 

pathogen compared to its initial concentration, [C]/[C0], with varying levels of inactivation corresponding 147 

to rigor of decontamination reported in the literature, often in terms of orders of magnitude; an n-log 148 

inactivation refers to a reduction in concentration of 10 raised to the nth power ([C]/[C0] = 10
–n

).149 

Equations 1 and 2 combine to yield the time required to achieve an n-log reduction in a pathogen (Eq. 3): 150 

𝑡𝑛−𝑙𝑜𝑔 = −
1

𝐴
𝑒

(
𝐸𝑎
𝑅𝑇

)
 ln (10−𝑛) (Eq. 3) 

The US Food and Drug Administration recommends a 3-log (99.9%) reduction in number of virions 151 

present for decontamination of non-enveloped viruses (i.e. [C]/[C0] = 10
–3

).
24–27,48,49

 Since non-enveloped152 

viruses have been shown to be more resilient to environmental temperatures than their enveloped 153 

counterparts (including coronaviruses),
50,51

 we refer to the time required to achieve a 3-log reduction as 154 

the coronavirus lifetime, indicating conservative predictions of both decontamination time and viable 155 

lifetime outside of a host. A more conservative value for decontamination time could be modeled by 156 

inserting a different n-log value into Eq. 3, which would change all of the resulting predictions by a 157 

simple multiplicative factor of n/3 (e.g. a 6-log reduction of a virus would require doubling all of the 158 

times predicted in this work; meanwhile, the commonly reported “D-value” representing a 1-log reduction 159 

of a virus
52

 is equal to one third of the times predicted in this work). The predictions generated from Eq. 3 160 

are plotted in Figure 2 and detailed in Tables 1 and 2.   161 

162 

Figure 2 shows the predictions of virus lifetime as a function of temperature ranging from room 163 

temperature to temperatures achievable using common heating devices. In Figure 2(a), all five types of 164 

coronaviruses (subdivided according to virus strain and the experimental conditions of relative humidity 165 

and pH, as applicable) are plotted to show the variation across different environmental conditions and 166 

types of coronavirus. The plot in Figure 2(b) shows the same data, with the exception of data sourced 167 

from Casanova, et al.
18

 due to possible experimental error in the primary data from that report (see 168 

Supplementary Information, Section S3), and with the lifetime axis scaled linearly to highlight the 169 
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exponential dependence of lifetime on temperature. Figure 2(c) focuses solely on the human 170 

coronaviruses SARS-CoV-2 and SARS-CoV-1, which exhibit a similar trend in thermal degradation, in 171 

agreement with recent work.
22

 However, we observed that SARS-CoV-2 has a slightly longer lifetime  172 

173 

174 

Figure 2. Virus lifetime as a function of temperature. Predictions are shown for (a) all of the 175 

coronaviruses analyzed in this work, with the average coronavirus lifetime presented in black. All 176 

coronaviruses excluding the data from Casanova, et al., are replotted in (b) with a linearly-scaled 177 

vertical axis (1440 minutes = 1 day) to highlight the exponential dependence of decontamination time on 178 

temperature. (c) SARS-CoV-2 and SARS-CoV-1 have similar thermal degradation behavior and 179 

decontamination times, although SARS-CoV-2 exhibits a slightly longer lifetime than SARS-CoV-1. Data 180 

for (d) SARS-CoV-1 and (e) SARS-CoV-2 are highlighted with a 95% confidence interval included to 181 

illustrate uncertainty in the predicted decontamination time at a given temperature. 182 
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than SARS-CoV-1 outside of a host, potentially contributing to its relatively high reproduction number, 183 

R0. Figures 2(d) and (e) highlight the predicted SARS-CoV-1 and SARS-CoV-2 decontamination times, 184 

respectively, with 95% confidence intervals illustrating the uncertainty in predictions based on the 185 

statistical analysis used in this work. The statistical analysis is detailed in the Supplementary Information, 186 

Section S5. 187 

188 

The average decontamination times required for inactivation of all of the coronaviruses analyzed in this 189 

work, as well as the decontamination times for the human coronaviruses SARS-CoV-2 and SARS-CoV-1, 190 

are shown in Table 1. The temperature values displayed in the table were selected to illustrate that 191 

thermal decontamination is feasible at relatively low temperatures attainable by the general public, albeit 192 

requiring longer decontamination times (most home ovens in the United States have a minimum 193 

temperature setting between 60–70 °C), and without reducing the efficacy of face masks
12

. The geometric 194 

mean was used to calculate the average coronavirus decontamination time for the full set of data, 195 

corresponding to the black curve in Figure 2(a). The data shown in Figure 2(c) was used to tabulate the 196 

human coronavirus decontamination times, where decontamination of SARS-CoV-2 takes slightly longer 197 

than SARS-CoV-1 but still less than the average time for all of the coronaviruses analyzed. Meanwhile, 198 

Table 2 shows the lifetime of human coronaviruses outside of hosts, calculated based on thermal 199 

denaturation under different environmental temperatures, with the temperature range corresponding to 200 

seasonal weather patterns. The statistical uncertainty in predicted lifetimes and decontamination times for 201 

all of the viruses is included in the Supplementary Information, with upper and lower results for SARS-202 

CoV-2 and SARS-CoV-1 bounded by a 95% confidence interval presented in Tables S4 and S5. 203 
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Table 1. Decontamination time required for inactivation of coronaviruses, with the average time reported 204 

for all of the coronaviruses analyzed in this work as well as predictions specifically for SARS-CoV-2 and 205 

