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Abstract 
With a large amount of research dedicated to decoding how metallic species bind to protein, in silico methods are 
interesting allies for experimental procedures. To date, computational predictors mostly work by identifying the 
best possible sequence or structural match of the target protein with metal binding templates. These approaches 
are fundamentally focused on the first coordination sphere of the metal. Here, we present the BioMetAll predictor 
that is based on a different postulate: the formation of a potential metal-binding site is related to the geometric 
organization of the protein backbone. We first report the set of convenient geometric descriptors of the backbone 
needed for the algorithm and their parametrization from a statistical analysis. Then, the successful benchmark of 
BioMetAll on a set of more than 50 metal-binding X-Ray structures is presented. Because BioMetAll allows 
structural predictions regardless of the exact geometry of the side chains, it appears extremely valuable for systems 
which structures (either experimental or theoretical) are not optimal for metal binding sites. We report here its 
application on three different challenging cases i) the modulation of metal-binding sites during conformational 
transition in human serum albumin, ii) the identification of possible routes of metal migration in hemocyanins, 
and iii) the prediction of mutations to generate convenient metal-binding sites for de novo biocatalysts. This study 
shows that BioMetAll offers a versatile platform for numerous fields of research at the interface between inorganic 
chemistry and biology, and allows to highlight the role of the preorganization of the protein backbone as a marker 
for metal binding. 

 

 

Introduction 
Metal ions, including transition ones, play a fundamental 

role in living organisms. Present in about 30% of the known 
genome,1 their impacts on molecular and cellular processes are 
countless. Since biometallic complementarities sustain many 
mechanisms in living systems, they are essential for their adaptation 
to the environment and key to their health. Understanding how 
metallic moieties interact with biological systems is not just a health-
related question. It is also a source of inspiration for the development 
of new synthetic routes, including environmentally friendly ones. As 
such, chemists have long intended to mimic biometallic synergies for 
industrial purposes. In the form of small amenable chemical systems 
(biomimetics) or complex de novo enzymes, a substantial part of 
chemical efforts focuses on reproducing or even extending Nature’s 
bioinorganic repertoire.  

The specific problem of predicting where and how metallic 
moieties bind to proteins is of crucial importance in numerous areas 

of chemistry and its closest interfaces.2 After decades, researchers in 
bioinorganics still intensively work on decoding the exact weight of 
the different molecular variables that are involved in the construction 
of biometallic edifices (charges of the metal ions and their amino 
acid environment versus electric field of the entire protein, redox 
properties of the metal, etc.). In silico approaches offer an excellent 
option to get a better insight into metal-protein interactions and help 
in establishing predictive patterns. To date, though, only a limited 
ensemble of computational tools is available. Those methods are 
either based on sequence or structural analyses.3–5 

On one side, computational predictors of metal-binding 
sites built on sequence analyses are mostly based on scanning the 
sequence of a target protein to identify those regions where amino 
acids patterns match a metal-binding site fingerprint. Some examples 
are MetalDetector,6 that identifies potential transition metals binding 
sites involving Cys and His side chains as donors; MetalPredator,7 
that predicts potential Fe-S motifs in proteins;  or ZincFinder,8 which 
is aimed at predicting zinc-binding motives. On the other, structure-



based predictors mostly focus on identifying specific structural 
metal-binding motifs derived from databases of existing protein-
bound to metal structures that match the best with the atomic 
organization of the target protein. Some of these approaches are 
metal-specific, like TEMPS and FETURE, that are dedicated to 
identifying Zinc binding motifs.9,10 Others consider more extensive 
lists of metals that typically include Ca, Cu, Fe, Mg, Mn, and Zn.11–
17 Both families of methods could actually be used conjointly. 

Metal-binding site predictors are successful in finding sites 
that match well-known patterns. However, the identification of those 
sites in systems that do not display an optimal sequence or which 
structure does not present the sufficient amount of preorganization 
can be challenging. Such situations are frequent in modern inorganic 
biochemistry. For example, de novo design of metalloenzymes 
frequently require mutations of the protein to generate a convenient 
coordination center. Moreover, experimental structures may only 
provide with metal-free (apo) form without convenient organization 
of the protein side chain for the metal to bind including transient 
geometries that require conformational changes or modification of 
the coordination environment (vacant sites, presence of labile 
ligands etc…) for the metal to bind.  

