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Abstract

Mathematical models of the dynamics of infectious disease transmission are used to forecast
epidemics and assess mitigation strategies. We reveal that the classic Susceptible-Infectious-
Recovered (SIR) epidemic model resembles a dynamic model of a batch reactor carrying out an
autocatalytic reactionwith catalyst deactivation. This analogy between disease transmission and
chemical reactions enables the cross-pollination of ideas between epidemic and chemical kinetic
modeling.

1 introduction

Mathematical models of the dynamics of infectious disease transmission [1, 2] are useful for fore-
casting epidemics, assessing intervention strategies, and inferring properties of diseases.

In compartmental epidemicmodels [3], eachmember of the population is categorized based on their
disease status in addition to, possibly, their attributes and the treatment they received. The dynamics
of disease transmission are then typically modeled with differential equations that describe the flow
of individuals to and from the compartments as the population mixes, the disease spreads, and
infected individuals progress through the stages of the disease. Differential equations are a natural
choice because we can make reasonable assumptions about the rates at which people acquire the
infection and progress through the stages of the disease.

In this article, we highlight the analogy between the dynamics of disease transmission and chemical
reaction kinetics while formulating and analyzing the classic SIR compartmental epidemic model
[4,5].
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2 the SIR model

In the classic SIR model of an epidemic [2,4,6,7], each member of the population belongs to one of
three compartments: Susceptible, Infectious, or Recovered.

2.1 the reactions

S I R
β[S][I] γ[I]

Figure 1: The SIR model. The boxes represent the
set of Susceptible, Infectious, and Recovered indi-
viduals. The arrows represent flow from one com-
partment to another and are annotated with per
capita flow rates.

Susceptible folks can contract the disease if they
come into contact with an infectious individual.
Once infected, they move into the infectious
compartment, assuming zero delay between in-
fection and the ability to transmit the disease.
This is analogous to an irreversible autocatalytic
chemical reaction [8, 9] between a reactant, S,
and catalyst, I:

S + I −−→ 2 I {1}

Infectious individuals eventually recover or die from the disease, entering the recovered compart-
ment, and then cannot transmit the disease or contract it again. This is analogous to a reactionwhere
the catalyst, I, irreversibly degrades or converts to a deactivated form, R:

I −−→ R {2}

The R category is sometimes called the Removed category [10] instead, emphasizing its inclusion of
disease-induced deaths.

We assume that recovery from the disease confers permanent immunity to reinfection, thus neglect-
ing the possibility of an R −−→ S reaction.

So, the SIR model of an epidemic is analogous to an autocatalytic reaction (rxn. {1}) with catalyst
deactivation (rxn. {2}). An infectious individual (the catalyst, I), (i) upon contacting (colliding with) a
susceptible individual (the reactant, S), can convert them into another infectious individual (another
catalyst particle) and (ii) recovers (deactivates) with time. Fig. 1 depicts the flow of individuals through
compartments under the SIR model, induced by rxns. {1} and {2}.

2.2 the dynamic mathematical model

Mathematically, the SIRmodel [4,6,7,11] is equivalent to a dynamicmodel of a well-mixed, isothermal
batch reactor carrying out the two homogeneous, elementary rxns. {1} and {2}.

As in a (closed) batch reactor, we neglect immigration and emigration (hence the absence of flow
to/from external populations in Fig. 1). Moreover, we take births and deaths (from causes other than
the disease) to be negligible over the (fast) time scale of the epidemic.

Let [S](t), [I](t), and [R](t) be the fraction of the population that is susceptible, infectious, and
recovered, respectively, at time t . Considering a large population, we treat [S], [I], and [R] as con-
tinuous variables.
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the incidence rate. Assuming their spatial mixing is uniform [12, 13], we invoke the law of mass
action to model the rate at which susceptible and infectious individuals “react” via bimolecular, auto-
catalytic rxn. {1}. The incidence rate of the disease, i.e. the number of new infections per unit time [11],
is then β[S][I] (per capita). A symmetric, bilinear function of [S] and [I], intuitively, the incidence rate
doubles if [I] ([S]) doubles while [S] ([I]) is fixed. The second-order transmission rate constant β > 0
is the product of the average frequency of contacts of a person and the transmissibility of the disease
(the probability of transmission conditioned upon contact).
the recovery rate. We model the rate at which infectious individuals “deactivate” (recover) via
rxn. {2} with first-order kinetics, i.e., as γ[I] (per capita). The inverse of the first-order recovery rate
constant γ > 0 is the average time period that an infected individual is infectious [14].