SARS-CoV-1 (uncertainties in these predictions corresponding to the 95% confidence intervals provided 206 

in Table S4 are on the order of 10 min). 207 

Temperature 

Average coronavirus 

decontamination time, 

t3-log 

SARS-CoV-2 

decontamination time, 

t3-log 

SARS-CoV-1 

decontamination time, 

t3-log 

60 °C 23 min 10 min 4.8 min 

70 °C 5.3 min 2.5 min 1.0 min 

80 °C 1.4 min < 1 min < 1 min 

90 °C < 1 min < 1 min < 1 min 

208 

209 

210 

211 

212 

213 

214 

220 

221 

Depending on regional temperatures, coronavirus inactivation times may vary significantly. We estimated 222 

the lifetime of SARS-CoV-2 based on regional temperatures in the United States.  We used temperatures 223 

averaged over January to March, 2020, corresponding to the onset of the COVID-19 pandemic (Figure 224 

3(a)), and July to September, 2019, as a rough prediction of typical SARS-CoV-2 lifetimes in summer 225 

Table 2. Lifetime of SARS-CoV-2 and SARS-CoV-1 outside of hosts across a range of environmental 

temperatures from 10 °C to 40 °C, defined as the time required for 3-log inactivation due to thermal 

denaturation (the lifetime of both viruses was greater than one month at temperatures below 10 °C). 

Uncertainties in these predictions corresponding to the 95% confidence intervals provided in Table S5 

range from several hours at higher temperatures (~ 30 °C) to days at lower temperatures (~ 10 °C). 

Temperature SARS-CoV-2 lifetime, t3-log SARS-CoV-1 lifetime, t3-log

10 °C > 1 month  29.8 d 

15 °C 15.5 d 10.4 d 

20 °C 5.9 d 3.8 d 

25 °C 2.3 d 1.4 d 

30 °C 22.5 h 13.1 h 

35 °C 9.4 h 5.2 h 

40 °C 4.0 h 2.1 h 
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2020 (Figure 3(b)). Virus lifetimes were determined using Eq. 3 and the appropriate Ea and ln(A) data 226 

(details in the Supplementary Information, Section S4). Summer weather in the Northern Hemisphere will 227 

reduce SARS-CoV-2 lifetime significantly as temperatures rise, potentially lowering the reproduction 228 

number, R0, and slowing transmission of COVID-19. The predictions in Figure 3 are based on a 229 

simplified constant temperature profile and do not account for daily temperature fluctuations, which may 230 

result in shorter lifetimes than predicted due to the exponential dependence of reaction rate on 231 

temperature. Additional environmental effects, like UV from sunlight, may further reduce inactivation 232 

time; with these limitations in mind, the values shown in Figure 3 represent the upper bound in predicted 233 

average SARS-CoV-2 lifetime across the United States, and predicted lifetimes longer than one month are 234 

not reported. 235 

236 

237 

238 

Figure 3. Lifetime of SARS-CoV-2 outside of a host across the United States in winter and summer. 239 

Predictions are based on (a) average temperature data from January to March, 2020 (corresponding to 240 

the onset of COVID-19 pandemic), and (b) average temperature data from July to September, 2019 (to 241 

show characteristic lifetimes in summer weather). The lifetime of SARS-CoV-2 will decrease in summer, 242 

likely hindering transmission and lowering the reproduction number, R0, but a recurrence of COVID-19 243 

in autumn and winter may occur due to an increase in R0 as the colder weather returns.  244 
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DISCUSSION 245 

We compared results from the thermodynamic model presented here with experimental data that had not 246 

been used as part of the model training data in order to test its predictive ability. SARS-CoV-1 has been 247 

reported to require 5 days at room temperature to achieve a 5-log reduction;
53

 our model predicts an 248 

inactivation time of 4.2 days under the same conditions, in good agreement with the reported data. In 249 

another report, SARS-CoV-1 was heated to 56 °C and required only 6 minutes to achieve a 6-log 250 

reduction;
31

 our model predicts a time of 17 minutes. A third report claimed that SARS-CoV-1 required 251 

30 minutes to achieve an approximately 6-log reduction at 60 °C; 
54

 our model predicts a time of 10 252 

minutes. A recent report also shows that SARS-CoV-2 and SARS-CoV-1 require 72 hours to achieve a 3-253 

log reduction on plastic surfaces maintained around 23 °C; our model predicts a time of 80 hours.
22

 254 

Considering the demonstrated similarity in inactivation behavior of SARS-CoV-1 and SARS-CoV-2,
22

 as 255 

well as the similarity in our model predictions for different strains of other coronaviruses (Figure S23), 256 

the model presented here offers promise as a useful tool to estimate the thermally-dependent inactivation 257 

behavior of SARS-CoV-2.  258 

 259 

This model is limited to temperature-based predictive ability, and does not incorporate other 260 

environmental variables like the relative humidity and the fomite (i.e. the surface material on which a 261 

virion rests), both of which appear to have an effect on inactivation times.
13,18,22,55

 Variations in 262 

inactivation time at a given temperature due to these environmental factors may be interpreted as catalytic 263 

effects,
56

 where the activation energy is lowered on certain fomites, in the presence of water vapor, or 264 

even under different pH levels as observed for PEDV (effect shown in Figure S26). Incorporating such 265 

an adjustment to the activation energy into the present model would enable predictive capability for other 266 

environmental conditions in addition to temperature. Another limitation of this model is its reliance on a 267 

limited set of primary data taken under different conditions which may also contain experimental error 268 