In recent years, our group has actively worked in areas 
where it was essential to predict with confidence those amino acids 
that could coordinate metal compounds either for proteins18 or 
peptides.19 In those works, we frequently confront with new-to-
Nature metal-binding sites, X-ray structures of proteins without a 
well-defined binding site20,21 or even putative binding sites of 
metallodrugs.22–29 Part of our efforts allowed us to develop a series 
of docking approaches30–32 that can well reproduce low energy poses 
of metal-protein complexes. However, such approaches are only 
viable if good guesses for metal-binding regions are accessible on 
the first hand. For this aspect, in a first statistical analysis about ten 
years ago,20 we observed that i) any amino acid with its ⍺-carbon 
located within a sphere up to 7-9 Å could potentially be considered 
as a metal ligand (obviously considering possible coordination by 
residues with long side chains like lysine or tyrosine) and ii) the 
center of mass of the coordinating residues generally does not stand 
far from the exact position of the metal ions observed in the X-ray 
structure. In a subsequent study,32 we preselected docking areas by 
filtering the distance from the metal to the β-carbon of the amino 
acids Asp, His, Glu and Cys, using a range from 2.5 to 5.0 Å. Both 
works showed that few geometric descriptors related to the backbone 
of the protein afford with convenient information to predict metal-
binding sites rather than focusing only on the first coordination 
sphere donors (mainly side chains) that coordinate the metal. 

BioMetAll represents a major step forward in how to 
predict metal-binding sites in proteins. The approach stands on the 
geometric information extracted from a collection of about 171000 
biological complexes to infer a combination of geometric rules that 
are used to evaluate the regions of a protein for metal binding. The 
program accurately reproduces the experimental metal-binding 
motifs on a benchmark of 53 structures. Furthermore, we present 
three specific case studies to illustrate its potential. BioMetAll is 
efficient to i) predict metal-binding sites with particular amino acid 
motifs even for non-canonical metal coordinating amino acids and 
backbone atoms; ii) determine transient metal-binding sites in 

structures that need conformational changes to reach the complete 
coordination sphere, which could be related to metal diffusion 
pathways; and even iii) predict potential mutations of an existing 
protein to generate convenient metal-binding sites. This new 
approach can make a significant contribution to future development 
in fields like metalloenzyme and metallodrug design. 

 
Computational methodology 
The concept 

BioMetAll relies on the assumption that the geometric 
patterns of the backbone of a given protein environment encode 
sufficient information on its preorganization to coordinate metal 
ions. By doing so, predictions are less conditioned by finding perfect 
matches and so could detect those binding sites that are partially 
organized (e.g. missing one or several well-positioned side chains) 
or even help in designing new metal coordination environment 
throughout mutations (e.g. for application in enzyme design).  

BioMetAll prediction works by embedding a protein in a 
grid of fictitious metal probes, which are further evaluated using 
geometric features obtained for each amino acid by statistical 
analysis. The entire set of geometric parameters is divided in two: 
one for coordinating atoms being part of the side chains and the other 
for atoms being part of the backbone. For side chains, the geometric 
features are (Figure 1A): Ma, the distance from the metal to the ⍺-
carbon; Mb, the distance from the metal to the β-carbon; and Mab, 
the angle between the metal, the ⍺-carbon and the β-carbon. For 
backbone oxygen atoms (Figure 1B): MO, the distance from the 
metal to the backbone oxygen; and MOC, the angle between the 
metal, the backbone oxygen and the backbone carbon.  

Statistical analysis  

We analyzed the entire bunch of the structures available in 
the MetalPDB, a publicly accessible database of preselected metal-
containing proteins from the Protein Data Bank (PDB).33,34 This 
analysis was carried out thanks to an in-house PyChimera35,36 script 
applied on ca. 171000 metal-binding sites. It ended up with a list of 
ca. 500000 entries (Table S1) after cleaning the database from metal-
donor distances lower than 1.5 Å or greater than 3.0 Å.37 
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Figure 1. Geometric features analyzed for all the structures of the MetalPDB. (A) 
Geometric features considered for coordination bonds with a side chain donor. The metal 
(M) is depicted in a green ball, ⍺-carbon (C⍺) and β-carbon (Cβ) are depicted in blue balls. 
Distance from the metal to the ⍺-carbon (M⍺) and distance from the metal to the β-carbon 
(Mβ) are represented in black dashed lines. The angle between metal, ⍺-carbon and β-
carbon is labelled as M⍺β (B) Geometric features considered for coordination bonds with 
a backbone oxygen donor. The metal (M) is depicted in a green ball, the backbone oxygen 
atom (O) is depicted as a red ball, and the backbone carbon (C) is depicted in a blue ball. 
Distance from the metal to the backbone oxygen (MO) is represented in a purple dashed 
line. The angle between metal, backbone oxygen and backbone carbon is labelled as 
MOC. 