With the assumptions above (see Fig. 1 for flows), we arrive at the following set of nonlinear, coupled
differential equations that comprise the SIR dynamic model of infectious disease transmission:

d [S]

dt
= −β[S][I] (1)

d [I]

dt
= β[S][I]− γ[I] (2)

d [R]

dt
= γ[I]. (3)

The only two parameters in the SIR model are the transmission and recovery rate constants, β and
γ, respectively. While the average duration of infectiousness, γ−1, can be estimated from contact
tracing or shedding studies [15], β could be identified by fitting differential eqns. 1-3 to epidemic time
series data (case counts) [11, 13], much like identifying a reaction rate constant from concentration
time series [16].

Addition of eqns. 1-3 confirms the population is closed and demography is neglected, i.e., [S](t) +
[I](t)+[R](t) = 1, ∀t ≥ 0. As a consequence, eqns. 1 and 2 fully determine the SIRmodel dynamics,
with [R](t) = 1− [S](t)− [I](t).

2.3 the replacement and basic reproduction numbers

Two important numbers aid our characterization and understanding of SIR model dynamics: the
replacement number, r , and the basic reproduction number,R0.

The replacement number, r = r(t), is the expected number of folks (directly) infected by a typical
infectious individual, mixing in the population, over the course of their infectiousness [2]. Because
the concentration of susceptible folks [S] = [S](t) influences the frequency that a typical infectious
individual contacts a susceptible individual, r changes over time. In the SIRmodel, a typical infectious
individual is expected to be infectious for a time period of γ−1 and, during this time, produceβ[S](t)
new infections per unit time (incidence rate per infectious individual). The replacement number is
therefore:

r = r(t) =
β

γ
[S](t). (4)
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The basic reproduction number,R0, is defined as the initial replacement number when one infectious
individual is introduced into an all-susceptible population [2, 7]. Because the entire population is
susceptible in this context,R0 in the SIR model is the replacement number in eqn. 4 when [S] ≈ 1:

R0 =
β

γ
. (5)

i.e., R0 is the expected number of infections directly caused by a single infectious individual intro-
duced into an entirely susceptible population over the course of their infectiousness [2].

The replacement number, r , and basic reproduction number, R0, are both dimensionless and are
properties of both the disease and the population [17]. While r = r(t) changes with time, R0 is
constant and defined only at the initial stage when one infectious individual is introduced to an all-
susceptible population. Notably, the two numbers are related via r(t) = R0[S](t).

If the basic reproduction number R0 is large (small), the infected are infectious for a long (short)
period of time, the disease is (not) easily transmitted, and/or the average frequency of contacts is
high (low). Under the analogy with chemical kinetics, since the activity and longevity of the catalyst,
I, are embedded in β and γ, respectively: R0 is large (small) if the catalyst has a high (low) activity
and/or remains active for a long (short) time. Because r = R0[S], these remarks also hold for the
replacement number, r . Though, r decreases as the concentration of the reactant, [S], decreases,
owing to the reduced frequency that any given catalyst particle encounters a reactant particle to
catalyze its conversion into another catalyst particle by rxn. {1}.

3 SIR model dynamics

In the SIR model, what happens if we introduce a small number of infectious individuals into a large
population of susceptible individuals? This is akin to injecting our deactivating auto-catalyst, I, into a
well-mixed batch reactor containing pure S. The corresponding initial conditions are:

[S](0) = [S]0 (6)
[I](0) = [I]0 (7)
[R](0) = 0, (8)

with [S]0 + [I]0 = 1, [S]0, [I]0 > 0, and [I]0 << 1. We consider [R](0) = 0 for the interesting case
where a population is exposed to a novel pathogen to which it has no immunity.