(all primary data are reproduced in the Supplementary Information). We generated a 95% confidence 269 

interval for the predicted decontamination times to take into account the uncertainty associated with the 270 
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data obtained from literature reports and the linear regression model; the data used to conduct the 271 

uncertainty analysis can be found in Table S3. Inclusion of more primary data would likely lower the 272 

uncertainty and attenuate the 95% confidence interval bounds. In addition, this model assumes that the 273 

enthalpy and entropy of the inactivation reaction are constant as temperature changes. This assumption is 274 

typically valid for macromolecules like proteins;
28

 some reports suggest changes in virus inactivation 275 

reaction pathways can occur near room temperature, but these reports are limited in scope do not agree 276 

with each other, suggesting that further work would need to be done before considering or implementing 277 

such effects.
32,46

 Furthermore, the extrapolation of our model to higher temperatures outside the range of 278 

the primary data (e.g. above 100 °C) may be unfounded if new inactivation reaction pathways become 279 

available at these elevated temperatures.  280 

 281 

Fortunately, the results in Table 1 indicate that dry heat decontamination is feasible for inactivation of all 282 

types of coronaviruses, including SARS-CoV-2.  The most common material used in surgical masks and 283 

N95 respirators is non-woven polypropylene.
57,58

 Polypropylene is mainly used in room temperature 284 

conditions, already well above its glass transition temperature
59,60

 and within a region of near-constant 285 

stiffness until approaching its melting point, which is typically within the range of 156 °C to 168 °C.
61,62

 286 

Cui and colleagues suggest that thermal cycling (75 °C, 30 min heating, applied over 20 cycles) does not 287 

degrade the filtration efficiency of N95-level facial masks,
12

 and Lin et al. have shown that there is no 288 

significant degradation of surgical masks after heating to 160 °C for 3 min.
10

 Therefore, we expect that 289 

repeated decontamination at lower temperatures will be effective without degrading masks, while also 290 

feasible within relatively short times (less than 30 min; Table 1) and achievable for the majority of people 291 

with access to home ovens, rice cookers, or similar inexpensive heating devices.  292 

 293 

In summary, this work provides guidelines to medical professionals and the general public for the 294 

effective, safe thermal decontamination of  PPE, including surgical masks, gowns, and face shields, and 295 

even the cloth masks—already popular worldwide—that the CDC has recommended all US citizens wear 296 
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during the COVID-19 pandemic.
63

 In addition, the sensitivity of coronaviruses to environmental 297 

temperature variations, shown in Table 2 and Figure 3, indicates that the thermal inactivation of SARS-298 

CoV-2 must be considered in epidemiological studies predicting its global spread and, potentially, 299 

seasonal recurrence; our model will be easily incorporated into these studies due to its ability to predict 300 

virus lifetime as a continuous function of environmental temperature. Finally, the modeling framework 301 

and predictions for the behavior of a wide range of coronaviruses presented here offers a new 302 

fundamental understanding of their thermal inactivation that will help fight not only the COVID-19 303 

pandemic but also future outbreaks of other novel coronaviruses.  304 
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S1. Homogenization of Virus Inactivation Data 17 

Data were obtained from the literature and homogenized according to the following procedures: (i) units 18 

were converted to standard SI, except for the use of minutes instead of seconds following the convention 19 

used in virology; (ii) 50% tissue culture infectious dose (TCID50) assay results were converted to number 20 

of plaque forming units (PFU) by multiplying by 0.69 based on theory, as performed in prior work;
37–39

 21 

(iii) logarithms were all converted to base-e (the natural logarithm); and (iv) data for which the 22 

experimental error overlapped the lower detection limit (LDL) of the experimental technique were 23 

excluded because they would artificially skew the resulting curve fits towards lower rate constants (i.e. 24 

lower slopes).   25 
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Data for SARS-CoV-2 26 

A 50% tissue culture infectious dose (TCID50) assay was reported in the work by Chin, et al.
13

  We 27 

converted the TCID50 results to number of plaque forming units (PFU) by multiplying by 0.69 based on 28 

theory, as performed in prior work,
37–39

 and then converted the data from log10 to the natural log before 29 

plotting against time and taking a linear fit. Linear fits for the data at 4 °C, 22 °C, 37 °C, 56 °C, and 70 °C 30 

are presented in Figures S1 through S5.  The resulting slopes were used to determine the rate constants at 31 

these temperatures, reported in Table S1.  32 

 33 

We followed the same procedure to homogenize data reported by van Doremalen, et al.,
22

 for SARS-34 

CoV-2 on a fomite of plastic, chosen over other fomites reported in the study because plastic is inert and 35 

has a minimal catalytic effect on changing the activation energy. The authors specify experimental 36 

conditions with a temperature between 21-23 °C; we used an intermediate value of 22 °C in this work. 37 

Data near the lower detection limit (LDL) were excluded from the analysis to avoid under-predicting the 38 

rate.  A linear fit is presented in Figure S6.  The resulting slopes were used to determine the rate 39 

constants at these temperatures, reported in Table S1.   40 
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 41 

