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ABSTRACT: The novel coronavirus (SARS-CoV-2) invades a 
human cell via human angiotensin-converting enzyme 2 (hACE2) 
as the entry, causing the severe coronavirus disease (COVID-19). 
The interactions between hACE2 and the spike glycoprotein (S 
protein) of SARS-CoV-2 hold the key to understand molecular 
mechanism to develop treatment and vaccines, yet the dynamic 
nature of these interactions in a fluctuating surrounding is very 
challenging to probe by those structure determination techniques 
requiring the structures of samples fixed. Here we demonstrate by 
a proof-of-concept simulation of IR spectra of S protein and 
hACE2, that a time-resolved spectroscopy may monitor the real-
time information of the protein-protein complexes of interest with 
the help of machine learning. We expect our machine learning 
protocol would accelerate the development of real-time 
spectroscopy study of protein interactions. 

The ongoing pandemic of COVID-19, a highly infectious disease 
caused by SARS-CoV-2, has posed tremendous threat to human 
health and well-being by having affected several millions of people 
and killed hundreds of thousands of those who were affected in just 
a couple of months.1 It has spurred enormous effort in biological 
and biomedical research to search for solution of this fatal disease, 
which rapidly advances our knowledge about it, including the 
identity of pathogen (i.e. SARS-CoV-2), genome sequence of the 
virus, and the structural basis for coronavirus recognition and 
infection.2-5 SARS-CoV-2 recognizes hACE2 as the entry receptor 
to host cells using its surface spike glycoprotein (S protein).1 The 
interactions of S protein with hACE2 have been subjected to 
intensive investigations by several groups,6-10 which laid the 
foundation for comprehensive understanding on the invasion of 
SARS-CoV-2 into human body at the atomic scale,11 helps the 
search of intermediate hosts of the coronavirus,12 and will guide the 
design of therapeutics and vaccines.11, 13 Since the physiological 
environment in which S protein and hACE2 interact is always 
fluctuated due to the dynamic nature of water, a dynamic picture of 
the interactions between them is needed for precise mechanistic 
understanding that will inspire modulation and application. 
Unfortunately, such information relies on real-time tracking of 
proteins conformations, which cannot be achieved by powerful 
structure characterization techniques with atomic precision like X-
ray diffraction and cryo-electron microscopy because they require 
fixed structures in samples. It motivates us to develop alternative 
approaches to resolve the issue. 

Recently, time-resolved Infrared (IR) spectroscopy techniques 
have realized successful monitoring of changes of secondary 
structure with time,14 signaling the feasibility of real-time 
observation of protein dynamics in ambient conditions using 

spectroscopy. However, to facilitate the monitoring of specific 
peptide fragments in a secondary structure, it typically needs 
isotope labelling (e.g. C=O in the amide of protein backbone is 
replaced with 13C=O or C=18O) in the preparation of samples, 
which is unfortunately tedious and expensive for systematic 
investigation on conformation changes in protein dynamics. 
Therefore, it is desirable to develop isotope labelling-free 
spectroscopy to accelerate structure study of proteins for biological 
and biomedical sciences. To achieve this goal, one needs to employ 
quantum chemistry calculations to complete spectra signals 
assignment and structures determination. In fact, it relies on 
computer simulations of various possible conformers to nail the job, 
which is unfortunately very expensive for macromolecules like 
proteins. Thus, developing a cost-effective spectra simulation 
protocol becomes a pressing task to advance real-time spectroscopy 
study of protein structures. 

Machine learning (ML), a collection of statistics-based methods 
which gain prediction power from learning of data, has emerged as 
a powerful toolkit to reduce the barrier of revealing structure-
property relationship.15 It has been increasingly popular in study of 
molecules and materials, such as predicting chemical reaction 
routes16 and accelerating discovery of materials.17 Especially, 
neural networks (NN), a subclass of machine-learning algorithms, 
are well-recognized for handling complex non-linear problems. NN 
creates the structure-property relationship by iterative learning 
using a complex high-dimensional function in a much larger, 
essentially unlimited parameter space. These make it a more 
adaptable and transferrable tool for the simulation of spectroscopy 
of protein.18 

In this communication, we show that our recently developed 
machine learning protocol will facilitate a real-time prediction of 
the IR spectra of S protein of SARS-CoV-2. The efficient 
simulation of IR signals of different states of the protein concerted 
with the changes in its secondary structure is very encouraging for 
studying dynamic interactions between S protein of SARS-CoV-2 
and human ACE2 with the help of ML techniques. Machine 
learning should provide a cost-effective tool for simulating optical 
properties of SARS-CoV-2. 
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Figure 1. Machine learning protocol for the IR spectra of proteins 
based on vibrational exciton model. 