3.1 the replacement number determines [I]′(t)

The replacement number r(t) in eqn. 4 is key to understanding SIRmodel dynamics. By inspection of
eqn. 2, [I](t) is increasing at time t if the replacement number r(t) > 1 and decreasing if r(t) < 1.
This is intuitive: if the typical infectious person mixing in the population is expected to infect less
than one susceptible person before they recover, they are not expected to replace themselves with
a new infectious individual to propagate the disease, and [I](t) decreases. Note r(t) < 1 ⇐⇒
[S](t) < R−10 .
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3.2 does an epidemic ensue?

We first address a qualitative question: given the initial conditions in eqn. 6-8, does the disease
invade the population? The outcome depends on the initial replacement number r0 := r(0) =

R0[S]0 in a threshold manner. If r0 > 1, [I](t) initially increases. i.e., the disease spreads; an
epidemic ensues. If r0 < 1, [I](t) initially decreases and, since [S](t) is a decreasing function of
time (see eqn. 1), decays to zero. i.e., the disease dies out; an epidemic does not ensue.

Under the chemical reaction analogy, if r0 < 1 (r0 > 1), the injected catalyst particles deactivate via
rxn. {2} faster (slower) than they catalyze rxn. {1} to convert the reactant, S, into more catalyst, I, to
propagate autocatalytic rxn. {1}.

For our remaining analysis, we take r0 > 1 and further analyze the dynamics of an SIR epidemic.

3.3 initial exponential growth

Early in the epidemic, the number of infectious folks grows, approximately, exponentiallywith growth
rate (r0 − 1)γ:

[I](t) ≈ [I]0e(r0−1)γt . (9)

This follows fromeqn. 2 if we approximate [S](t) ≈ [S]0, valid only in the initial stage of the epidemic;
as the disease spreads, [S] decreases and diminishes the replacement number. Eqn. 9 is thus an
overestimate.

Since eqn. 9 is also a valid initial approximation for r0 < 1, it reinforces that an epidemic will not
ensue if r0 < 1, since [I](t) would then decay approximately exponentially.

3.4 a simulation of an SIR model epidemic
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Figure 2: Numerical approximation of the solution to
the SIR model in eqns. 1-3 (R0 = 2) with initial condi-
tions in eqns 6-8 ([I]0 = 10−5).

Fig. 2 shows the numerical solution to
eqns. 1-3 with initial conditions in eqns. 6-8
forR0 = 2 and [I]0 = 10−5 (see Sec. A1.1
for code). Initially, the concentration of in-
fectious folks, [I], grows approximately ex-
ponentially (see Fig. A8 for a comparison
of [I](t) with eqn. 9). The concentration of
susceptible folks, [S], decreases monoton-
ically as the disease invades. As a result,
the frequency with which any given infec-
tious individual comes into contact with a
susceptible individual decreases. In con-
junction with the infectious folks recover-
ing, this eventually causes the (net) growth
rate of [I] to diminish and, when the re-
placement number r in eqn. 4 drops below
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one, causes [I] to decay. The epidemic self-
extinguishes, i.e., limt→∞[I](t) = 0 [18]. The R category accumulates the folks that have been
infected by and have recovered from the disease, [R](t) = γ

∫ t
0
[I](τ)dτ (see eqn. 3 with initial con-

dition 8). Notably, the disease does not infect the entire population, even after an infinite amount of
time. i.e., the epidemic self-extinguishes not because the population is depleted of susceptible folks,
but rather because it is depleted of infectious folks [6, 13].

Under the chemical kinetics analogy, the autocatalytic rxn. {1} begins to slow down after the concen-
tration of the reactant, [S], decreases sufficiently. Once the replacement number r(t) drops below
one (i.e. once [S] drops below R−10 ), the catalyst, I, is deactivating via rxn. {2} faster than it is con-
verting the reactant, S, into more catalyst to replenish itself via rxn. {1}. Consequently, the catalyst
concentration, [I], begins to drop and decays to zero. Owing to catalyst deactivation (rxn. {2}), not all
reactant, S, is consumed, even after an infinite amount of time.

