Abstract

Rationale: The hydrogen isotopic composition of lipids (δ^2H$_{\text{lipid}}$) is widely used in food science and as a proxy for past hydrological conditions. Determining the δ^2H values of large, well-preserved triacylglycerides and other uniquely microbial lipids, such as glycerol dialkyl glycerol tetraether (GDGT) lipids, is thus of widespread interest but has so far not been
possible due to their size which prohibits analysis by traditional gas chromatography pyrolysis isotope ratio mass spectrometry (GC-P-IRMS).

Methods: We determined the δ²H values of large, polar molecules and applied high temperature gas chromatography (GC) methods on a modified GC-P-IRMS system. The methods were validated using authentic standards of large, functionalised molecules (triacylglycerides, TAG), purified reference standards of GDGTs, and compared to δ²H values determined by elemental analyser pyrolysis isotope ratio mass spectrometry (EA-P-IRMS); and subsequently applied to the analysis of GDGTs in a sample from a methane seep and a Welsh peat.

Results: δ²H values of TAGs agreed within error between different between GC-P-IRMS and EA-P-IRMS, with GC-P-IRMS showing 3-5 ‰ precision for 10 ng H injected. Archaeal lipid GDGTs with up to three cyclisations could be analysed: δ²H values were not significantly different between methods with standard deviations of 5 to 6 ‰. When environmental samples were analysed, δ²H values of isoGDGTs were 50 ‰ more negative than those of terrestrial brGDGTs.

Conclusions: Our results indicate that the high temperature GC-P-IRMS (HTGC-P-IRMS) method developed here is appropriate to determine the δ²H values of TAGs, GDGT lipids with up to two cyclisations, and potentially other high molecular weight compounds. The methodology will widen the current analytical window for biomarker and alimentary light stable isotope analyses. Moreover, our initial measurements suggest that bacterial and archaeal GDGT δ²H values can record environmental and ecological conditions.
Introduction

The stable hydrogen isotopic composition (δ²H values) of water varies systematically across the globe 1–3. The δ²H values of biological molecules, in turn, are dependent on the δ²H of the H₂O available to the producing organism (source water), overprinted by biochemical processes. δ²H values of bulk organic matter and individual compounds are used across a range of disciplines, e.g., in ecology and biology to trace animal migration patterns and foodwebs 4,5, in forensic science to identify geographical origins of victims or suspects 6, and in food science to determine the provenance of products such as honey 7, milk 8, and meat 9.

The determination of δ²H values has also resulted in substantial discoveries in archaeology, such as the earliest horse milking 10, or manuring practices 11, and has improved our understanding of past environments and precipitation regimes 12–14.

The δ²H values of individual lipid biomarkers are particularly useful in paleoenvironmental studies. In particular, the correlation of lipid δ²H with source water δ²H has been widely documented 12,15,16, such that leaf waxes are now widely used to reconstruct past hydrological conditions 12,16–18. Long-chain n-alkanes and other non-functionalised hydrocarbons are often used, because they are inherently less susceptible to hydrogen exchange than other compound classes commonly found in sediments, due to their prohibitively high pKas (~ 50). However, a wide range of sedimentary lipids have been analysed for their stable hydrogen isotopic composition, including n-alkanes, fatty acids, alkenones, and, to a lesser extent, sterols and hopanols 19–23.

The routine and rapid compound-specific δ²H value determination of biomarkers (as opposed to labour intensive approaches requiring compound isolation and purification) requires the application of gas chromatography, coupled to an in-line reactor containing active graphite, converting individual organic compounds into CO and H₂ 21,24–27. The produced gas is introduced into a mass spectrometer detecting m/z 2 (H-H) and 3 (H-D). This setup requires analytes to be GC-amenable 28, limiting analyses to compounds of a molecular weight and polarity low enough to elute at a typical maximum capillary column
operating temperature of 320 °C. Therefore, only very few larger compounds (eluting later
than a C\textsubscript{36} \(n\)-alkane on an apolar stationary phase) have had their \(\delta^{2}H\) values successfully
determined. Existing measurements were achieved by implementing long isothermal holds
at 320 °C but only with highly purified and \(^2\text{H}\)-labelled compounds29, due to the low GC
resolution and \(\delta^{2}H\) precision associated with this methodology.

However, the \(\delta^{2}H\) values of large and/or polar compounds can be of significant interest. For
example, the origin of vegetable oils and milk products can be constrained30–32 with greater
specificity when isotopic fingerprinting is based on individual fatty acids instead of bulk
organics33,34. Moreover, determining the \(\delta^{2}H\) values of intact triacylglycerides (TAG, Suppl.
Fig. 1A), instead of hydrolysed and derivatised fatty acids, could have many benefits such as
eliminating derivatisation biases and increased specificity. TAG are routinely characterised in
food forensics by high temperature gas chromatography (HTGC; Buchgraber et al., 2004;
Fontecha et al., 2006; Ruiz-Samblas et al., 2015), but their \(^2\text{H}\) signatures are yet to be
exploited. Another potential application arises from very long-chain \(n\)-alkanes that are major
constituents of crude oil; their \(\delta^{2}H\) values could be used to assess source rock potential
17,18,38,39, or for correlating different oils and source rocks38,40.