From the 500000 entries, a range of values was obtained 
for each geometric feature Ma, Mb, Mab (Table 1, Figure 2). For 
histidine, the subranges obtained for Hisẟ and Hisε tautomers were 
merged. Although the analysis of coordination by backbone atoms 
was undertaken for each amino acid, the final results (Table S2) 
presented a large overlap. In consequence, a global range for MO 
and MOC was considered for all the entries: MO, distance metal - 
backbone oxygen from 1.809 Å to 3.000 Å; and MOC, angle metal - 
backbone oxygen - backbone carbon from 1.774 Rad to 3.139 Rad. 

Further analyses were conducted to provide a series of 
default parameters for a prototypical prediction. It first emerges that 
80% of donor atoms are part of the side chains (Table S3), and 19% 
are part of the backbone (Table S4). Default calculations in 
BioMetAll were therefore set to look for side chains primarily and 
left backbone coordination as optional. For side chains, the 89% of 
coordinating atoms comes from what we called canonical metal 
coordinating amino acids namely Asp, His, Glu and Cys while a 
 

Table 1. Ranges (excluding outliers) for each one of the geometric features analyzed, 

grouped by type of amino acid. Coordinations with side-chain donors were considered 

in this analysis. 

Amino 

acid 

Percentage 
of entriesa 

Distance M⍺ 
(Å) 

Distance Mβ 
(Å) 

Angle M⍺β 
(Rad) 

Asp 28.63% [3.907-6.192] [3.658-5.052] [0.003-1.871] 

Hisb 23.36% [3.076-7.098] [3.047-6.073] [0.001-2.018] 

Glu 18.96% [3.591-8.303] [4.123-6.108] [0.000-2.305] 

Cys 18.01% [3.248-5.451] [2.794-3.829] [0.006-1.734] 

Asn 3.80% [4.048-5.701] [3.866-5.250] [0.682-1.697] 

Thr 1.99% [3.313-5.096] [2.530-4.371] [0.184-1.647] 

Ser 1.81% [3.384-5.171] [2.587-4.353] [0.163-1.521] 

Gln 1.26% [3.217-7.835] [3.512-6.565] [0.012-2.268] 

Met 0.72% [4.426-6.706] [3.654-5.094] [0.016-1.228] 

Tyr 0.71% [6.896-9.016] [6.367-8.087] [0.501-1.433] 

Lys 0.34% [5.134-9.280] [4.358-7.997] [0.029-1.918] 

Arg 0.30% [3.409-10.162] [2.913-9.042] [0.024-1.991] 

Leu 0.03% [3.784-4.678] [4.353-5.622] [1.464-2.470] 

Trp 0.02% [3.912-7.478] [4.244-6.573] [0.471-2.703] 

Ile 0.02% [4.236-4.817] [5.039-5.702] [1.826-2.169] 

Val 0.01% [3.517-5.003] [4.358-5.722] [1.639-2.166] 

Ala 0.01% [3.402-5.126] [4.254-5.991] [1.584-2.368] 

Phe 0.00% [3.499-4.922] [4.289-5.590] [1.666-2.300] 

Pro 0.00% [3.646-4.529] [4.860-5.246] [1.746-2.678] 

a Percentage of bonds corresponding to each residue of the total of 400077 entries 

analyzed. b Ranges for His were obtained from merging the subranges calculated for 

Hisẟ1 and Hisε2-H tautomers. 

 

10.9% belongs to non-canonical amino acids (Asn, Thr, Ser, Gln, 
Met, Tyr, Lys and Arg). Only the last small fraction (<0.1%) are 
coordinations with a carboxylate terminal amino acid (Table S3). 
Finally, most common metal-binding sites account with three 
coordinating amino acids on average (with an interquartile range of 
2). On those grounds, BioMetAll works with default parameters that 
involved canonical amino acids side chains with a number of amino 
acids per metal-binding sites of three. The user can configure any 
other possible situation in a user-friendly manner. 

It is to notice that, besides standard amino acids, 
exogenous ligands (e.g. water or small molecules) can participate in 
the coordination of the metal. Although metrics for BioMetAll 
parameters have been obtained purely on amino acid geometric 
magnitudes, exogenous ligands could participate in the coordination 
of the metal on the analyzed set. The calculations we performed so 
far show that BioMetAll implicitly takes into account the changes in 
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Figure 2. Violin plots for the different features studied in the statistical analysis. 
Coordination bonds between the metal and a side-chain atom are considered in all cases. 
(A) Distance from metal to ⍺-carbon of the coordinating amino acid, for canonical and 
non-canonical amino acids. (B) Distance from metal to β-carbon of the coordinating 
amino acid, for canonical and non-canonical amino acids. (C) Angle between metal, ⍺-
carbon and β-carbon of the coordinating amino acid, for canonical and non-canonical 
amino acids. 



the metal position that those exogenous ligands could cause (as 
showed latter in the manuscript). 