The technique detail of this ML protocol has been elaborated 
elsewhere (paper under review). Here we just sketch the basic idea 
of the framework (Fig. 1). We adopt a divide-and-conquer strategy 
to treat the amide I vibrations of the whole protein. The vibration 
of a protein is represented as a set of n oscillators associated with 
each peptide bond in its backbone. The Frenkel exciton model is 
employed to construct a vibrational model Hamiltonian,19 in which 
the diagonal elements are the frequency (ω i) of the ith amide I 
oscillator, and the off-diagonal elements include the coupling 
coefficient (J ij) between two oscillators i and j (Fig. 1). To obtain 
these matrix elements, a protein is split into individual peptide 
bonds and dipeptides. The values of ω i and iµ


 are predicted from 

an NN model of peptide, i.e. N-methylacetamide (NMA)20-21. For 
off-diagonal elements, there are two scenarios: those coupling 
coefficients between two neighboring oscillators are computed 
using a NN model of dipeptide, i.e. N-acetyl-glycine-N'-
methylamide (GLDP);22-23 those between a pair of non-neighboring 
oscillators are calculated with the dipole approximation24 assuming 
that given the distances between oscillators are greater than their 
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  , where ε0 is the 

dielectric constant,  iµ


( jµ
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)is the transition dipole of peptide bond 
i (j), and r ij is the vector connecting dipole i and j. After all matrix 
elements of the model Hamiltonian are obtained, IR spectra are 
simulated using the SPECTRON program developed by Mukamel 
and co-workers.25 We also make this ML protocol online to provide 
rapid protein IR spectroscopy prediction, paving the way for a real-
time operation of ultrafast experimental spectroscopy.26 

 
Figure 2. (A) Comparison of experimental27 (black line) and ML 
predicted (red line: single crystal structure, black line: average of 
1000 configurations) spectra of SARS-CoV-1. (B) ML-predicted 
IR spectra of SARS-CoV-2 based on a single crystal structure (red 
lines) and 2000 MD configurations (blue lines). (C) ML-predicted 
IR spectra of SARS-CoV-1-ACE2 during 10us MD simulation 
(contains 9 trajectories,1000 snapshots for No. 1-8 trajectories, 334 
snapshots for No.9 trajectory). (D) same as (C) but for SARS-CoV-
2-ACE2. Intensity is scaled to have the same maximum intensity 
for each panel.  

We first simulated the amide I IR spectra of SARS-CoV-1 and 
SARS-CoV-2 were simulated using the ML protocol described in 
Fig. 1 by average 1000 and 2000 snapshots for each other (which 
would be prohibitively expensive via direct QM computations). 
The structures and trajectories of SARS-CoV-1 and SARS-CoV-2 
are obtained from MD simulations of ourselves (MD simulation 
details in Supporting Information) and Komatsu and co-workers.28 
The good agreement of SARS-CoV-1 between our ML predictions 
(average 1000 snapshots) and experimental spectra27 is evident 
from the high Spearman rank correlation coefficients29 (ρ=0.93) 
(Fig. 2), which was widely used to measure the agreement between 
the predicted and experimental spectra. Then we predicted the 
amide I IR spectra of the SARS-CoV-2 with this ML protocol 
(average 2000 snapshots). As shown in Fig. 2, the dominant peak 
of SARS-COV-2 has a 5 cm-1 blue-shift compared with SARS-
COV-1 (SARS-COV-1:1658.72 cm-1, SARS-COV-2:1663.62 cm-1). 
This may be accounted by that SARS-COV-2 has a larger portion 
of the β-turns content than SARS-COV-1 (Table 1) and β-turns 
possess an amide IR signal of higher frequency. Importantly, our 
ML protocol not just identifies the fine difference in amid I IR 
spectra associated with the difference between their secondary 
structures, but also is four orders of magnitude faster than 
conventional quantum chemistry calculations. 

Then we simulated the amide I IR spectra of SARS-CoV-1-
ACE2 (hACE2 in complex with the receptor binding domain of 
spike protein from SARS-CoV-1) and SARS-CoV-2-ACE2 
(hACE2 in complex with the receptor binding domain of spike 
protein from SARS-CoV-2) by average 8334 snapshots with our 
ML protocol (Fig. 2). These MD simulation data were retrieved 
from the website of D. E. Shaw research.30 Each MD simulation is 
10 μs and contains 9 trajectories (1000 snapshots for No. 1-8 
trajectories, 334 snapshots for No.9 trajectory). We also chose  
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Table 1. Average secondary structure content (computed by Stride program) of various coronavirus and comparison of the time required for 
computing IR spectra of single structures by DFT and our ML model based on vibrational exciton model. All reported times refer to 
calculations on an 8core of an Intel(R) Xeon(R) CPU (E5-2683v4 @ 2.1GHz).  