3.5 solution in the ([S], [I]) phase space
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Figure 3: The trajectory of the solution to the SIR model
(R0 = 2, initial conditions in eqns 6-8 with [I]0 = 10−5)
in the ([S], [I])phase plane, given by eqn. 10. The trajec-
tory is colored according to time. The initial conditions,
peak prevalence of infectious folks, and final conditions
are marked. Since [S](t) + [I](t) ≤ 1, solutions in the
gray region are infeasible.

We can analytically find the trajectory of
the solution to eqns. 1-2 in the ([S], [I])
phase plane. Dividing eqn. 2 by eqn. 1 takes
us into the phase plane by giving a differen-
tial equation with a d [I]

d [S]
derivative, with the

view of [I] as a function of [S]. Separating,
integrating, and applying the initial condi-
tions in eqns. 6 and 7, we arrive at the so-
lution path [3]:

[I](t) = 1− [S](t) +
1

R0
log

(
[S](t)

[S]0

)
.

(10)
Fig. 3 shows the trajectory given in eqn. 10
(R0 = 2, [I]0 = 10−5) and reinforces
that [S](t) decreases monotonically with
time, that [I](t) increases, peaks, then di-
minishes to zero, and that a fraction of the
population remains susceptible after the
epidemic dies out.

3.6 final size

Given the epidemic (autocatalytic reaction)
dies out before all of the susceptible folks (reactant) have been infected, what fraction of the popu-
lation (reactant) remains susceptible (unreacted) after the epidemic ends?

6



1 2 3 4 5
0

0.0

0.2

0.4

0.6

0.8

1.0

[S
]

final size

(a)

1 2 3 4 5
0

0.0

0.1

0.2

0.3

0.4

0.5

m
ax t

 [
I]

(t)

peak prevalence

(b)

Figure 4: The fraction of the population that (a) remains susceptible (never infected) after the SIR
epidemic runs its course, [S]∞, via eqn. 11 and (b) is infected at peak prevalence, maxt [I](t), via
eqn. 12, both as a function ofR0. Corresponds to initial conditions in eqns. 6-8 with [I]0 = 10−5.

We find an implicit equation for [S]∞ := limt→∞[S](t) by taking the limit t →∞ in eqn. 10:

0 = 1− [S]∞ +
1

R0
log

(
[S]∞
[S]0

)
. (11)

We used the fact that the epidemic eventually dies out, limt→∞[I](t) = 0. [S]∞ is the unique root
of eqn. 11 in (0,R−10 ) [2]. The fraction of the population infected over the course of the epidemic is
limt→∞[R](t) =: [R]∞ = 1 − [S]∞ since the R category accumulates those that have recovered
from the disease. Fig. 4a shows that, as R0 increases from one, more of the population will be
infected over the course of the epidemic.

3.7 peak prevalence of infectious folks

Thepeak prevalence of infectious folks,maxt [I](t), is important because it determines themaximum
burden on healthcare. Both eqn. 10 and eqn. 2 show that the maximum in [I](t) (look for d [I]

d [S]
= 0

or d [I]
dt
= 0, respectively) occurs when [S](t) = R−10 (i.e., when replacement number r(t) = 1). Via

eqn. 10, then:

max
t
[I](t) = 1−

1

R0
[1 + log (R0[S]0)] . (12)

Fig. 4b shows how the peak prevalence of infectious folks increases withR0. Before the maximum,
the replacement number r(t) > 1 and [I](t) is increasing; after the peak, r(t) < 1 and [I](t) is
decreasing to zero.
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3.8 herd immunity

A population is conferred herd immunity when a sufficient fraction is immune to the disease so as
to indirectly protect it from invasion of the disease upon the introduction of an infectious individual.
Notably, such immunity could be acquired by either previous infection or by vaccination. [2]