A third suite of applications centres on glycerol dialkyl glycerol tetraether lipids (GDGTs,
Suppl. Fig. 1BC), derived from both Archaea and Bacteria and of wide interest in
treochemistry. These membrane lipids are frequently used in proxies for paleotemperature
and other environmental variables (reviewed in Schouten et al., 2013). In many sedimentary
archives, GDGTs are of mixed origins (e.g. De Jonge et al., 2014; Peterse et al., 2009), and
their \(\delta^{2}H\) values could thus be used to distinguish terrigenous from in situ-produced GDGTs,
for example in marine and lacustrine sediments. This would substantially improve the
application of these GDGT-based proxies. Moreover, in single-source environments, the
hydrogen isotopic composition of GDGTs could serve as a paleohydrological proxy, enabling
reconstruction of salinity, elevation, or precipitation. More recently, it has been shown that
\(\delta^{2}H\) values of bacterial lipids document the metabolic state of the source organisms,
potentially representing another application in biogeochemical investigations (Wijker et al., 2019), and this method will allow to extend such investigations to Archaea.

In order to determine the stable isotopic composition of some of these large molecules, they are often subjected to chemical degradation, and only fragments (mostly aliphatic moieties) that are more GC-amendable than the parent molecule are analysed by GC-IRMS. For TAGs, this involves acid methanolysis. For GDGTs, this involves ether cleavage, followed by reduction, often including laborious preparative HPLC steps for cleaning and preconcentration. Aside from being labour intensive, such procedures under acidic conditions can result in hydrogen exchange.

However, recently, high temperature GC methods for more direct analysis of these compounds have been developed; identification and quantification of GDGTs has been achieved employing HTGC coupled to time-of-flight mass spectrometry (HTGC-TOFMS) and flame ionisation detection (HTGC-FID). Here, we develop these methods further and demonstrate δ^2H analysis of polar and high molecular weight compounds by high temperature gas chromatography coupled to pyrolysis isotope ratio mass spectrometry (HTGC-P-IRMS). We compare the values of purchased, authentic standards (TAGs), and purified standards (GDGTs) determined by elemental analyser pyrolysis isotope ratio mass spectrometry (EA-P-IRMS) with the values determined by HTGC-P-IRMS. We then report the δ^2H values of GDGTs in a number of environmental samples.

Experimental

Standards and environmental samples

Triacylglyceride [trimyristin (C₄₂), tripalmitin (C₄₈), and tristearin (C₅₄)] and n-alkane standards were purchased from Sigma Aldrich (Gillingham, UK). isoGDGT-2 and isoGDGT-3 standards were purified from biomass of *Sulfolobus solfataricus* (DSM 1616), which was grown in two batches (2 L each) of modified Allen medium using water with a δ^2H value of -55.0 ± 0.2 ‰. Each batch was inoculated with 20 ml of a late log-phase culture, incubated...
aerobically at 76 °C with agitation at 200 RPM, and harvested in mid-log phase at an optical
density of 0.442 (600 nm). Cells were collected by centrifugation at 4 °C, frozen in liquid
nitrogen, and freeze-dried. 0.5 g of the freeze-dried cell pellet was subjected to acid
hydrolysis in 5 mL of 1.5 N methanolic HCl (10 % H₂O), and lipids were extracted by
ultrasonication in dichloromethane:methanol (1:1; v/v) as previously described. The total
lipid extract (TLE) was dried under a stream of N₂, dissolved in 1 mL of n-hexane:
isopropanol (97:3; v/v), and filtered through a 0.45 µm PTFE filter.

Individual isoprenoidal GDGTs containing 2 and 3 cyclopentyl moieties (isoGDGT-2 and
isoGDGT-3) were isolated by preparative normal phase (NP) high-performance liquid
chromatography (HPLC). To this end, aliquots (25 µL) of the filtered TLE were injected onto
an Agilent 1100 HPLC system fitted with an Econosphere NH₂ column (250 × 10 mm,
10 µm; Grace/Alltech). GDGTs were eluted isocratically with a solvent mixture of 1.35 %
isopropanol (IPA) in n-hexane at a flow rate of 1 mL min⁻¹ for 45 min, and the column was
cleaned with 16 % IPA for 12 min and re-equilibrated to initial conditions for 13 min after
every run. GDGTs were recovered by time-based fraction collection, according to the elution
times determined by atmospheric pressure chemical ionisation-mass spectrometry (APCI-
MS) using an Agilent 1100 MSD. The collected fractions were analysed by flow injection
analysis-mass spectrometry on the same instrument, and subsequently pooled by
compound. The purity of each isolated GDGT was >97 % as assessed by NP and reverse
phase HPLC-ACPI-MS analysis of the combined fractions, scanning the range m/z of
350–1350.