 β-strands β-turns α-helix 310-helices Coil Bridge DFT (s) ML (s) 

SARS-COV-1 30.1% 19.9% 23.9% 2.5% 21.0% 2.5% 1165320 70.69 
SARS-COV-2 28.3% 25.5% 20.3% 2.6% 20.4% 2.9% 1173000 72.68 

SARS-CoV-1-ACE2 7.6% 23.2% 45.2% 3.9% 18.0% 2.2% 1482120 100.80 
SARS-CoV-2-ACE2 7.0% 21.2% 45.6% 3.2% 21.8% 1.2% 1474440 98.68 

Trimeric SARS-CoV-2 spike glycoprotein (closed state) 30.5% 25.3% 17.9% 1.8% 22.7% 1.7% 6060720 960.33 
Trimeric SARS-CoV-2 spike glycoprotein (open state) 30.2% 22.9% 17.9% 2.2% 24.4% 1.4% 6060720 960.33 

RBD/hACE2 binding (S1 state) 32.3% 22.1% 9.4% 7.8% 27.7% 0.8% 370440 20.64 
RBD/hACE2 binding (S2 state) 31.8% 21.5% 12.1% 6.2% 27.3% 1.2% 370440 20.64 
RBD/hACE2 binding (S3 state) 33.5% 25.5% 12.1% 6.2% 21.5% 1.2% 370440 20.64 
RBD/hACE2 binding (S4 state) 33.0% 21.4% 9.4% 7.8% 27.3% 1.2% 370440 20.64 
RBD/hACE2 binding (S5 state) 33.0% 21.9% 11.6% 4.7% 27.6% 1.2% 370440 20.64 

the averaged IR spectra of the first trajectory (1th: 1200 ns which 
contain 1000 snapshots) for comparison. From the average 
secondary structure content analysis (by average 1000 snapshots 
from No.1 trajectory ) by Stride program,31 the random coil content 
of RBD2-hACE2 was higher than RBD1-hACE2, and the β-turn 
content was lower than RBD1-hACE2, which leading to a 6 cm-1 
red-shift of the dominant peak (RBD1-hACE2: 1649.33 cm-1, 
RBD2-hACE2:1643.41cm-1) (Table 1). Again, the difference of 
secondary structures between RBD1-hACE2 and RBD2-hACE2 is 
clearly characterized by our ML-based IR spectra simulation. 
 

 
Figure 3. (A) ML-predicted I R spectra of Trimeric SARS-CoV-2 
spike glycoprotein in (A) closed state and (B) open state. 

Recently research shows that the trimeric SARS-CoV-2 spike 
glycoprotein has two distinctive states: closed state and open state.6 
Intriguingly, they have substantially different secondary structures. 
We simulated the IR spectra by averaging 200 snapshots (10 µs 
simulation MD data were retrieved from the website of D. E. Shaw 
research; 200 frames were selected in first 240ns) of closed and 
open state with this ML protocol. It is noticed that the dominant 
peak of the Trimeric SARS-CoV-2 spike glycoprotein in open state 
has a 4.4 cm-1 red shift compared with closed state which coincide 
the secondary structure content difference (the β-turns of the open 
state is lower but the coil content is higher than closed state) (Fig. 
3 and Table 1). 

 
 
 
 
 
 
 
 

 

 
Figure 4. Five representative states of the receptor-binding domain 
(RBD) of the SARS-CoV-2 spike (S protein) and the human ACE2 
(hACE2) receptor were selected from the combination trajectory.  

Finally, we investigate the dynamics of S protein of SARS-CoV-
2 interacting with hACE2 interaction using our ML protocol. Five 
representative structures were selected from the D. E. Shaw 
research.30 We predicted the IR spectra of S protein in different 
states during the combination process by ML and calculated the 
average secondary structure components in each state (Fig. 4 and 
Table 1). From the S1 to S2 state, the IR spectra has a 2.57 cm-1 
blue shift. The analysis of the average secondary structure content 
showed that the main change from S1 to S2 was the increased 
content of α-helix which lead a blue-shift. From S2 to S3, the IR 
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spectra also has a 6 cm-1 blue-shift correspond with averaged 
secondary structure content change (S2 to S3: β-turns increased 
while coil decreased). From S3 to S4, the IR spectra has a 5cm-1 
red-shift which caused by the β-turns and α-helix decreased while 
coil content increased. From S4 to S5, the IR spectra has a 4 cm-1 
blue shift which caused by β-turns and α-helix increased. Since the 
changes in the IR spectra of the S protein under different states 
associated with the changes in the secondary structure are correctly 
captured by our ML protocol, we think our method provides a 
promising route for studying real-time dynamics regarding to the 
interactions of SARS-CoV-2 and human ACE2. 

  In conclusion, we proposed a cost-effective machine learning 
protocol for predicting amide I IR spectra of SARS-COV-2 spike 
protein. Compared to conventional quantum chemistry approaches, 
it significantly accelerates the simulation of IR spectra of protein 
complexes, which is crucial for developing time-resolved IR 
spectroscopy techniques for studying dynamic protein-protein 
interactions. 
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