What fraction v of a population must be immune to achieve herd immunity? [I](t) will decrease
upon introducing an infectious individual if the replacement number r(t) < 1, i.e. if [S] < R−10 .
Thus, a fraction v > 1 −R−10 of the population must be immune to achieve herd immunity. Fig. 5
shows the region v > 1 − R−10 (gray) and illustrates that, if R0 is large (small), more (less) of the
population must be immune to prevent an epidemic via herd immunity.
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Figure 5: Herd immunity. The gray region shows
the fraction v > 1 − R−10 of a population that
must be immune to achieve herd immunity. Such
immunity could be conferred by vaccination or by
previous infection. For comparison, the orange
line shows [R]∞, the number of folks that will be
infected over the course of an SIR epidemic with-
out any vaccination ([I]0 = 10−5).

In the chemical kinetics analogy, herd immunity
results from reducing the concentration of the
reactant, [S], so that a catalyst particle, I, fed
to the reactor is expected to deactivate before
it encounters an S particle and auto-catalyzes
rxn. {1} to replace itself. i.e., to achieve herd
immunity, [S] must be reduced sufficiently to
make the replacement number r less than one.

To account for vaccination dynamics in the
midst of an epidemic, we can modify the SIR
model by including induced flow in Fig. 1 from
the S category directly to the R category, repre-
senting the administration of a vaccine to sus-
ceptible folks that confers complete immunity
[11, 19, 20].

An interesting comparison is when herd immu-
nity is achieved through a vaccine (S −−→ R)
versus through infection and recovery (S −−→
I −−→ R). One obvious benefit of the path
S −−→ R over the path S −−→ I −−→ R

is avoiding disease-induced suffering and, pos-
sibly, death. Anyway, administering an effec-
tive vaccine to a fraction v = 1 − R−10 of an
all-susceptible population will suffice to achieve
herd immunity. However, this does not imply that the same fraction will be infected if herd immunity
is instead achieved through infection and recovery, by introducing infectious individuals and allowing
the epidemic to run its course. Fig. 5 also shows (orange curve) [R]∞, the fraction of the population
that will be infected by the disease over the course of an SIR epidemic without any vaccination. A
significantly greater fraction of the population will be infected by the disease if we let it run its course
than would have needed vaccination to achieve herd immunity. When [S](t) reachesR−10 in an SIR
epidemic without vaccination, [I](t) is at its maximum (see eqn. 10 and Fig. 3); these infectious in-
dividuals will infect more susceptible folks before they all recover, even though on average each is
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expected to recover before they infect a susceptible individual (r < 1 after this point).

3.9 conclusion: R0 is a useful tool
The basic reproduction number R0 is a property of an infectious disease within a population. The
average frequency of contacts of an individual in the population, the transmissibility of the disease,
and the average duration of infectiousness are all embedded inR0. In the SIRmodel,R0 influences if
the disease invades the population, the initial exponential growth rate of infectious folks, howmany
are infected over the course of the epidemic, the peak prevalence of infectious folks, and howmany
must be vaccinated to achieve herd immunity.

4 extensions to the SIR model

The SIR model is a very simple epidemic model, but we can extend it to model other epidemiological
factors and prevention/control measures by introducing:
additional compartments. For example, the SEQIJR model [22] introduces three additional com-
partments: Exposed, Quarantined, and Isolated (J). Usually, the E compartment is included tomodel
the latent period of a disease; exposed individuals have been exposed to and infected by the disease
but are not yet infectious [3,23]. The Q and J compartments are included to model the control mea-
sures of quarantining individuals exposed to the disease and isolating infectious individuals, respec-
tively. Members of the Q and J compartments contact susceptible folks with a reduced frequency [3].
See Fig. 6a. As another example, to distinguish between Asymptomatic and symptomatic infectious
individuals [24], which may have different recovery rates, frequencies of contacts, and transmissi-
bilities, we can introduce an A compartment. Finally, to account for different mixing patterns, infec-
tiousness, and susceptibility among different age groups [3], age-structured compartmental models
partition the S and I compartments into age groups.

