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In this work we exploit the ability of spin-crossover molecules to switch between two spin states, 

upon the application of external stimuli, to prepare smart molecular/2D heterostructures. 

Through the chemical design of the hybrid interface, that involves a covalent grafting between 

the two components, we obtain a hybrid heterostructure formed by spin-crossover nanoparticles 

anchored on chemically functionalized monolayers of semiconducting MoS2. In the resulting 

hybrid, the strain generated by the molecular system over the MoS2 layer, as a consequence of 

a thermal or light-induced spin switching, results in a dramatic and reversible change of its 

electrical and optical properties. This novel class of smart molecular/2D heterostructures could 

open the way towards a novel generation of hybrid multifunctional materials and devices of 

direct application in highly topical fields like electronics, spintronics or molecular sensing. 
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The research on graphene and other two-dimensional (2D) materials has been propelled by the 

possibility of studying and exploiting the properties of matter in the 2D limit.1 Nowadays, this 

topic is moving towards the assembly of monolayers of different types to afford van der Waals 

heterostructures.2-4 In the 2D area, apart from the chemical functionalization of 2D materials,5 

the use of molecules as precursors, constituents or functional components of novel 2D systems 

and heterostructures, has been scarcely investigated.6,7 An interesting possibility in this context 

deals with the fabrication of mixed molecular/2D heterostructures, in which the properties of 

the “all surface” 2D layer can be tuned by the hybrid interface, i.e., by the interactions 

established between the molecules and the 2D material.8,9 

A versatile family of 2D layered materials in which this molecular/2D concept can be exploited, 

is that formed by transition metal dichalcogenides (TMDCs)10-12 of formula MX2 (M = metals 

traditionally restricted to groups IV–VII; X = S, Se, Te). The members of this family display a 

wide range of electronic properties as a function of their composition and structures, including 

insulating, semiconducting, metallic and superconducting properties. Among them, the most 

deeply studied system is MoS2, owing to its chemical stability, and electronic properties. The 

weak interaction between stacked layers makes it feasible to isolate monolayers of this material, 

create van der Waals heterostructures and exploit them to design hybrid structures and 

electronic devices displaying new low-dimensional physics and unique functionalities.13 Of 

special interest is the correlation between the electronic structure and the structural arrangement 

of S atoms in the monolayer. In fact, by a slight gliding of the S atoms, a switching between a 

trigonal prismatic symmetry around the Mo atom (2H-phase) and an octahedral one (1T-phase) 

occurs, giving rise to an electronic modulation of the 2D material from semiconducting to 

metallic.14 This phase transition from 2H to 1T can be induced by different external stimuli 

such as chemical modification15,16 or electron beam radiation,17 while the inverse process can 

be achieved by thermal treatment,18 infrared radiation,19 or aging of the material.20 An attractive 

possibility in this context is to induce the phase transition by applying strain. This has been 
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theoretically predicted21,22 and experimentally demonstrated in ultrathin MoS2 layers in which 

a band gap narrowing under low tensile strain has been achieved, which enables the reversible 

tuning of their optical and electronic properties.23,24 Sophisticated devices have been reported 

to prove the strain modulation of both the optical and electronic band gaps, through 

photoluminescence (PL), Raman spectroscopy,25-27 and transport measurements.27,28 In addition, 

an intrinsic negative piezoresistivity has been observed24 and exploited to develop a 

piezoresistive composite in which the resistance decreases when the strain increases (negative 

Gauge factor).29 

In this scenario, we have envisioned the possibility of preparing MoS2-based heterostructures 

where the second component is an active molecular system that can directly and reversibly tune 

the strain applied on the 2D material and, therefore, its electronic structure and electric 

conductivity. We have chosen switchable molecular-based spin-crossover (SCO) materials for 

this purpose. These materials are, in most cases, Fe(II) compounds that undergo spin transition 

between low spin (LS with S=0) and high spin (HS with S=2) configurations upon the 

application of an external stimulus such as light, temperature, pressure or chemical activation. 