Environmental samples analysed included a sediment sample from a marine methane seep,
and a sample from a Welsh peat. In order to improve gas chromatographic performance,
GDGTs were purified prior to HTGC-P-IRMS. The Welsh peat extract was passed over a
column containing 130-270 mesh silica (pore size 60 Å, Sigma Aldrich, Gillingham,
UK) conditioned in methanol, using two column volumes of each hexane,
ethylacetate/hexane 1:9 (v/v), 25:75, 50:50, pure ethylacetate, and methanol.
Concentrations of GDGTs in the fractions were confirmed by adding triglyceride quantification standards and analysis by HTGC-FID. All fractions containing GDGTs (Suppl. Fig. 2) were combined to avoid any isotope fractionation which may have occurred during column chromatography.

2H analysis by EA-P-IRMS

The 2H/1H ratios of the triacylglycerides (TAGs) and C$_{50}$ and C$_{60}$ n-alkanes were analysed by EA-P-IRMS at Elementar UK Ltd (EUK; Stockport, UK) and University of Colorado (CUB; Boulder, USA). CUB also analysed GDGTs. CUB performed EA-P-IRMS analysis on a Flash HT Plus elemental analyser with zero blank autosampler coupled to a Delta V Plus IRMS via ConFlo-IV Interface (Thermo Scientific). At EUK, EA-P-IRMS measurements were performed using a GeovisION, which comprised a vario PYRO cube coupled to an isoprime visiON IRMS.

Both laboratories measured samples using glassy carbon reactors in oxygen-free environments, and performed multipoint calibrations using reference materials provided by Arndt Schimmelmann (Indiana University, Bloomington, IN, USA) in order to standardise determined δ^2H values against the international reference Vienna Standard Mean Ocean Water (VSMOW). CUB calibrated using 5α-androstane #3 (-293.2 ± 1.0 ‰), eicosanoic acid methyl ester #Z1 / USGS 70 (-183.9 ± 1.4 ‰), and eicosanoic acid methyl ester #Z2 / USGS 71 (-4.9 ± 1.0 ‰), and EUK calibrated using tetracosane #1: -53.0 per mil ± 1.6 ‰, pentacosane #4: -263.6 ± 2.2 ‰ and heptacosane #3: -172.80 ± 1.6 ‰, and a standard provided by the International Atomic Energy Agency, Vienna (IAEA CH-7: -100.2 ± 1.0 ‰).

Across both labs, the standard deviation (SD) of triplicate sample analyses was typically < ±0.75 ‰.

Because the oxygen-bound H atoms of the GDGTs’ hydroxyl moieties are easily exchanged, the 2H content at these positions may have been altered during solvent extraction/evaporation. We therefore vapour-equilibrated the dried GDGT fractions with local deionised water (-121.8 ± 1.3 ‰) before analysis (24 h at 25 °C). GDGT fractions were then dissolved in ethyl acetate at ~10 µg µL$^{-1}$ and 10 µL aliquots were pipetted into combusted
(450 °C, 10 h) silver capsules (4x6 mm), which were pre-loaded with small discs (d = 4 mm) of combusted glass fibre filters (Whatman GF/F) as a solvent adsorbent. The solvent was then completely evaporated in a closed chamber continuously purged with N₂ (30 min at ~30 mL min⁻¹). Analysis by EA-P-IRMS was then conducted as described above.

To test for the efficiency of the vapour equilibration, a synthetic diglycerol-trialkyl-tetraether (C₄₆-GTGT; Patwardhan and Thompson, 1999) was exposed to vapour of both ²H-enriched water (7 atom % ²H) and local deionised water (24 h at 25 °C). Exposure to ²H-enriched water vapour increased the ²H content of the molecule by 0.1 atom % (from 0.014 to 0.113 atom % relative to total H), corresponding to a ²H content of ~5 atom % at the OH positions after exposure (assuming all exchange is localised to the hydroxyl moieties).

Exposure to natural water vapor, however, did not lead to a change in δ²H within analytical precision of the measurement. The induced ²H content at the OH positions decreased again to a ²H content of ~2 atom % at the OH-positions after a 12 h exposure to ambient lab air.