 42 

Figure S1. Primary data from Chin, et al.,
13

 for inactivation of SARS-CoV-2 at 4 °C after converting the 43 

y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine the 44 

rate constant at 4 °C. 45 

 46 

 47 

Figure S2. Primary data from Chin, et al.,
13

 for inactivation of SARS-CoV-2 at 22 °C after converting the 48 

y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine the 49 

rate constant at 22 °C. 50 
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 51 

Figure S3. Primary data from Chin, et al.,
13

 for inactivation of SARS-CoV-2 at 37 °C after converting the 52 

y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine the 53 

rate constant at 37 °C. 54 

 55 

 56 

Figure S4. Primary data from Chin, et al.,
13

 for inactivation of SARS-CoV-2 at 56 °C after converting the 57 

y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine the 58 

rate constant at 56 °C. 59 

 60 
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 61 

Figure S5. Primary data from Chin, et al.,
13

 for inactivation of SARS-CoV-2 at 70 °C after converting the 62 

y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine the 63 

rate constant at 70 °C. 64 

 65 

Figure S6. Primary data from van Doremalen, et al.,
22

 for inactivation of SARS-CoV-2 at ≈22 °C after 66 

converting the y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to 67 

determine the rate constant at 22 °C.  68 
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Data for SARS-CoV-1 69 

A 50% tissue culture infectious dose (TCID50) assay was reported in the work by Darnell, et al.
30

  We70 

converted the TCID50 results to number of plaque forming units (PFU) by multiplying by 0.69 based on 71 

theory, as performed in prior work,
37–39

 and then converted the data from log10 to the natural log before72 

plotting against time and taking a linear fit. Data near the lower detection limit (LDL) were excluded from 73 

the analysis to avoid under-predicting the rate.  In addition, data at 75 °C were excluded because only one 74 

data point was not near the LDL, meaning a line could not be fit to the data. Linear fits for the data at 56 75 

°C and 65 °C are presented in Figures S7 and S8.  The resulting slopes were used to determine the rate 76 

constants at these temperatures, reported in Table S1.  77 

78 

We followed the same procedure to homogenize data reported by van Doremalen, et al.,
22

 for SARS-79 

CoV-1 on a fomite of plastic, chosen over other fomites reported in the study because plastic is inert and 80 

has a minimal catalytic effect on changing the activation energy. The authors specify experimental 81 

conditions with a temperature between 21-23 °C; we used an intermediate value of 22 °C in this work. 82 

Data near the lower detection limit (LDL) were excluded from the analysis to avoid under-predicting the 83 

rate.  A linear fit is presented in Figure S9.  The resulting slopes were used to determine the rate 84 

constants at these temperatures, reported in Table S1. 85 

86 
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87 

Figure S7. Primary data from Darnell, et al.,
30

 for inactivation of SARS-CoV-1 at 56 °C after converting 88 

the y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine 89 

the rate constant at 56 °C 90 

91 

92 

Figure S8. Primary data from Darnell, et al.,
30

 for inactivation of SARS-CoV-1 at 65°C after converting 93 

the y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to determine 94 

the rate constant at 65 °C. 95 
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96 

Figure S9. Primary data from van Doremalen, et al.,
22

 for inactivation of SARS-CoV-1 at ≈22 °C after 97 

converting the y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to 98 

determine the rate constant at 22 °C. 99 

100 

Data for MERS-CoV 101 

A 50% tissue culture infectious dose (TCID50) assay was reported in the work by Leclerq, et al. A table 102 

with information of the slopes (rate constant) at 56 °C and 65°C was provided. We converted the value of 103 

the slopes from log10 to the natural log and also the TCID50 results to number of plaque forming units 104 

(PFU) by multiplying by 0.69 based on theory, as performed in prior work.
37–39

 Data at 25°C were 105 

excluded due to the non-physical positive value for the slope (the concentration should decrease with 106 

time), which was likely due to experimental error in the measurements eclipsing the small change in 107 

concentration at 25°C. The authors also mentioned in the paper that there was no decrease in titre after 2 108 

hours for the data taken at 25°C. The data for 20°C was obtained from work by Doremalen, et al.
20

 A 109 

TCID50 assay was reported in their work. We converted TCID50 results to number of plaque forming units 110 

(PFU) by multiplying by 0.69 based on theory, as performed in prior work,
37–39

 and then converted the 111 

data from log10 to the natural log before plotting against time and taking a linear fit. A linear fit for the 112 

data at 20°C is presented in Figure S10 and the slope is computed to determine the rate constant at this 113 

temperature, reported in Table S1.  114 
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115 

Figure S10. Primary data from van Doremalen, et al.,
20

 for inactivation of MERS-CoV at 20 °C after 116 

converting the y-values from TCID50 to PFU and from log10 to the natural log. We fit a line to the data to 117 

determine the rate constant at 20 °C. 118 

119 

Data for TGEV-D52 and TGEV-Purdue 120 

An Arrhenius plot for thermal inactivation of TGEV D52 strain and Purdue strain was reported in the 121 

work by Laude, et al.
32

 The logarithms of the rate constants were provided for temperatures of 31, 35, 39, 122 

43, 47, 51, and 55 °C. We converted the value of the rate constants from log10 to the natural log and also 123 

converted the units from inverse seconds to inverse minutes to maintain consistency with the other data 124 

values used in this work. The converted rate constants are reported in Table S1.  125 