This spin transition comes along with an intrinsic change in volume (up to 11.5%)30 and a 

variation of their mechanical,31 magnetic,32 electrical33 and optical properties.34 Interesting 

devices35 and composites based on SCO materials embedded in different polymers have been 

already reported where a change in volume upon spin transition induces strain effects on a 

second component modifying their electrical and/or mechanical properties.36-38 

However, in the field of 2D materials, the inducement of strain by phase transition materials 

has not been demonstrated so far. The first example of SCO/2D heterostructure was based on 

the deposition of SCO nanoparticles on graphene. In this case, the thermal spin transition of the 

nanoparticles resulted in significant changes in the transport properties of graphene. However, 

the origin of these electrical changes was electronic rather than mechanical. In fact, it was 

ascribed to the interaction of the graphene electrons with the phonons of the SCO 
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nanoparticles.39 Just very recently, an inverse approach has been followed, consisting in the 

deposition of a mechanically-exfoliated graphene layer on a large SCO crystal with a polymeric 

spacer in between. Nevertheless, in this transistor geometry, the mechanical influence of the 

SCO crystal over the properties of the 2D layer is attenuated by the presence of the spacer, thus 

resulting in a small modification of graphene conductivity, mainly attributed to changes in the 

induced electrostatic potential. 40 

In the present work, we focus on SCO nanoparticles as phase transition material to induce a 

strain on the 2D material and thus modulate its electrical and optical properties. These 

nanoparticles are based on the [Fe(Htrz)2(trz)](BF4) coordination polymer (Htrz = 1,2,4-triazole 

and trz = triazolate) covered with a silica shell (from now on SCO-NPs).41,42 These core/shell 

nanoparticles have shown to undergo a cooperative spin transition near room temperature and, 

depending on the purpose, their sizes and composition can be tuned.43,44 In addition, the silica 

shell not only preserves the chemical stability of the SCO system, but also provides an 

anchoring point for their further chemical functionalization, giving rise to robust 

heterostructures.41  

 

Results 

Chemical design of a hybrid SCO/MoS2 heterostructure. In order to prepare the hybrid 

SCO/MoS2 heterostructures, a straightforward solution grafting protocol that coats MoS2 flakes 

with pre-synthesized SCO-NPs has been developed. This involves the chemical 

functionalization with 3-iodopropyl(trimethoxysilane) (IPTS) of ultrathin chemically 

exfoliated MoS2 layers (CE-MoS2), followed by the anchoring of the SCO-NPs to these 

functionalized layers via a covalent bond between the trimethoxysilane group and the silica 

shell41,45 (Fig. 1). In more detail, this protocol starts with the preparation of CE-MoS2 layers by 

reacting bulk 2H-MoS2 with n-butyllithium (n-BuLi) used as reducing species.46 During this 

process an electron transfer to MoS2 occurs, giving rise to a partial structural reorientation and 
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an electronic band structure modification, that triggers the transition from the semiconducting 

2H to the metallic 1T-phase,14,47 as confirmed by X-ray photoelectron (XPS) and Raman 

spectroscopies (Fig. 2 and Table S1). After re-dispersion, the CE-MoS2 flakes retain an excess 

of negative charge on their surfaces (Fig. S1),48 providing high colloidal stability and 

facilitating their ulterior covalent functionalization. On the other hand, core-shell SCO-NPs are 

synthesized following the protocol reported by some of us44 (see Methods). 

 

Fig. 1. Schematic representation of the synthetic approach to prepare SCO/MoS2 hybrid heterostructures. 
(i) CE-MoS2 is covalently functionalized with propyl(trimethoxysilane) (PTS) groups by reaction with 3-
iodopropyl(trimethoxysilane) (IPTS); (ii) SCO-NPs, which are covered by a thin SiO2 shell, are covalently 
attached to the functionalized MoS2 layers through a chemical reaction between the trimethoxysilane group and 
the SiO2 shell.  

 
In order to functionalize the MoS2 layers, a CE-MoS2 suspension is mixed with a 3-

iodopropyl(trimethoxysilane) (IPTS) solution. The excess of negative charge accumulated in 

CE-MoS2 facilitates the nucleophilic attack to IPTS, resulting in the displacement of I and the 

formation of new covalent S-C bonds.49 This gives rise to MoS2 flakes decorated with 

propyltrimethoxysilane groups (PTS-MoS2) (Fig. 1, step i). The successful anchoring of the 

IPTS onto the MoS2 surface is evidenced by a clear decrease in the measured x-potential value 

(from -30 mV to -4 mV, Fig. S1).49 XPS confirms that functionalization takes place without 

modification of Mo and S oxidation states (Fig. 2a and b). However, during the process, CE-

MoS2 S2p, and Mo3d peaks blue shift ~1 eV (Table S1), suggesting a phase transition from the 

metallic 1T into the semiconducting 2H-phase. This conversion is confirmed in PTS-MoS2 

Raman spectrum where J peaks at 152, 232 and 326 cm-1 (fingerprint of the metallic phase)50, 

decrease substantially at the expense of E12g and A1g peaks (Fig. 2c). Moreover, PL signal is 

restored, further supporting the conversion to the semiconducting phase50,51 (Fig. 2d). These 

results contrast with those reported by Chhowalla and coworkers where 1T-phase was preserved 
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after functionalization but with unusual semiconducting properties and intense 

photoluminescence recovery.49 Such a difference may be related with our higher degree of 

functionalization of the MoS2 units (~30 % according to thermogravimetric analysis; Fig. S2), 

which could be originated in our higher ratio of 1T-phase in the starting CE-MoS2 (~85 %). 