Overview of BioMetAll Workflow  

The BioMetAll workflow (Figure 3) is divided into three sequential 
steps. 

i) Generation of a probes grid. An input .pdb file (that can be 
downloaded from the same server of the Protein Data Bank38 -PDB-
) is parsed to retain only the cartesian coordinates of  ⍺-carbons, β-
carbons, backbone oxygens and backbone carbons. Subsequently, a 
spherical grid of equidistributed points (i.e. probes) is generated 
which by default, embeds the entire protein with an extra margin of 
8 Å (to account for superficial amino acids). The user can customize 
this sphere if interested in a portion of the system only. Probes 
ubicated less than 1 Å from backbone atoms are discarded. 

ii) Checking geometric criteria. The second stage of the process 
checks the suitability of the probes. Each of them is paired with the 
list of amino acids that match all the required geometric and user-
specified constraints. The following parameters can be selected: 
residues, motif, backbone and mutations (Table 2). They allow for 
restraining the search to a specific list of amino acids (e.g. limiting 
residues to the canonical list), consider or not coordinations with the 
backbone oxygens, search for a particular structural motif, or even 
output feasible mutations which will be suitable to complete that 
motif.  

iii) Clustering of possible binding areas and output. Once a list of 
possible coordinating residues for every probe is obtained, all the 
probes with the same coordination environment are grouped. Those 
clusters of probes represent the predicted site with metal binding 
capacities. The result can be reported into a .pdb format that can 
further be visualized with any visualization program. The resulting 
coordination area/s are ordered by decreasing number of probes and 
saved in an additional output text file. It is important to bear in mind 
that BioMetAll does not return a unique spot but groups of probes 
that constitute the areas where a metal could bind. 

Availability of the code 

BioMetAll is an open-source command-line application 
implemented in Python 3.7 language with NumPy39 and psutil are 
the only required dependencies. User manual and tutorials are 
available at https://github.com/insilichem/biometall. It can be run as 
usual with any Python script, once the dependencies mentioned 
above are installed on the system. Pre-built executables (generated 
with PyInstaller40) for Linux, Mac OS and Windows 10 are available 
for direct use of BioMetAll without the need for any installation 
process. 

 

 

 

 

 

 

 

Input .pdb file
or PDB code 

Parse
.pdb structure

Construct grid 
of probescenter

radius

grid

Dimensions of the protein

Check for 
backbone 
oxygens

Check for 
sidechain 

coordinations

Check 
possible 

mutations

residues
or

motif

backbone

motif
and

mutations

Coordinates
information
(C⍺, Cβ, C, O)

Grid of probes

yes

no

yes

no

All
probes?

no

yes

Ite
ra

tio
n 

ov
er

 a
ll p

ro
be

s

min_coordinators
or

motif

List of probes
and coordinations

Assign to a 
binding area

yes

no
Accomplish?

Generate
output

pdb

cutoff

All
probes?

no

yes

Ite
ra

tio
n 

ov
er

 a
ll p

ro
be

s

List of coordination areas

Output .pdb file Output .txt file 

Figure 3. BioMetAll workflow. User configurable parameters are colored in red 
(optional parameters have a dashed arrow). Input and outputs are colored in blue. The 
three main steps of the algorithm are highlighted in blue, orange and green background, 
respectively. 



Table 2. User-configurable parameters for a BioMetAll calculation 

Parameter Default 
value 

Utility 

grid 1.0 Distance (in Å) between probes in the 
grid. 

center None Optional. Coordinates of the sphere 
center, when the user wants a custom 
search zone. 

radius None Optional. Radius (in Å) of the search 
sphere, when the user wants a custom 
search zone. 

residues [Asp, 
His, Glu, 
Cys] 

List of residues that will be considered 
as potential side-chain donors.  

backbone None List of residues that will be considered 
as potential backbone donors. 

motif None Optional. Concrete structural motif to 
search. 

mutations None Optional. Propose mutations to 
complete a motif. 

min_coordinators 3 Minimum number of amino acids that a 
coordination environment must have to 
be valid. 

cutoff 0 Cut the solutions proposed by the 
software to a given threshold of the 
number of probes.  

pdb No Generates a .pdb file with the proposed 
binding areas ready to open with a 
visualization program. 