Additional compartments complicate the derivation of the basic reproduction numberR0 from the
model [25]. Still, the peak prevalence of infectious folks and final size of the epidemic increase with
R0 in most models [26]. Notably, a more precise definition of R0 is needed if compartments are
introduced to account for heterogeneity in the population [27].
time-varyingparameters. A time-varying transmission rate constantβ = β(t) canmodel changes
in the frequency of social contacts within the population or in the transmissibility of the disease.
For example, members of the population may (voluntarily or induced by policy) change/adapt their
behavior during the epidemic, e.g., by reducing their frequency of social contacts, practicing social
distancing, taking hygiene measures, etc. [18, 28, 29]. A periodic β(t) can model seasonality of an
infectious disease [30, 31]. A time-varying recovery rate constant γ = γ(t) can model changes in
the average time period of infectiousness, e.g., a reduction of 1/γ by administering a drug to in-
fected patients [18]. Reducing the transmission rate constant β and/or the average time period of
infectiousness 1/γ reduces the replacement number r (see eqn. 4); if r is reduced below one, the
prevalence of infectious folks will decrease.
births, deaths, and loss of immunity. To model infectious disease transmission over longer time
scales, we canmodify the closed SIR model to account for births and deaths (caused by factors other
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Figure 6: Extensions to the SIR model. (a) Introducing additional compartments. Exposed individ-
uals have been exposed to and infected by the disease, but cannot yet transmit the disease, due
to a latent period. Owing to control measures, quarantined (Q) and isolated (J) individuals contact
susceptible folks with a reduced frequency. (b) When demographics (births and natural deaths, with
rate constant µ) are included in the SIR model, [I](t) can exhibit damped oscillations that settle on
an endemic equilibrium. The phase plane shows the dynamics for [I]0 = 1e − 5, β/(µ + γ) = 2,
and µ/(µ+ γ) = 0.05 (unrealistically large to clearly see limt→∞[I](t) > 0). [2] (c) A simulation of
the (stochastic) SIR continuous timeMarkov chainmodel [21] for a small population of 50 individuals,
with one initially infectious (R0 = 2). (d) In a contact network model, nodes represent individuals
and edges represent contacts. Here, the highly connected infected node (red) can infect its nine
susceptible (green) neighbors.
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than the disease) by allowing flow into the S compartment and flow out of all compartments, respec-
tively. In addition, as opposed to assuming recovery from infection confers permanent immunity, we
can address temporary immunity andmodel the loss of immunity by introducing aR −−→ S reaction.
Because births and the loss of immunity continuously add to the susceptible pool, [I](t) in the SIR
model with births, deaths, and loss of immunity can exhibit damped oscillations that settle on an
endemic equilibrium, where the disease remains in the population indefinitely (i.e., [I] is maintained
at a non-zero value). See Fig. 6b. At an endemic equilibrium, the replacement number is maintained
at one so that [I](t) is neither increasing nor decreasing. [2,32,33]
stochasticity. As opposed to the deterministic differential eqns. 1-3, we can introduce random-
ness into the SIR model to account for the stochastic and uncertain nature of human interaction and
disease transmission [21,34,35]. Stochastic epidemic models aim to describe the probabilistic distri-
bution of outcomes, e.g., the distribution of [S]∞ [34,35]. Stochasticity can be particularly important
for small populations and in the early stage of an epidemic when there are small numbers of infec-
tious individuals [35]. Analogously, stochastic models of chemical reaction dynamics are necessary
when the reactants are not abundant, such as in a biological cell [36,37]. See Fig. 6c for an example
of a stochastic simulation of the SIR model.
more realistic probabilistic distributions of the infectious time period. The probabilistic im-
plication of first-order decay in eqn. 3 for a single infected individual is that their time period of
infectiousness is an exponentially distributed random variable with mean γ−1 [3]. More realistic
probabilistic distributions of the time period of infectiousness can be built into the SIRmodel [38,39].
spatial heterogeneity. We can model spatial heterogeneity of an epidemic in a discrete [40] or
continuous [11] manner. Modeling the spatial movement of susceptible and infectious individuals
in a continuous space as a diffusive process results in reaction-diffusion equations, also familiar to
chemists and chemical engineers [11]. Compartmental, metapopulation epidemic models with travel
between spatially segregated regions resemble models of multiple batch reactors connected with
pipes that allow flow between them [40,41].
more detail/structure in contact patterns. Agent-based and network epidemiological models
can account for structure and heterogeneity in contact patterns among members of a population
[42–46]. In a contact network model, each individual of the population is represented by a node,
and edges between nodes represent interactions that could result in disease transmission if one of
the nodes becomes infectious [45,47]. See Fig. 6d. The dynamics of disease transmission on a con-
tact network depend significantly on its structure, e.g., on the degree distribution, node clustering,
and correlation between the degrees of connected nodes [45]. Intuitively, the dynamics of an SIR
model on large, static, random k -regular contact networks (a random network where each node has
k neighbors) closely approximate those of eqns. 1-3, which assume homogeneous mixing [45]. In
contrast, the dynamics of SIR models on highly heterogeneous contact networks, such as those with
heavy-tailed degree distributions that capture “superspreaders” [48, 49], deviate significantly from
eqns. 1-3. Directed networks canmodel asymmetric contacts that can only transmit the disease one-
way, such as donated blood transfusions [46,50].
vectors that transmit the pathogen from host to host. Some infectious diseases are primarily
transmitted from one host to another host by living vectors that can acquire and carry the infectious
agent. For example, mosquitoes can acquire an infectious agent (e.g., the virus that causes dengue
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fever or the parasite that causes malaria) from feeding on the blood of an infected human, then
transmit the infectious agent to another, susceptible human when feeding on their blood. SIR-like
models of diseases transmitted by vectors include an incidence term β[S][Iv ], where [Iv ] is the con-
centration of infectious vectors and β includes the frequency that the vector bites the hosts and the
probability of transmission conditioned upon a bite. [51,52]