 

Fig. 2. CE-MoS2, PTS-MoS2, and SCO/MoS2-1 spectroscopic characterization. a) Mo3d and b) S2p, 
deconvoluted high-resolution XPS spectra (blue, 2H-phase and red, 1T-phase contributions). c and d) Raman and 
PL spectra, respectively.  

Spectroscopic studies are indicative of the formation of a covalent bond between the MoS2 and 

the IPTS. C-S vibration is expected at ~690 cm-1 in the FTIR spectra. Although a signal is 

observed in this region, unfortunately, it overlaps with ethanol and IPTS vibrations, hindering 

a definitive assignation of this peak. Nevertheless, the appearance of an additional contribution 

at ~164 eV in the XPS S2p signal that modifies the deconvolution analysis, points out to 

functionalization of sulphur.49 An additional support for this covalent functionalization comes 
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from energy-dispersive X-ray spectroscopy (EDAX) analysis performed on the thinnest flakes 

by a high resolution transmission electron microscope (HR-TEM). These results show the 

presence of silicon and the absence of iodine, while confirming that the integrity of the flakes 

is maintained after functionalization (Fig. S3). 

In order to anchor the SCO-NPs to the functionalized layers forming the final heterostructure 

(SCO/MoS2), the methoxysilane groups decorating PTS-MoS2 are used to graft the SCO-NPs 

silica shell by mixing both suspensions41,45 (Fig. 1, step ii). In this way, we obtain MoS2 

functionalized with SCO-NPs bearing two aspect ratios (70 x 40 nm or 40 x 40 nm, Fig. S4,44 

SCO/MoS2-1 and SCO/MoS2-2a respectively, Fig. S5) and three coverage degrees, accounted 

by the Fe:Mo ratios (See Methods, Fig. S6). The coexistence of the two components in the 

heterostructure is confirmed by HR-TEM (Fig. 3a and S5-S6) and XPS spectra, which exhibit 

the characteristic Fe2p3/2 and Fe2p1/2 peaks at ~709 eV and ~722 eV, respectively, coming from 

the SCO-NPs (Fig. S7) and similar Mo and S spectra to those recorded for PTS-MoS2 (Fig. 2a, 

b). Finally, the integrity of the SCO-NPs in the hybrid is demonstrated by the magnetic data, 

which show a SCO thermal hysteresis very similar to the bulk, with transition temperatures at 

~380 K (T1/2 
up) and ~340 K (T1/2 

down). Fig. 3b and S8. 

 

Influence of the SCO-NPs on the properties of MoS2 in the hybrid SCO/MoS2 

heterostructure. To study the potential of SCO-NPs to modify the electronic structure of MoS2 

layers, we rely on electrical transport and PL measurements. In most of the SCO/MoS2 samples, 

we observe thermal hysteresis in the conductivities that follow well the SCO transitions 

observed from SQUID measurements. 
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Fig. 3. Morphological and magnetic characterization of the SCO/MoS2-1.  a) HR-TEM image and b) thermal 
variation of the χMT product (being χM molar magnetic susceptibility) of the SCO/MoS2-1 (70 nm SCO-NPs on 
MoS2 flakes with a Fe:Mo ratio of 2).  

The strongest effects are obtained for heterostructures formed with SCO-NPs of 70 nm and a 

Fe:Mo ratio of 2, named SCO/MoS2-1. As reported in Fig. 4a, this sample shows a sharp 

increase of ca.900% in the conductance upon heating, coincident with the spin transition from 

LS to HS (T1/2 
up  ≈ 370 K), and a sharp drop in conductance during the reversal cooling down 

process, corresponding to the transition from HS to LS (T1/2 
down ≈ 340 K) (Fig. 4a). Remarkably, 

it presents an opposite behavior compared to the one observed for SCO-NPs (Fig. 4b), where 

the nanoparticles are less conductive in the LS state than in the HS.  Keeping the Fe:Mo ratio 

equal to 2 but using smaller SCO-NPs of 40 nm (SCO/MoS2-2a), the observed thermal variation 

in the electrical response is qualitatively similar, but with a smaller switch of ca.30% (Fig. S9e-

f). This result points out that, when the relative quantity of SCO-compound: MoS2 is maintained, 

there is a more relevant effect induced on the 2D material by the size and shape of the 

nanoparticles (whose axial elongation increases as their size does), than by their number. 