126 

Data for TGEV at relative humidity (RH) values of 20%, 50%, and 80% 127 

The virus concentration versus time for relative humidity (RH) values of 20%, 50%, and 80% at 128 

temperatures of 4, 20, and 40°C was reported in the work by Casanova, et al.
18

  We converted the value of 129 

the slopes from log10 to the natural log before plotting against time and taking the linear fit to find the rate 130 

constant. Data near the lower detection limit (LDL) were excluded from the analysis to avoid under-131 

predicting the rate (because the slope of the linear fit would artificially become shallower due to the 132 

inability to resolve lower concentrations experimentally).  Linear fits for the data at 4, 20, and 40 °C and 133 
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at relative humidity values of 20%, 50%, and 80%, respectively, are shown in Figures S11 to S19.  The 134 

resulting slopes were used to determine the rate constants at these temperatures, reported in Table S1. 135 

136 

137 

Figure S11. Primary data from Casanova et al.,
18

 for inactivation of TGEV at 4 °C and relative humidity 138 

of 20% after converting the y-values from log10 to the natural log. We fit a line to the data to determine 139 

the rate constant at 4 °C and RH of 20%. 140 

141 

142 

Figure S12. Primary data from Casanova et al.,
18

 for inactivation of TGEV at 4 °C and relative humidity 143 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 144 

constant at 4 °C and RH of 50%. 145 
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  146 

Figure S13. Primary data from Casanova et al.,
18

 for inactivation of TGEV at 4 °C and relative humidity 147 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 148 

constant at 4 °C and RH of 80%. 149 

 150 

 151 

Figure S14. Primary data from Casanova et al.,
18

 for inactivation of TGEV at 20 °C and relative humidity 152 

of 20% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 153 

constant at 20 °C and RH of 20%. 154 
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 155 

Figure S15. Primary data from Casanova et al.,
18

 for inactivation of TGEV at 20 °C and relative humidity 156 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 157 

constant at 20 °C and RH of 50%. 158 

 159 

 160 

 161 

Figure S16. Primary data from Casanova et al.,
18

 for inactivation of TGEV at 20 °C and relative humidity 162 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 163 

constant at 20 °C and RH of 80%. 164 

 165 
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 166 

Figure S17. Primary data from Casanova et al.,
18

 for inactivation of TGEV at 40 °C and relative humidity 167 

of 20% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 168 

constant at 40 °C and RH of 20%. 169 

 170 

 171 

Figure S18. Primary data from Casanova et al.,
18

 for inactivation of TGEV at 40 °C and relative humidity 172 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 173 

constant at 40 °C and RH of 50%. 174 
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 175 

Figure S19. Primary data from Casanova et al.,
18

 for inactivation of TGEV at 40 °C and relative humidity 176 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 177 

constant at 40 °C and RH of 80%. 178 

 179 

Data for MHV at relative humidity (RH) values of 20%, 50%, and 80% 180 

The virus concentration versus time for relative humidity (RH) values of 20%, 50%, and 80% at 181 

temperatures of 4, 20, and 40°C was reported in the work by Casanova, et al.
18

  We converted the value of 182 

the slopes from log10 to the natural log before plotting against time and taking the linear fit to find the rate 183 

constant. Data near the lower detection limit (LDL) were excluded from the analysis to avoid under-184 

predicting the rate (because the slope of the linear fit would artificially become shallower due to the 185 

inability to resolve lower concentrations experimentally).  Linear fits for the data at 4, 20, and 40°C and at 186 

relative humidity values of 20%, 50%, and 80%, respectively, are shown in Figures S20 to S28.  The 187 

resulting slopes were used to determine the rate constants at these temperatures, reported in Table S1. 188 

 189 
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 190 

Figure S20. Primary data from Casanova et al.,
18

 for inactivation of MHV at 4 °C and relative humidity 191 

of 20% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 192 

constant at 4 °C and RH of 20%. 193 

 194 

 195 

Figure S21. Primary data from Casanova et al.,
18

 for inactivation of MHV at 4 °C and relative humidity 196 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 197 

constant at 4 °C and RH of 50%. 198 

 199 
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 200 

Figure S22. Primary data from Casanova et al.,
18

 for inactivation of MHV at 4 °C and relative humidity 201 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 202 

constant at 4 °C and RH of 80%. 203 

 204 

 205 

Figure S23. Primary data from Casanova et al.,
18

 for inactivation of MHV at 20 °C and relative humidity 206 

of 20% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 207 

constant at 20 °C and RH of 20%. 208 

 209 
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 210 

Figure S24. Primary data from Casanova et al.,
18

 for inactivation of MHV at 20 °C and relative humidity 211 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 212 

constant at 20 °C and RH of 50%. 213 

 214 

 215 

Figure S25. Primary data from Casanova et al.,
18

 for inactivation of MHV at 20 °C and relative humidity 216 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 217 

constant at 20 °C and RH of 80%. 218 

 219 
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 220 

Figure S26. Primary data from Casanova et al.,
18

 for inactivation of MHV at 40 °C and relative humidity 221 

of 20% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 222 

constant at 40 °C and RH of 20%. 223 

 224 

 225 

Figure S27. Primary data from Casanova et al.,
18

  for inactivation of MHV at 40 °C and relative humidity 226 

of 50% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 227 

constant at 40 °C and RH of 50%. 228 

 229 
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 230 

Figure S28. Primary data from Casanova et al.,
18

 for inactivation of MHV at 40 °C and relative humidity 231 

of 80% after converting values from log10 to the natural log. We fit a line to the data to determine the rate 232 

constant at 40 °C and RH of 80%. 233 

 234 

Data for PEDV at pH values of 7.2, 9.2, and 10.2 235 

A 50% tissue culture infectious dose (TCID50) assay was reported in the work by Quist-Rybachuk, et al.
35