5 conclusions

Mathematical models of the dynamics of disease transmission are used to forecast epidemics and
assess mitigation strategies. The analogy between disease transmission and an autocatalytic reac-
tion allows chemists and chemical engineers to peer into epidemic models. Moreover, the analogy
illustrates how concepts in one field can transfer, aid understanding, and generate insights to/in
another field.
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A1 the appendix

A1.1 simulating the SIR model in Julia

Code in the Julia language to numerically approximate the solution to the SIR model, via the Differ-
entialEquations.jl [53] package, is below.

using DifferentialEquations

R0 = 2.0 # basic reproduction number

# right-hand side of the ODE, viewed as:
# du/dt = f = f(u, p, t)
# where u := [S, I, R]
function update_f!(f, u, p, t)

# for clarity, unpack vector u
s = u[1]
i = u[2]
r = u[3]
# update f
f[1] = -R0 * s * i
f[2] = R0 * s * i - i
f[3] = i

end

# initial condition
eps = 10^-5 # initial fraction infectious
u0 = [1-eps; eps; 0.0]

# define the ODE problem
time_span = (0.0, 25.0)
prob = ODEProblem(update_f!, u0, time_span)

# numerically solve ODE
sol = solve(prob)

# obtain numerical approximation to the solution at e.g. t = 10
sol(10.0)

A1.2 an alternative visualization of SIR model dynamics

Fig. A7 presents an alternative visualization of SIRmodel dynamics that emphasizes [S](t)+[I](t)+
[R](t) = 1 for all t > 0.
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Figure A7: Numerical approximation of the solution to the SIR model in eqns. 1-3 for R0 = 2 and
initial conditions in eqns 6-8 ([I]0 = 1e − 5). At any given time t , the proportion of the panel col-
ored green, red, and blue, respectively, represents the fraction of the population in the susceptible,
infectious, and recovered compartment.

A1.3 early exponential growth of [I]

See Fig. A8 to see how the approximation of [I](t) in eqn. 9 fares.
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Figure A8: The [I](t) curve from Fig. 2 alongwith eqn. 9 (gray, dashed line) to show that [I](t) exhibits,
approximately, exponential growth in the early stage of the epidemic. The fraction of the population
that is infectious, [I](t), is shown on both a (a) linear and (b) log scale.
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