Together this indicates that OH-bound H of diglycerol tetraethers is readily exchanged with ambient water vapor, and any ²H enrichment resulting from the evaporation of OH-containing solvents (e.g. methanol) were likely diminished either by spontaneous re-equilibration with ambient air, or by the latest through 24 h exposure to natural water vapor in a desiccator as described above.

δ²H value determination by high-temperature GC-P-IRMS

Before analysis by HTGC-IRMS, fractions containing GDGTs and the sample from the Black Sea methane seep were dissolved in 50 μl pyridine and derivatised to trimethylsilylethers with 50 μl 99% N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA), 1% trimethylchlorosilane (TMCS), for one hour at 70 °C. The δ²H value of the TMS moieties used to derivatise the hydroxyl-groups (δ²H_TMS) was determined by derivatisation of sodium palmitate δ²H_P of a known δ²H, and analysis by GC-IRMS to yield the values of derivatised palmitate δ²H_TMSP, as -82.35 ‰ acc. to Eqn. 1.
δ²H_{TMS} = \frac{δ²H_{TMS} \cdot 40 - δ²H_{P}}{9} \quad \text{(Eqn 1)}

Values of derivatised GDGTs δ²H_{meas} were corrected by mass balance to give δ²H_{GDGT} with n representing the number of non-exchangeable hydrogens of the compounds and k the number of TMS groups added (1 for archaeol, 2 for GDGTs and hydroxyarchaeol; Eqn. 2).

\[δ²H_{GDGT} = \frac{δ²H_{meas}(n + k \cdot 9)}{n} - \frac{k \cdot 9 \cdot δ²H_{TMS}}{n} \quad \text{(Eqn 2)} \]

This was combined into Eqn. 3.

\[δ²H_{GDGT} = \frac{δ²H_{meas}(n + k \cdot 9)}{n} - \frac{k \cdot 40 \cdot δ²H_{TMS}}{n} + \frac{k \cdot 31 \cdot δ²H_{P}}{n} \quad \text{(Eqn 3)} \]

Errors of δ²H_{meas} were determined according to error propagation laws:

\[\sigma_{δ²H_{GDGT}}^2 = \sigma_{δ²H_{meas}}^2 \left(\frac{n + k \cdot 9}{n} \right)^2 + \sigma_{δ²H_{TMS}}^2 \left(\frac{k \cdot 40}{n} \right)^2 + \sigma_{δ²H_{P}}^2 \left(\frac{k \cdot 31}{n} \right)^2 \quad \text{(Eqn 4)} \]

Samples were screened by HTGC-FID as described by Lengger et al. before they were analysed by an Elementar isoprime visION HTGC-P-IRMS (Elementar UK Ltd., Cheadle, UK). The instrument comprised an Agilent 7890B GC fitted with an on-column injector, linked to a GC5 interface (maintained at 380 °C) and a hollow ceramic reactor, enabling pyrolysis at 1450 °C. Ferrules used to connect the ceramic furnace and GC-column, as well as the sample line He used as an additional carrier in the GC-IRMS system, were 100% graphite. Ion beams at m/z 2 and 3 were monitored via an isoprime visION mass spectrometer. The H3⁺ factor was determined daily or at least every 4 runs. Compounds were separated on a Zebron ZB-5HT analytical column (7 m × 0.25 mm × 0.1 μm) with high-temperature resistant polyimide coating, which was fitted to a transfer line and an exhaust to allow diversion of the solvent peak to waste via a glass Y-splitter fixed with high temperature resin (Phenomenex Ltd., Aschaffenburg, Germany). He was used as a carrier gas at a flow rate of 2.2 ml min⁻¹,
and the oven was programmed as follows: 1 min hold at 70 °C, increase by 10 °C min\(^{-1}\) to 350 °C, followed by an increase at 3 °C min\(^{-1}\) to 400 °C (10 min hold). Results were calibrated using a mixture of \(n\)-alkanes (B3, A. Schimmelmann, Indiana University, Bloomington, IN, USA) according to Sessions et al. \(^{21,59}\), which was injected at least every four analyses, and analysed using a He flow of 1 ml \(\text{min}^{-1}\), with a different temperature program (injection at 50 °C held for 1 min followed by an increase of 10 °C \(\text{min}^{-1}\) to 300 °C and a 10 min hold). Resultant calibrated \(\delta^2\)H values were calculated based on the derived linear regression. Root mean standard errors of normalised values of the \(n\)-alkanes mixture were typically between 4 and 6 ‰, and never exceeded 10 ‰. Data was processed using ionOS stable isotope data processing software (Elementar UK Ltd., UK), using an automated multi-point linearisation based on the certified values of the 15 individual \(n\)-alkanes comprising the B3 standard.