  236 

We converted TCID50 results to number of plaque forming units (PFU) by multiplying by 0.69 based on 237 

theory, as performed in prior work,
37–39

 and then converted the data from log10 to the natural log before 238 

calculating the slope based on the best fit lines that the authors provided in their plots. Data near the lower 239 

detection limit (LDL) had already been excluded from the authors’ own analysis to avoid under-240 

predicting the rate. The calculated slopes were used to determine the rate constants at 40, 44, and 48 °C 241 

for pH values of 7.2, 9.2, and 10.2, reported in Table S1.  242 

  243 
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S2. Processing of Virus Inactivation Data 244 

This section contains all of the raw values for the processed data included in Figure 1. The data points in 245 

Figure 1(a) are listed in Table S1, where the ln(k) values were calculated from the k = –d(ln([C]))/dt 246 

values determined in Section S1, unless otherwise noted in the table. The slope-intercept data for all of 247 

the linear fits in Figure 1 are listed in Table S2 and shown in Figure S29, along with the calculated 248 

activation energy and frequency factor shown in Figure 1(b).  249 

 250 

Table S1. Data plotted in Figure 1(a) in the main text.  251 

Dataset Ref. T  [°C] 1/T•10
4
   [10

4
/K] 

k = –d(ln([C]))/dt 

[1/min] 

ln(k)  

[1/min] 

SARS-CoV-2 
13

 4 36.10 0.0000597 -9.726 

SARS-CoV-2 
13

 22 33.90 0.000696 -7.270 

SARS-CoV-2 
22

 22 33.90 0.00166 -6.401 

SARS-CoV-2 
13

 37 32.36 0.00557 -5.190 

SARS-CoV-2 
13

 56 30.39 0.724 -0.323 

SARS-CoV-2 
13

 70 29.15 3.36 1.212 

SARS-CoV-1 
22

 22 33.90 0.00191 -6.261 

SARS-CoV-1 
30

 56 30.40 0.9077 -0.097 

SARS-CoV-1 
30

 65 29.59 2.869 1.054 

MERS-CoV 
20

 20 34.13 0.0027 -5.914 

MERS-CoV 
20

 56 30.40 0.16 -0.999 

MERS-CoV 
20

 65 29.59 3.62 2.121 

TGEV-D52 
32

 31 32.90 ln(k) provided in source -7.963 

TGEV-D52 
32

 35 32.47 ln(k) provided in source -7.332 

TGEV-D52 
32

 39 32.05 ln(k) provided in source -6.439 

TGEV-D52 
32

 43 31.65 ln(k) provided in source -5.808 

TGEV-D52 
32

 47 31.25 ln(k) provided in source -4.837 

TGEV-D52 
32

 51 30.86 ln(k) provided in source -3.369 

TGEV-D52 
32

 55 30.48 ln(k) provided in source -1.823 

TGEV-Purdue 
32

 31 32.90 ln(k) provided in source -7.832 
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TGEV-Purdue 
32

 35 32.47 ln(k) provided in source -7.149 

TGEV-Purdue 
32

 39 32.05 ln(k) provided in source -6.177 

TGEV-Purdue 
32

 43 31.65 ln(k) provided in source -5.468 

TGEV-Purdue 
32

 47 31.25 ln(k) provided in source -4.418 

TGEV-Purdue 
32

 55 30.48 ln(k) provided in source -1.849 

TGEV-RH20 
18

 4 36.10 0.000042 -10.126 

TGEV-RH20 
18

 20 34.13 0.00013 -9.210 

TGEV-RH20 
18

 40 31.95 0.0014 -6.570 

TGEV-RH50 
18

 4 36.10 0.000093 -9.316 

TGEV-RH50 
18

 20 34.13 0.0014 -6.571 

TGEV-RH50 
18

 40 31.95 0.0181 -4.012 

TGEV-RH80 
18

 4 36.10 0.00017 -8.517 

TGEV-RH80 
18

 20 34.13 0.00035 -7.824 

TGEV-RH80 
18

 40 31.95 0.0115 -4.465 

MHV-RH20 
18

 4 36.10 0.000012 -11.513 

MHV-RH20 
18

 20 34.13 0.000095 -9.210 

MHV-RH20 
18

 40 31.95 0.0018 -6.571 

MHV-RH50 
18

 4 36.10 0.00017 -8.517 

MHV-RH50 
18

 20 34.13 0.0016 -6.438 

MHV-RH50 
18

 40 31.95 0.0114 -4.474 

MHV-RH80 
18

 4 36.10 0.00013 -9.210 

MHV-RH80 
18

 20 34.13 0.00080 -7.131 

MHV-RH80 
18

 40 31.95 0.0113 -4.483 

PEDV-pH 7.2 
35

 40 31.95 0.0211 -3.858 

PEDV-pH 7.2 
35

 44 31.55 0.0326 -3.422 

PEDV-pH 7.2 
35

 48 31.15 0.0900 -2.407 

PEDV-pH 9.2 
35

 40 31.95 0.0863 -2.449 

PEDV-pH 9.2 
35

 44 31.55 0.1295 -2.044 

PEDV-pH 9.2 
35

 48 31.15 0.5178 -0.658 

PEDV-pH 10.2 
35

 40 31.95 0.1618 -1.821 

PEDV-pH 10.2 
35

 44 31.55 0.2728 -1.299 

PEDV-pH 10.2 
35

 48 31.15 1.2943 0.258 

 252 
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Table S2. Slopes and intercepts of data plotted in Figure 1(a) in the main text, and the calculated ln(A) 253 

and Ea values shown in Figure 1(b). 254 

Dataset Slope [K/10
4
] Intercept [1/min] Ea [J/mol] ln(A) [1/min] 