 
Results and discussion 
Motif search benchmark 

The predictiveness of BioMetAll was tested for the 
detection of the two-histidine one-carboxylate motifs (FTM) in a set 
of 53 crystallographic structure from the Protein Data Bank. The 
FTM was chosen because it is a coordination sphere motif present in 
the active site of many metalloenzymes, like carboxypeptidase A or 
naphthalenedioxygenase.41–43 Thus, it is interesting to benchmark 
BioMetAll predictions against a set of experimental structures 
containing this motif.44 This set appeared very convenient because it 
shows structures with a wide range in size (from 108 to 1074 
residues) and great diversity of metals (Cd, Co, Cu, Fe, Hg, Mg, Mn, 
Ni, Ru and Zn). 

In average, BioMetAll returns ten predicted metal-binding 
sites for each crystallographic structure. Those solutions have a 
number of probes of ca. 25 on average with a deviation of about 10. 
In 100% of the set, the FTM motif of the crystal structure is found in 
a high-populated cluster of probes (93% in one of the first five 
solutions, see Table S5). In 75% of the cases, the metal-binding site 
is well characterized in the most populated solution, although not 

necessarily with the complete set of donors displayed in the X-ray 
structure. BioMetall results are therefore particularly promising.  It 
is important to highlight that BioMetAll not only predicts the X-ray 
structure metal modes, it also predicts some that could be different 
from the experimental structures (from missing one of the amino 
acids in the coordination sphere to being far from the 
crystallographic site). In fact, reaching the maximum exigence of 
accuracy, that would correspond to the prediction of the X-ray 
structures to be found in the most populated solution only with the 
complete set of amino acids, success rate falls to 40%. Obviously, 
like for other techniques based on empirical scores, the 
predictiveness of the method cannot be limited to the best solution 
only and those secondary metal binding sites that BioMetAll detects 
are not necessarily false positives but transient metallic 
environments accessible to the protein (see our first application case 
on HSA). Energetic terms and other physico-chemical magnitudes 
that are not present in BioMetAll, could dictate the fine structure of 
the metal-binding site. Posterior filtering could be necessary 
depending on the objective of its use. 

The accuracy of the predicted binding area was further 
assessed by measuring the distance from the experimental metal 
position to the nearest computed probe. On average a difference 
between calculated and experimental positions of the metal is about 
0.56 ± 0.19 Å. Importantly, such quality is not influenced by the 
presence of donors coordinated to the metal provided by exogenous 
compounds (e.g. phosphate or water molecules). In these cases, we 
generally observe a displacement to the limits of the predicted region 
(Figure 4), suggesting that the exogenous donors only slightly 
modify the position of the metal and the organization of the side 
chains. 

Because calculations are performed in a blind manner, 
meaning that all the system is screened for predicting metal-binding 
sites, these results are quite remarkable. Regarding the 
computational cost of the calculations, they range from 3s to 245s, 
with a median of 18s (with the size of the system highly correlating 
with the computational time r=0.89, p<0.0001).  

The benchmark shows that BioMetAll is a suitable 
software to predict metal-binding sites. One can readily perform 
screening of protein structures in a rational enzyme design protocol 
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Figure 4. Detail of the binding site for two cases presenting exogenous ligands besides 
the standard amino acids. In both examples, the center of the predicted area is represented 
by an orange ball, the probes that form the binding area are represented by smaller green 
balls surrounded by surface visualization, and the coordination bonds are shown in dashed 
purple lines. (A) Binding of Mn in PDB 2hxg. The HIS-HIS-GLU-GLU motif is depicted 
in blue sticks, and two water molecules are highlighted in ball and sticks. (B) Binding of 
Fe in PDB 1zz7. The HIS-HIS-GLU motif and an exogenous ligand are depicted in blue 
sticks. Two water molecules are highlighted in ball and sticks.  



or testing a set of conformations extracted from an MD simulation. 
With such a tool in hand, a large panel of applications is accessible.   

Case study (1): Human Serum Albumin 

Human Serum Albumin (HSA) is the most abundant 
protein in the blood plasma and, together with human serum 
transferrin, is the first carrier for most of the essential metal ions.45 
Two main metal-binding sites have been characterized in HSA: the 
NTS or ATCUN motif located at the N-Terminus,46 and the multi-
metal binding site (MBS) at the interface of subdomains IA and 
IIA.47 While the NTS (with coordination set NH2,Asp1;N–

Asp1;N–

Ala2;NHis3) is preferential for species able to deprotonate amidic 
hydrogens like Cu2+ and Ni2+, the MBS one (with the binding 
NHis67;NHis247;OAsn99;COO–

Asp249) is the primary site for Zn2+ and 
other bivalent cations.48,49 One interesting feature of HSA emerges 
when comparing its structure in the presence of medium- and long-
chain fatty acids (FAs) with those of the defatted state. The binding 
of FAs to site FA2, which is one of the strongest FAs sites located at 
the same region of MBS, causes the mutual rotation of subdomains 
IA and IIA, separating the Zn2+ coordinating amino acids and 
moving part of Zn2+ to NTS with possible coordination 
NHis3/His9;COO–