The fractionation factor \(\varepsilon_{\text{H}_2\text{O/GDGT}}\) was determined from the \(\delta^2\)H\(_{\text{H}_2\text{O}}\) and the \(\delta^2\)H\(_{\text{GDGT}}\) (Eqn. 5).

\[
\varepsilon_{\text{H}_2\text{O/GDGT}} = \left(\frac{\delta_{\text{H}_2\text{O}} + 1}{\delta_{\text{GDGT}} + 1} - 1 \right) \cdot 1000
\]

(Eqn. 5)

Results and discussion

Chromatographic resolution

The modifications of the GC-IRMS setup enabled operating temperatures of up to 400 °C. Utilisation of a 7-m column and on-column injection enabled elution of isoGDGTs up to GDGT-3, as well as acceptable values for the B3 standard. The GC-IRMS required a polyimide-coated column rather than the metal column commonly employed in high temperature GC-methodologies, as this allowed flow diversion via a glass Y-splitter in which the column was secured using high temperature resin. The glass Y-splitter ensured minimal thermal mass. Furthermore, the pneumatically operated heart-cut valve enabling diversion of the solvent away from the furnace reactor was moved to a location outside of the GC-oven in
order to avoid potential leaks associated with the high temperatures. Methods employing
15 and 30 m polyimide-coated capillary columns, equivalent to the metal columns that had
been successfully used to analyse isoGDGTs by HTGC-FID and HTGC-TOFMS at extended
> 400 °C isothermals, could not be employed to elute isoGDGTs in analogous HTGC-P-
IRMS analyses due to their comparatively low stability at these temperatures.

The unusual HTGC configuration, with a short 7 m column, high flow, and on-column
injector, was tested by analysing a mixture of 15 \(n \)-alkanes: the so-called Indiana B-standard
mix routinely used for standardisation of GC-IRMS results. Baseline separation of individual
\(n \)-alkane peaks and acceptable root mean square errors were achieved with this method
(Fig. 1A): this standard was subsequently used for quality control and isotope calibration.

Root mean square error (RMSE) and linearisation equations for all analyses of the standards
are given in Supplementary Fig. 3 and Table 1, with linearisation applied to the samples
based on the most contemporary analysis of the standard. RMSE for all accepted analyses
were always below 10 ‰: whenever 10 was exceeded, inlet maintenance or column
changes were performed. An \(n \)-alkane standard containing higher molecular weight
compounds (up to \(C_{60} \), Fig. 1B), a mixture of triacylglycerides (Fig. 1C), a seep sample
containing GDGT-0, -1. -2, and -3, and the two GDGT standards (GDGT-2 and -3) (Fig. 1D)
were analysed and chromatograms were similar to previous results employing HTGC-FID
and a 7 m column \(^{52}\). The brGDGTs eluted earlier than isoGDGTs (cf. \(^{52}\)).

Accuracy and precision of \(\delta^{2}H \) values of high molecular weight compounds

Purchased triacylglyceride (TAG) reference compounds and purified GDGT standards were
used to test the methodology for accuracy by determining the \(\delta^{2}H \) values of these
compounds by HTGC-IRMS at GC temperatures of up to 400 °C as well as by EA-analysis.
The prepared isoGDGT-2 and isoGDGT-3 standards were analysed by one laboratory (CU
Boulder), while the purchased standards were examined by EA-P-IRMS in two different
laboratories (CU Boulder and Elementar UK Ltd). The average \(\delta^{2}H \) values determined for
the TAGs were within 5 ‰ for all analyses (Tab. 1, Fig. 2). HTGC-analysed samples
generally yielded δ^{2}H values between the values determined by the EA analyses. Standard deviations were smaller for the EA methods (< 2 ‰) than for the HTGC method (9-18 ‰, which represents 2-3× the typical precision of δ^{2}H value determinations by GC-IRMS; Sessions, 2006). However, here injection concentrations varied, which likely contributed to the variability, which we investigate further below. It is expected that further application of this technique – and routine analysis of TAGs, as compounds of particular interest to the alimentary industry – will lead to improvements in analytical precision as methods are improved by optimising solvents, injection temperatures, and concentrations. The δ^{2}H values determined for the high molecular weight n-alkanes with 50 and 60 carbon atoms (Table 1) were more variable among all methods and laboratories. This was surprising, and possibly a result of insufficient mixing of these large waxy compounds before distribution.