SARS-CoV-2 -1.632 48.617 135,692 48.62 

SARS-CoV-1 -1.715 51.903 142,601 51.90 

MERS-CoV -1.628 49.480 135,377 49.48 

TGEV-D52 -2.451 72.205 203,822 72.21 

TGEV-Purdue -2.472 73.094 205,509 73.09 

TGEV-RH20  -0.924 22.919 76,826 22.92 

TGEV-RH50 -1.276 36.811 106,051 36.81 

TGEV-RH80 -0.986 26.640 81,964 26.64 

MHV-RH20  -1.191 31.449 98,984 31.45 

MHV-RH50 -0.972 26.644 80,850 26.64 

MHV-RH80 -1.140 31.882 94,776 31.88 

PEDV-pH7.2 -1.820 54.177 151,291 54.18 

PEDV-pH9.2 -2.245 69.111 186,661 69.11 

PEDV-pH10.2 -2.606 81.262 216,676 81.26 

 

 255 
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 256 

Figure S29. A magnified version of Figure 1(a) from the main text, with the slopes and intercepts for 257 

each linear fit indicated.  258 

 259 

S3. Trends across Virus Strains, Relative Humidity, and pH 260 

Subsets of the model predictions for several viruses that varied only by strain, relative humidity, or pH of 261 

the surrounding medium are plotted here to more clearly highlight trends.  262 

 263 

Trends across virus strains 264 

Comparing results for the TGEV-D52 and TGEV-Purdue strains, we did not observe any significant 265 

deviation in the model prediction between these strains, shown in Figure S30. The similarity between 266 

these two strains is in agreement with the observed similarity between SARS-CoV-2 and SARS-CoV-1.
22

 267 

 268 
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 269 

Figure S30. Model predictions for decontamination times required for the TGEV D52 and Purdue strains. 270 

 271 

Trends across relative humidity conditions 272 

Comparing results for the TGEV and MHV viruses at relative humidity levels of 20%, 50%, and 80%, we 273 

did not observe any clear trends, as shown in Figures S31 and S32.  We note that the dataset obtained 274 

from Casanova, et al., appeared to exhibit the most experimental error of all the data used in the model, 275 

especially at low temperatures, with R
2 
values as low as 0.1 when applying linear fits to several sets of 276 

their data in Section S1. Therefore, more data would be needed to rule out a correlation between virus 277 

inactivation and relative humidity, especially considering such a trend has been implied in prior work.
55278 
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 279 

Figure S31.  Model predictions for decontamination times required for TGEV at levels of relative 280 

humidity of 20%, 50%, and 80%.  281 

 282 

 283 

 284 

Figure S32.  Model predictions for decontamination times required for MHV at levels of relative 285 

humidity of 20%, 50%, and 80%.  286 
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Trends across pH levels 287 

Comparing results for PEDV across pH levels of 7.2, 9.2, and 10.2, we observed a faster rate of virus 288 

inactivation at more basic pH levels as reported in prior work,
35

 shown here in Figure S33. 289 

 290 

 291 

Figure S33.  Model predictions for decontamination times required for PEDV at pH levels of 7.2, 9.2, 292 

and 10.2.   293 

 294 

S4. Conversion of Climate Data to Inactivation Timescale Map  295 

National average temperature maps of the United States for the months of January to March, 2020, and  296 

July to September, 2019, were obtained from the National Oceanic and Atmospheric Administration 297 

(NOAA). These temperature maps, shown in Figures S34 and S35, display the CONUS mean 298 

temperature (except data for Hawaii and Alaska, which were obtained from NOAA’s climate data online 299 

search). The average temperature values encompassing January through March, 2020, were chosen in 300 

accordance with the timeline of the COVID-19 pandemic to date, and the average temperature values 301 

from July to September, 2019, were chosen to represent typical summer weather in the United States. 302 

 303 
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 304 

Figure S34. Initial data from NOAA used to generate Figure 3 in the main text; average temperatures 305 

over the period encompassing January to March, 2020, are shown.  306 

 307 

 308 

Figure S35. Initial data from NOAA used to generate Figure 3 in the main text; average temperatures 309 

over the period encompassing July to September, 2019, are shown.   310 



 

S-28 

 

S5. Statistical Analysis of Linear Regression Model 311 

The experimental data points collected from the literature were synthesized to obtain the rate constant, k, 312 

at a given temperature. The data from Table S1 were used to plot ln(k) against 1/T, and the slopes and 313 

intercepts were obtained using linear regression. The deviation of data points and uncertainty of the least 314 

squares fit was taken into account by constructing a 95% confidence interval. The confidence intervals for 315 

the mean value of ln(k) at a given 1/T (represented by 𝛽) were calculated using Eq. S1: 316 