Asp13/Glu6.50 This conformational change hinders the 
metal coordination at MBS and has been pointed out in the literature 
as a regulatory mechanism of zinc homeostasis (Figure 5). 45,48,51–55 

Predicting metal-binding sites in front of conformational 
changes is an interesting challenge for structure-based predictors. 
Indeed, sequence-based ones would not consider such modification 
of the protein structure. To ascertain the discriminative capabilities 
of BioMetAll, both fatted (HSAf) and defatted (HSAd) X-Ray 
structures of HSA (PDB codes 1bj5 and 5ijf, respectively) were 
probed for zones containing a minimum of three coordinator amino 
acids, whose types should be a combination of His, Asp and Glu. 
Those are amino acids which side chains are those with the highest 
affinity toward Zn2+. A second prediction was performed with a more 
specific motif similar to the MBS site: two histidine residues and 
either an aspartate or a glutamate. 

As a result of the first analysis, both known primary 
binding sites (MBS and NTS) were detected by BioMetAll for HSAd 
with His-His-Asp/Glu along with other secondary sites that satisfy 
patterns like NHis/COO–

Asp/Glu;COO–
Glu;COO–

Asp/Glu (Table S6) and 

that have also been reported in the literature.50 However, for HSAf, 
only the NTS (His3-His9-Glu6) together with the same secondary 
sites than HSAd are identified (Table S7). By looking for the specific 
motif His-His-Asp/Glu, the MBS and NTS sites were uniquely 
identified for HSAd (Figure 6A) while only the NTS binding site was 
detected for HSAf (Figure 6B). Hence, BioMetAll differentiates the 
metal-binding profile between both conformational states of HSA.  

This case study points out that BioMetall is not only able 
to predict with accuracy primary and secondary metal-binding sites 
but also to account for the impact of conformational changes of the 
protein and how it affects its preorganization for metal binding. 

Case study (2):  Hemocyanins 

Our second illustrative case focuses on copper-binding 
proteins. From hemocyanin to blue copper protein, Nature has 
intensively adapted its toolbox to incorporate this metal. 
Interestingly, copper is a very selective transition metal in terms of 
amino acids to which it could bind. Statistics (Table S3) show that 
copper highly prefers histidine (70.8%). Other amino acids like 
cysteines (16.3%) or methionines (5.6%) are found with far lower 
frequencies. Glutamates (3.5%), as well as aspartates (2.3%), end the 
list of main coordinating amino acids to copper. One could therefore 
hypothesize that a way to detect copper-binding sites consists in 
identifying those histidine residues that are well pre-organized for 
metal binding.  

FAs induced Rotation 

Defatted HSA
Fatted HSA

His247

Asp249
His67

His67’

Figure 5. FAs induced rotation, highlighted by the superposition of IA/IIA interface of 
HSA in HSAf (in blue) and HSAd (in orange) X-Ray structures. 

Figure 6. Probes (green dots) predicted by BioMetAll by looking for the motif His-His-
Asp/Glu. (A) Defatted conformation, in which the experimental binding site is predicted 
with high precision. (B) Fatted conformation, where the experimental binding site is no 
longer predicted. FA bound to FA2 is depicted in purple. 



We performed BioMetAll runs on a series of hemocyanin 
proteins –a prototypical family of di-copper binding oxygen 
carriers– that coordinate copper throughout motifs of three histidine 
amino acids. After removal of the metal ions from the .pdb files, a 
set of experimentally characterized structures were screened to look 
for sites with a minimum of three histidine residues able to 
coordinate a metal ion. The search led to a 100% prediction for the 
di-copper binding sites for all the hemocyanins analyzed at the exact 
location of the X-ray structure (Table S8). One example is given in 
Figure 7 with Manduca sexta prophenoloxidase, a heterodimer 
consisting of two homologous polypeptide chains.56  