Moreover, in SCO/MoS2 hybrids the conductivity is up to 5 orders of magnitude larger than 

that of pure SCO-NPs (Fig. S9), overcoming the typical insulator character of the SCO 

compounds. This feature is also very important when dealing with the sample stability. In fact, 

a general problem encountered when measuring the transport in pure SCO-NPs is the high 
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voltages required (100 V), leading to a fast sample degradation.52,53 On the contrary, the higher 

conductivities of the heteroestructures allow to measure at much lower voltages, thus 

guaranteeing sample integrity and the switching properties over several thermal cycles.  

Additionally, we investigated the influence of the SCO-NPs/MoS2 ratio on the transport 

properties, while keeping the shape and size of the particles unmodified. When the Fe:Mo ratio 

is further decreased from 2 to 0.4, SCO/MoS2-2b, sample conductivity increases but the 

hysteretic effects coming from the SCO-NPs are completely lost, likely due to the low 

concentration of nanoparticles, Fig. S9g. Accordingly, sample conductivity decreases when the 

Fe:Mo ratio increases, and starting from a ratio of 5 (SCO/MoS2-2c) sample behavior is 

reversed and approaches the one observed in assemblies of pure SCO-NPs, where the LS state 

becomes more conductive than the HS state54,55 (Fig. 4b and Fig. S9h). From this reversal 

behavior in the conductivity of SCO/MoS2 hybrids, we can conclude that for high 

concentrations of SCO-NPs, the charge transport is dominated by the nanoparticles. In contrast, 

when the concentration of the nanoparticles is decreased, the transport mainly occurs through 

the MoS2 flakes.  

  

Fig. 4. Transport measurements. Thermal variation of the conductance in the heating and cooling modes for 

SCO/MoS2-1, (a) and bare SCO-NPs, (b). The applied voltages were 2 V and 100 V, respectively. Thermal ramp 

was performed at 1 K·min-1, 
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These results suggest that the changes observed in the MoS2 flakes come from the strain 

generated by the SCO-NPs. In this mechanism, the volume change of the nanoparticles induced 

by the spin transition is expected to strain the flakes, resulting in an intrinsic modulation of the 

band structure of the layers, and thus modifying their conductivity (for further details and 

discussion see Supplementary pages 11-16).29   

Furthermore, because of the direct gap semiconductor nature of the MoS2 monolayers (2H-

phase), it is possible to gain direct information on their band gap energy through PL 

measurements.51 In fact, it is well known that when a tensive strain is applied to a MoS2 layer, 

its PL redshifts and weakens its intensity as consequence of a narrowing in the band gap and a 

transition in the semiconductor from direct to indirect band gap behavior occurs.23,56 This is 

exactly the effect we have observed by Raman spectroscopy performed in the SCO/MoS2-1 

hybrid in the two spin states (Fig. 5a). When the SCO-NPs are in the LS state (room 

temperature), a maximum in the PL signal (A peak) is observed at ~1.88 eV, which redshifts 

~30-60 meV and decreases in intensity when the spin transition occurs (T > ~370). This 

variation can be monitored by measuring PL as a function of temperature, Figure S12. 

Complete cycles of heating and cooling are shown in Fig. 5b. We observe that the energy of 

the A peak presents a clear hysteretic behavior that completely resembles that of the spin state 

of the SCO-NPs. In the temperature range in which the spin state of the particles can be LS or 

HS, the A peak differs in intensity and energy at each temperature. This points out to a clear 

effect of the nanoparticles spin state on the MoS2 band structure, additional to the thermal one.57 

To further prove that this effect is induced by the SCO-NPs, we have performed a blank 

experiment on CE-MoS2 transformed into the semiconducting 2H-phase by thermal treatment 

(CE-MoS2/2H).18 As can be observed in Fig. S13, the hysteretic behavior is absent in this case, 

being the A peak at each temperature completely independent of the heating or cooling path. 
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Fig. 5. Photoluminescence measurements. (a) PL spectra of SCO/MoS2-1 at LS, red line (heating), and HS states, 
blue line (cooling), taken at 355 K. (b) PL shift as a function of temperature (red dots, heating and blue dots, 
cooling). (c) and (d) PL spectra at two different laser intensities (0.8 mW, green and 0.08 mW, purple) of 
SCO/MoS2-1 and reference sample CE-MoS2/2H, respectively (all the intensities have been normalized to the SiO2 
signal at 520 cm-1).  