𝑙𝑛(𝑘) = (�̂� 𝛽 + �̂�) ∓ 𝑡 𝑆𝑙𝑛(𝑘),𝛽 √
1

𝑛
+

(𝛽 − �̅�)
2

𝑆𝛽𝛽
        (Eq. S1) 

where �̂� and �̂� are the slope and intercept of the least squares best-fit, respectively, and �̅� is the mean of 317 

the 1/T values . The number of data points is n, with the degrees of freedom defined as 𝑛 − 2. Given the 318 

degrees of freedom and the percentage of the confidence interval to be determined, the t value is obtained 319 

from the two-sided Student’s t-distribution. 𝑆𝑙𝑛(𝑘),𝛽 is the standard deviation of the ln(k) parameter and 320 

𝑆𝛽𝛽 represents the sum of the squared deviations from the mean. The statistical parameters used to 321 

calculate the confidence interval for each virus included in our analysis are tabulated in Table S3.  322 

 323 

The upper and lower bound values of the confidence interval constructed for ln(k) were used to determine 324 

the uncertainty in predicted decontamination times to achieve 3-log reduction (i.e. [C]/[C0] = 10
–3

). The 325 

upper and lower bounds for k were evaluated by taking the exponent of ln(k), and by rearranging the first-326 

order rate law as shown in Eq. 1, which was used to determine the uncertainty (Eq. S2):  327 

𝑡3−𝑙𝑜𝑔 =
ln(10−3)

−𝑘
   (Eq. S2) 

The computed values illustrate uncertainty in the predicted lifetime at a given temperature by taking into 328 

account the potential error stemming from the linear regression of experimental data to obtain 𝐸𝑎 and 329 

ln(A). Table S4 lists the uncertainty in predicted times needed to achieve a 3-log reduction in 330 

decontamination applications, and Table S5 lists the uncertainty in predicted lifetimes (outside of a host) 331 

of SARS-CoV-2 and SARS-CoV-1.  332 
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Table S3. Statistical parameters used in determining a 95% confidence interval for the mean value of 333 

ln(k) for each virus. 334 

Dataset �̂�  �̂�  �̅� n 𝒕 𝑺𝜷𝜷 𝑺𝒍𝒏(𝒌),𝜷

SARS-CoV-2 -1.632 48.617 32.618 6 2.776 32.477 0.800 

SARS-CoV-1 -1.715 51.903 31.293 3 12.706 10.508 0.170 

MERS-CoV -1.628 49.480 31.370 3 12.706 11.750 1.292 

TGEV-D52 -2.451 72.205 31.644 7 2.571 0.252 0.538 

TGEV-Purdue -2.472 73.094 31.791 6 2.776 0.514 0.513 

TGEV-RH20 -0.924 22.919 34.060 3 12.706 8.628 0.727 

TGEV-RH50 -1.276 36.811 34.060 3 12.706 8.628 0.185 

TGEV-RH80 -0.986 26.640 34.060 3 12.706 8.628 1.004 

MHV-RH20 -1.191 31.449 34.060 3 12.706 8.628 0.035 

MHV-RH50 -0.972 26.644 34.060 3 12.706 8.628 0.130 

MHV-RH80 -1.140 31.882 34.060 3 12.706 8.628 0.135 

PEDV-pH7.2 -1.820 54.177 31.549 3 12.706 0.317 0.245 

PEDV-pH9.2 -2.245 69.111 31.549 3 12.706 0.317 0.410 

PEDV-pH10.2 -2.606 81.262 31.549 3 12.706 0.317 0.433 

335 

336 

Table S4. Uncertainty in predicted decontamination time required for SARS-CoV-2 and SARS-CoV-1 337 

defined as the time required for a 3-log reduction due to thermal denaturation bounded by a 95% 338 

confidence interval in the predicted value. 339 

Temperature 

SARS-CoV-2 

decontamination time, t3-log 

SARS-CoV-1 

decontamination time, t3-log 

60 °C 10 min <  t3-log < 40 min 4.8 min <  t3-log  < 21 min 

70 °C 2.5 min <  t3-log < 13 min 1.1 min <  t3-log < 7.0 min 

80 °C   t3-log < 4.3 min   t3-log  < 2.6 min 

90 °C    t3-log < 1.6 min    t3-log   < 1.1 min 

340 
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341 

342 

343 

344 

Table S5. Uncertainty in predicted lifetime of human coronaviruses outside of hosts across a range of 

environmental temperatures from 10 °C to 40 °C, defined as the time required for 3-log inactivation due 

to thermal denaturation bounded by a 95% confidence interval (the lifetimes of all human coronaviruses 

considered in this work were greater than one month at temperatures below 10 °C). 

Temperature SARS-CoV-2 lifetime, t3-log SARS-CoV-1 lifetime, t3-log 

10 °C  1 month <  t3-log   29.8 d <  t3-log   

15 °C  15.5 d <  t3-log  10.4 d <  t3-log   

20 °C      5.9  d <  t3-log  < 16 d  3.8 d <  t3-log   

25 °C       2.3 d <  t3-log  < 6.0 d     1.4 d <  t3-log  < 9.7 d 

30 °C     22.5 h <  t3-log  < 2.3 d      13 h <  t3-log  < 2.8 d 

35 °C       9.4 h <  t3-log  < 22.6 h     5.2 h <  t3-log  < 22 h 

40 °C       4.0 h <  t3-log  < 10 h     2.1 h <  t3-log  < 7.8 h 
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