One of the advantages of BioMetAll is to provide the user 
to control the specificities of the metal-binding search pattern. Even 
those that are not the “best-case scenario” can be evaluated based, 
for example, on chemical hypothesis. With such an idea in mind, we 
performed a second series of calculations releasing the restraint of 
the search motif from three histidine residues to only two with 
eventually a third amino acids being cysteine, methionine, aspartate 
or glutamate. The results provide with several putative metal-binding 
sites spreading to a broader part of the protein but, to our surprise, 
those were not randomly scattered inside the scaffold (example for 
Manduca sexta prophenoloxidase shown in Figure 8). Instead, a 
continuum pattern of adjacent sites that evolves from solvent-
exposed locations to the buried di-copper site was observed. This 
observation, combined with the presence of water molecules along 
those channels in several crystal structures, strongly suggest the 
possibility that BioMetall allowed the detection of metal diffusion 
pathways. It is interesting to comment that our intents to use 

traditional approaches for channeling predictions, like those based 
on calculating solvent excluded surface calculations, did not lead to 
such clear prediction of metal compatible pathways neither a map of 
histidine onto the crystallographic structure would provide with such 
information (although being obviously related). Although falling far 
for the main objectives of this work, such observation could be 
particularly interesting to investigate the properties of metal 
diffusion in hemocyanins and their relationship to oligomeric states. 
The versatility of BioMetAll could lead to interesting outcoming 
when looking for diffusion pathways of metallic species in proteins. 

Case study (3): Metalloenzyme design 

Because BioMetAll is mostly based on backbone patterns, 
prediction of mutations to generate metal-binding sites is probably 
of the most interesting applications. For our last illustrative case, we 
aimed at showing the interest of this approach for metalloenzyme 
design. To do so, the repurposing study of a hydrolase to a 
peroxidase by Ward et al.57 was revisited.   

The original work by Ward and coworkers started with a 
screening of the PDB38 for FTM compatible motifs including 
possible mutations from Asn/Gln to Asp/Glu. With an initial 
screening of the entire Protein Data Bank with the software 
STAMPS,58 six structures were identified as interesting candidates 
and followingly tested for peroxidase activity. Only 6-
phosphogluconolactonase from mycobacterium smegmatis (which 
structure is accessible at the PDB with the code 3oc6) with an 
Asn131Asp mutation showed catalysis in the presence of CuSO4. 
Interestingly, X-ray crystallography of the resulting system 
enlightened that only the His67-His104 tandem with histidine trans 
to each other coordinates the copper ion; the predicted de novo 
aspartate at the 131 position was not able to coordinate. 

To show the interest of BioMetAll in an artificial 
metalloenzyme framework, we started by looking for the His-His-
Asp/Glu motif in the 6-PGLac structure. In agreement with the initial 
study, no positive outcomes came out. The search was therefore 
expanded to His-His-Asn/Gln motifs obtaining the His67-His104-
Asn131 triad found by Ward et al. The subsequent analysis was 
searching for any mutation that could complete the His67-His104 
pair with a Glu/Asp. Unlike other structural prediction programs that 
need the exact sequence to be present in the target protein, 
BioMetAll directly outputs a list of mutations. 

This run of BioMetAll looking for possible sites allowing 
a mutation to either Asp or Glu provided with an extensive list of 
possible solutions including Asn131 (Table 3). The following step 
was a post-process by filtering the solutions that show collapse 
between the probes and any amino acid side chain or backbone from 
close neighbors of the putative metal-binding areas. This filtering 
process together with a visual inspection diminished the number of 
possibilities to five candidates (Table 3 and Figure 9A). 

To further assess the predictiveness of BioMetAll under a 
metalloenzyme design framework, the predicted systems were used 
as a starting point for docking experiments. Calculations were 
carried out with the protein-ligand docking software GOLD 
software59–61 and repeated inside our GaudiMM platform (to provide 
with a freeware alternative).32,62 Both calculations were performed 
 

Figure 7. Di-copper binding sites for the two monomers (in blue and orange ribbons) of 
the Manduca sexta prophenoloxidase (PDB code 3hhs). Probes predicted by BioMetAll 
are shown in green surface and amino acids participating in copper binding are highlighted 
in white sticks. 

Figure 8. Overall view of the structure of Manduca sexta prophenoloxidase, with the 
results of BioMetAll calculations overlapped. Probes for the three-histidine calculation 
are shown in green surface and probes for the two-histidine calculation are shown in 
yellow surface. Continuous paths from the solvent to the di-copper binding sites are 
observed. 



Table 3. Summary of mutations proposed by BioMetAll to achieve a His-His-Glu/Asp 

in 6-PGLac structure, starting from the already present His67-His104.a 

Number Mutated a.a. Aspb Glud 

1 Tyr69 18 (17) 34 (27) 

2 Thr38 11 (5) 31 (13) 

3 Asn131 8 (0) 29 (9) 

4 Ile68e 3 (1) 18 (8) 

5 Ile39e 2 (0) 9 (5) 

6 Val101 2 (2) 18 (13) 

7 Val40e 2 (1) 10 (4) 

8 Asn102 1 (1) 19 (14) 

9 Leu127e 0 7 (3) 

10 Leu128 0 2 (0) 

11 Phe139 0 2 (0) 

12 Val103 0 2 (0) 

13 Leu41 0 1 (0) 

14 Pro99 0 1 (0) 

a In bold the possibilities took into account in the docking assay. b Number of 
probes for the binding area when mutating the a.a. to Asp is reported, in 
parenthesis the number of probes after filtering. c Number of probes for the 
binding area when mutating the a.a. to Glu is reported, in parenthesis the 
number of probes after filtering. e Solutions excluded due to visual inspection 
(see Figure 9A). 