The δ^{2}H values of purified GDGTs obtained by EA-P-IRMS and HTGC-IRMS (Tab. 1) were not significantly different for GDGT-2 at a high confidence level (Welsh’s t-test, $df = 2$, $t = 1.32$, $p = 0.32$). However, for GDGT-3, which eluted later, the δ^{2}H value derived by HTGC-IRMS was 9 ‰ higher than the value determined by EA-P-IRMS ($df = 2$, $t = 3.32$, $p = 0.080$). A raised baseline could be a possible cause for this discrepancy, but ionOS software applies an automated correction, and both GDGTs eluted on an isothermal baseline. A more likely cause could be fractionation due to chromatographic separation, to adsorption cold spots, or thermal decomposition. Another possibility is minor contamination of GDGT-3, resulting in a flawed EA-P-IRMS measurement but not affecting HTGC-P-IRMS measurements; however, this would be surprising as GDGT-2 and GDGT-3 were isolated from the same organism and the EA-P-IRMS results match expectations of similar δ^{2}H values. The standard deviation of 5 – 6 ‰ achieved for purified GDGTs using the HTGC-P-IRMS system is similar to the precision of lower molecular weight compounds on a conventional GC-P-IRMS instrument (e.g. Sessions, 2006).

Response vs accuracy
Whilst GDGTs are ubiquitous, they are typically only present at ppm to ppb concentrations in environmental samples such as sediments and soils. In addition, many high molecular weight compounds are not very soluble in solvents suitable for GC-IRMS, and on-column injection only allows small amounts of sample to be used. Therefore, only small amounts of GDGT (ng) were injected for each HTGC-IRMS analysis. To assess accuracy in relationship to signal intensity, different concentrations of the TAG standard were tested and compared to peak heights (Fig. 3). This yielded a response of 0.07 – 0.08 nA per ng H per compound for m/z 2. Below ~0.25 nA peak height, values begin to deviate substantially (by ~20 ‰) from the values measured by EA-P-IRMS, with differences of up to 400 ‰ when peak heights were around 0.1 nA. We thus excluded peak heights < 0.25 nA, corresponding to less than 3.5 ng H injected on column. Typical H amounts required to achieve 3-5 ‰ precision were ~10 ng, translating to m/z 2 peak heights of 0.7 – 0.8 nA (equivalent to 700-800 mV on an IRMS with a 10⁹ Ohm resistor on the operational amplifier for the m/z 2 faraday cup).

GDGTs in environmental samples and ε_{H2O/GDGT}

A sample from a Mediterranean cold seep was analysed, and δ²H values for archaeol, hydroxyarchaeol, GDGT-1, and GDGT-2 were determined to be -245 ± 7, -253 ± 13, -216 ± 15, and -225 ± 14, respectively (n=3; Fig. 1D, Fig. 4). These values show a limited range, as expected for ether lipids derived from a common archaeal source, and are similar to published δ²H values of the biphytanes of GDGTs in Sulfolobus sp. determined after ether cleavage (-229 to -257 ‰). However, the values are not identical, with the diphytanyl glycerol diether lipids archaeol and hydroxyarchaeol being ²H-depleted relative to GDGTs. Though the difference is small, it could potentially reflect different archaeal origins, given that ANME-2 group Archaea appear to preferentially produce GDGTs in cold seep settings (e.g., Blumenberg et al., 2004); this would be particularly true if the differing source Archaea exhibit different metabolisms (see below).

The ε_{H2O/GDGT} for the Sulfolobus cultures used to purify the standards was determined as -134 ‰ and was lower than previously reported ε_{H2O/GDGT} (-213‰ to -161‰). The
application of this fractionation factor to the environmental iso-GDGTs would result in an unrealistic $\delta^{2}H$ value for the seawater of -93 ‰, suggesting that metabolism, salinity, temperature, and other factors contribute strongly to the extent of fractionation.

Values for GDGT-0 from the peat (Suppl. Fig. 4) were similar to the isoGDGTs in the seep sample (-235 ± 3 ‰, n = 2), whereas values for brGDGTs were relatively enriched in ^{2}H (-176 ± 6 ‰, n = 6). It is possible that the ^{2}H-enrichment of brGDGTs relative to co-occurring isoGDGTs could be due to fractionation associated with the biosynthetic pathways for isoprenoidal (isoGDGTs) vs. n-acyl lipids (brGDGTs), in which isoprenoidal lipids (which undergo successive hydrogenation) exhibit more ^{2}H-depleted signatures. However, recently, it has also been shown that the energy and metabolism pathways of source organisms are highly correlated with $\delta^{2}H$ values of their lipids; it is also thought that NADPH/NADH ratios and transhydrogenases play an important role, particularly in anaerobic organisms. In general, heterotrophic bacteria consuming TCA-cycle intermediates exhibit $\delta^{2}H$ values similar to or enriched relative to source water, heterotrophs assimilating carbohydrates are slightly depleted relative to source water, and photoautotrophic and chemoautotrophic bacteria show the greatest ^{2}H-depletion. While Archaea were not examined in this work, some of our results are consistent with the idea that chemoautotrophic archaea are the presumed producers of isoGDGTs in both settings, and heterotrophic bacteria are thought to be the producers of brGDGTs.

The differences between the peat and seep samples for isoGDGTs are unexpected: As the $\delta^{2}H$ of the peat water is likely around -52 ‰ – slightly depleted compared to seawater – we expected isoGDGTs from peat to also be depleted in ^{2}H relative to GDGTs from marine environments. However, isoGDGTs from peat are up to 10 to 20 ‰ more ^{2}H-enriched in the peat, invoking a difference in metabolic state between the anaerobic methanogens in peat, and the anaerobic methane oxidising communities in the seep. These findings speak to the potential of isoGDGT $\delta^{2}H$ analyses in probing microbial ecology and metabolic state, while
brGDGTs, which are presumably of heterotrophic bacterial origin in peat settings, could
prove useful as proxies for source water δ^2H and hydrology.

The novel HTGC-P-IRMS method enables the determination of the δ^2H values of
compounds with a high molecular weight, including TAG and GDGT lipids, hereby extending
the range of analytes for δ^2H value determination. Accuracy and precision are as small as
3‰ in some cases and comparable to EA-P-IRMS. Our initial measurements suggest that
bacterial and archaeal GDGT δ^2H values are likely related to both environmental
parameters, and the metabolic and ecological function of the source organisms. Future
applications include but are not limited to alimentary forensics, archaeology, oil-source rock
correlations, microbial ecology and paleoclimate.

Acknowledgements

The authors would like to thank Paul Sutton, Alison Kuhl, Hanna Gruszczynska, Ed Aldred,
Xiahong Feng, Alec Cobban, and Michiel Kienhuis for support with measurements, advice,
and discussions of techniques. SKL was funded by a Rubicon Grant 825.14.014 from the
Netherlands Organisation for Scientific Research (NWO). RDP acknowledges support from
ERC (Advanced Grant T-GRES, to RDP). AP and YW acknowledge support from the Swiss
National Science Foundation (P2BSP2_168716), and from the Gordon and Betty Moore
Foundation and US National Science Foundation (to AP). SHK acknowledges support from
the US National Science Foundation. The authors thank the Natural Environment Research
Council, UK, for partial funding of the mass spectrometry facilities at Bristol (contract no.
R8/H10/63). WDL acknowledges support from the American Chemical Society (PRF 57209-
DNI2).
Table 1. δ²H values determined by EA-IRMS and GC-IRMS.

<table>
<thead>
<tr>
<th></th>
<th>EA-IRMS (Elementar)</th>
<th></th>
<th></th>
<th>EA-IRMS (CU Boulder)</th>
<th></th>
<th></th>
<th>HTGC-IRMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>St. dev.</td>
<td>N</td>
<td>Mean</td>
<td>St. dev.</td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>[%o V-SMOW]</td>
<td></td>
<td></td>
<td>[%o V-SMOW]</td>
<td></td>
<td></td>
<td>[%o V-SMOW]</td>
</tr>
<tr>
<td>GDGT-2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-181.61</td>
<td>0.41</td>
<td>3</td>
<td>-186.5</td>
</tr>
<tr>
<td>GDGT-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-182.6</td>
<td>0.19</td>
<td>3</td>
<td>-173.0</td>
</tr>
<tr>
<td>C₄₂-TAG</td>
<td>-234.97</td>
<td>0.48</td>
<td>4</td>
<td>-237.97</td>
<td>0.72</td>
<td>3</td>
<td>-232.8</td>
</tr>
<tr>
<td>C₄₈-TAG</td>
<td>-219.43</td>
<td>1.76</td>
<td>3</td>
<td>-224.14</td>
<td>0.33</td>
<td>3</td>
<td>-222.9</td>
</tr>
<tr>
<td>C₅₀-TAG</td>
<td>-225.85</td>
<td>0.38</td>
<td>4</td>
<td>-228.16</td>
<td>0.7</td>
<td>3</td>
<td>-223.0</td>
</tr>
<tr>
<td>n-C₆₀ alk</td>
<td>-206.49</td>
<td>4.65</td>
<td>3</td>
<td>-213.98</td>
<td>0.35</td>
<td>3</td>
<td>-196.3</td>
</tr>
<tr>
<td>n-C₅₀ alk</td>
<td>-199.29</td>
<td>0.02</td>
<td>4</td>
<td>-202.05</td>
<td>0.06</td>
<td>3</td>
<td>-187.5</td>
</tr>
</tbody>
</table>
References

This is a non-peer reviewed manuscript submitted to Rapid Communications in Mass Spectrometry.
Figure 1. GC-P-IRMS chromatograms under HT conditions, different temperature ramps were applied to the different mixtures. Shown is a mixture of n-alkanes up to n-C30 with known δ2H values (Indiana B3-standard, A), a mixture of long chain n-alkanes up to n-C60 (B), triacylglycerides (C), and a sample from a Black Sea methane seep (D) with GDGT-2 and GDGT-3 standards shown as inserts.