 
following our protocols optimized for metalloligands binding to 
proteins30,31 (see Supplementary Information for further details). The 
list of FTM tested includes therefore His67-His104-Asp/Glu69, 
His67-His104-Asp/Glu38, His67-His104-Glu131, His67-His104-
Asp/Glu101, and His67-His104-Asp/Glu102. For the sake of the 
comparison with the initial work and the consequent X-ray structure, 
His67-His104-Asp131 was also analyzed. From all the calculations 
performed, solutions presenting convenient metal-binding modes 
were only observed for the mutation Tyr69Asp/Glu even though the 
Asp mutation reaches better coordination geometry in the docking 
assay. In this case, the FTM motive appears excellently reproduced 
with the side chains displaying geometries that allow the aspartate to 
bind the metal facially (Figure 9B). It must be highlighted that only 
those mutations with about 10 probes and more appear as viable for 
coordination, with the mutation at the position 69 being outstanding 
for both Asp and Glu mutations. This finding suggests that the 
number of probes could be used as criteria to prioritize possible 
proposed solutions. Strikingly, no docking calculation allows 
producing a convenient binding mode of the FTM motive for the 
Asn131Asp mutation with no rearrangement of the His67-His104-
Asp131 side chains to coordinate with the metal. This result sustains 
the BioMetall prediction regarding the low potential of such mutant 
to coordinate convenient the metal as well as with the experimental 
X-ray structure. 

 

 

From this part of the study, BioMetAll and its combination 
with docking experiments optimized for metal binding appear to 
predict convenient side-chain rearrangements. For the purpose of 
this enzyme design exercise should only be viable for the Tyr69Asp 
and to less extent Tyr69Glu.  

 
Conclusions 

The large number of experimental structures available in 
the Protein Data Bank offers today a unique landscape to understand 
the molecular rules that govern the binding of metallic moieties to 
proteins. In this work, we show that it is possible to build an efficient 
predictor of metal-binding sites based on few geometric descriptors 
of the conformation of the backbone. Our intent, BioMetAll, gives a 
major weight of the prediction to the preorganization capacities of 
the protein instead of a perfect matching with known geometries of 
the first coordination sphere of the metal.  

Tyr69
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Thr38

His104

Asn131

Leu128

Leu127

Phe139

Pro99

Val103

Leu41

Ile68

Val40
Ile39

His67

His104

Tyr69Asp

B

A

Asn102
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Figure 9. (A) Set of feasible mutations predicted by BioMetAll to add an Asp/Glu to the 
His67-His104 motif. The five options considered in further docking analysis (Tyr69, 
Thr38, Asn131, Val101 and Asn102) are depicted in yellow sticks. The discarded 
mutations are highlighted in orange (options for Glu) or blue (options for Asp/Glu) 
ribbon. The probes area predicted as feasible for metal binding is shown in green surface. 
(B) Best docking pose obtained for Tyr69Asp mutation, where the copper is facially 
coordinated by the His67-Asp69-His104 triad. 



The predictiveness of BioMetAll is excellent and 
compares very well with other algorithms when it comes to 
determine metal-binding sites as well as the exact list of the amino 
acids involved in the coordination motifs. Those predictions are of 
good quality even when exogenous compounds are involved. 
BioMetAll tests on several key systems show that i) it efficiently 
predicts primary as well as secondary metal-binding sites,  ii) it can 
easily account on how the conformational changes of the protein 
could alter the formation of metal-binding sites, iii) it allows to work 
with common metal-binding templates as well as non-standard ones, 
iv) it identifies sites even with incomplete coordination spheres, and 
v) it allows to predict mutations that could be necessary to generate 
new metal-binding sites in a protein for example for building new 
biocatalysts. 

BioMetAll, and its ground on backbone preorganization, 
appears as a very interesting option in fields related to biometallic 
interactions. It is fundamental to highlight that BioMetAll does not 
consider energetic terms. Posterior refinements might be necessary 
depending on the object of the study. At the moment, we put a large 
amount of effort to bridge BioMetAll to other methods like those 
allowing extensive conformational sampling such as Molecular 
Dynamics and protein-ligand dockings. We believe that this kind of 
combination would open new horizons for research in chemistry and 
its interface with biology. 
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