Figure 2. δ2H values of purchased triacylglyceride standards and isolated GDGTs determined by EA-P-IRMS compared with values as determined by HTGC-P-IRMS; values and standard errors are given in Table 1.
Figure 3. Effect of signal height on δ2H values. A RMSE of the B3 mixture compared to peak heights of the minimum peak height in the mixture. B Difference δ2H values of TAGs determined by HTGC-P-IRMS to values determined by EA-P-IRMS plotted vs peak height.

Figure 4. δ2H values of ether lipids determined from environmental samples. brGDGTs and GDGT-0 were extracted from a peat (triangles) and all other compounds derived from a methane seep (circles). Error bars represent standard deviations.
Supplementary to: Determination of the δ²H values of high molecular weight lipids by high temperature GC coupled to isotope ratio mass spectrometry

Sabine K. Lengger¹,²,* Yuki Weber³, Kyle W.R. Taylor⁴, Sebastian H. Kopf⁵, Robert Berstan⁴, Ian D. Bull¹, Jan-Peter Mayser¹, William D. Leavitt⁶, Jerome Blewett¹, Ann Pearson³ and Richard D. Pancost¹,⁷

¹ Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS81TS, UK

² Biogeochemistry Research Centre, School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, Plymouth PL48AA, UK

³ Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St, Cambridge, MA 02138, USA

⁴ Elementar UK Ltd., Earl Road, Cheadle Hulme, Stockport, SK8 6PT, UK

⁵ Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA

⁶ Department of Earth Science, Department of Chemistry, Department of Biological Sciences, Dartmouth College, Hanover, NH, USA

⁷ School of Earth Sciences and Cabot Institute for the Environment, University of Bristol, Queens Road, Bristol BS81RL, UK

* corresponding author: sabine.lengger@plymouth.ac.uk
Supplementary Figure 1. Structures of analysed compounds. n = 14 (Trimyristate, C_{42}); 16 (Tripalmitate, C_{46}); 18 (Tristearate, C_{54}).
Supplementary Figure 2. GDGTs in column chromatography fractions of sample from a Cors Caron peat (depth 100-200 mm below water table) as determined by HTGC-FID and comparison to triacylglyceride standards as described by Lengger et al. (2018), with a, b and c denoting acyclic, mono-, and bi-cyclic brGDGTs, respectively.
Supplementary Figure 3. Performance monitoring results of \(n\)-alkane mixture B3 and Root Mean Square Error (RMSE) values of linearisations used for the measurements. Linear regression results and RMSE are shown in table 1.
Supplementary Figure 4. Chromatogram of a combined GDGT-fraction from a Welsh peat analysed by HTGC-P-IRMS.
Table S1. Linearisation coefficients and RMSE of B3 standard runs.

<table>
<thead>
<tr>
<th>Run nr</th>
<th>Intercept [% V-SMOW]</th>
<th>Coefficient</th>
<th>RMSE [% V-SMOW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-18.3</td>
<td>0.9615</td>
<td>4.1</td>
</tr>
<tr>
<td>2</td>
<td>-16.4</td>
<td>0.9629</td>
<td>4.6</td>
</tr>
<tr>
<td>3</td>
<td>-20.2</td>
<td>0.9759</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>-19.4</td>
<td>0.9152</td>
<td>5.1</td>
</tr>
<tr>
<td>5</td>
<td>-21.0</td>
<td>0.9120</td>
<td>8.0</td>
</tr>
<tr>
<td>6</td>
<td>-18.6</td>
<td>0.9924</td>
<td>3.2</td>
</tr>
<tr>
<td>7</td>
<td>-20.1</td>
<td>0.9597</td>
<td>5.6</td>
</tr>
<tr>
<td>8</td>
<td>-19.0</td>
<td>0.9703</td>
<td>4.1</td>
</tr>
<tr>
<td>9</td>
<td>-21.1</td>
<td>0.9225</td>
<td>7.3</td>
</tr>
<tr>
<td>10</td>
<td>-21.9</td>
<td>0.9905</td>
<td>3.7</td>
</tr>
<tr>
<td>11</td>
<td>-21.7</td>
<td>0.9319</td>
<td>6.5</td>
</tr>
<tr>
<td>12</td>
<td>-19.4</td>
<td>0.9799</td>
<td>6.7</td>
</tr>
<tr>
<td>13</td>
<td>-27.7</td>
<td>0.9762</td>
<td>3.0</td>
</tr>
<tr>
<td>14</td>
<td>-29.2</td>
<td>0.9730</td>
<td>7.9</td>
</tr>
<tr>
<td>15</td>
<td>-18.2</td>
<td>1.0048</td>
<td>4.9</td>
</tr>
</tbody>
</table>