 

Based on previous works,56 the redshift observed in the SCO/MoS2-1 hybrid inside the 

temperature interval where the hysteresis loop is observed (i.e. ~ 40 meV at 355 K) corresponds 

to a ~0.6% of tensile strain, whereas the observed decrease of the PL intensity can be attributed 

to the increase in indirect band gap behaviour of the MoS2 as a consequence of the strain. 

Moreover, since the spin transition of the nanoparticles can be triggered by tuning the intensity 

of an irradiating light, the possibility of using an optical source to drive the PL of the 
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SCO/MoS2-1 hybrid was evaluated.58 As shown in Fig. 5c, we measured the A peak of the 

hybrid at two green laser excitation intensities, 0.08 mW (purple curve), and 0.8 mW (green 

curve). For the lower intensity, the SCO-NPs in the heterostructure are in the LS state while for 

the higher one they are expected to undergo a spin transition to the HS state (Fig. S14). Under 

these conditions, SCO/MoS2-1 spectra show that the A peak redshifts of about 60 meV and 

decreases in intensity upon the laser power increase, as previously observed for thermal spin 

transition in Fig. 5a. Hence, these measurements prove that we can also optically induce a spin 

transition at room temperature by increasing the power of the excitation laser.   

Comparing these results with the PL modulation thermally achieved, the shift of the A peak is 

clearly higher when a light source is used. This suggests a cooperative effect between the 

heating of the nanoparticles, due to laser irradiation, and the strain induced by the spin transition. 

Interestingly, when using CE-MoS2/2H samples for blank measurements, we observe that under 

these laser intensities (0.8 and 0.08 mW),  the PL remains unaffected (Fig. 5d), suggesting that 

MoS2 is not directly heated by the laser in these experimental conditions, despite the fact that a 

thermal heating of the SCO-NPs is expected.58 These studies thus demonstrate the possibility 

of inducing strain in the MoS2 by light irradiation, opening the door to the fast optical 

modulation of 2D material properties. Moreover, as far as the spin state is concerned, it is 

possible to sense the spin in these SCO-NPs by following the change in the MoS2 luminescence. 

This result is quite remarkable: on the one hand, because this kind of optical detection cannot 

be achieved in SCO/graphene heterostructures,39 and, on the other, because we are providing a 

new tool for optical identification of spin states which is much more sensitive, simple and local 

than that obtained from transport measurements.  

Discussion 

We have reported here a two-step protocol in solution to chemically design smart molecular/2D 

heterostructures, formed by SCO-NPs covalently linked to semiconducting MoS2 flakes. In a 
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first step, CE-MoS2 flakes (metallic 1T-phase) have been covalently functionalized with an 

organic molecule (IPTS), which dramatically alters their electrical and optical properties and 

restores the semiconducting 2H-MoS2 phase.  Then, by means of the use of the attached 

molecules as grafting points, the SCO-NPs have been homogeneously anchored on these 

semiconducting MoS2 layers, without further modification of the electronic structure of the 2D 

system. The robust synthetic methodology developed has permitted to obtain a family of 

SCO/MoS2 covalently-linked heterostructures in which a control over the size of the 

nanoparticles and the degree of surface coverage has been achieved. This has led to a tunability 

in the resulting properties of the hybrids, which show a strong interplay between the spin 

transition and MoS2 layers properties, leading to smart heterostructures that respond to external 

stimuli.  

Regarding the 2D component, the change in volume of the SCO-NPs induced by the spin 

transition upon varying the temperature or by light irradiation, has generated a tensile strain on 

the MoS2 layers which has been reflected by sharp changes in their electrical and optical 

properties. Notice that the present approach is radically different from those previously reported 

in this area,25 in which the strain has been generated on pure MoS2 layers by different strategies 

like the direct application of pressure on a suspended layer, with an AFM tip;24 by using 

substrates that can transfer strain to the MoS2 layer by a mechanical bending (in a flexible 

substrate)23 or stretching (in an elastomeric substrate);27 or by applying voltage (in a 

piezoelectric substrate),59 or temperature (in a thermo-responsive substrate).60 In contrast to all 

these cases, here the strain is generated in a single material, based on a chemically-designed 

hybrid heterostructure, either by a temperature modulation or by light irradiation. Hence, the 

intrinsic properties of the SCO component have opened the possibility for the first time, of 

using light as external stimulus to induce strain in TMDCs layers. 

In conclusion, these innovative results demonstrate the fabrication of a multifunctional material 

where properties of the two components have been reciprocally boosted. Compared to pure 
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SCO-NPs, MoS2 confers to this hybrid luminescence and higher resilience and conductance. 

Concurrently, MoS2 gains new degrees of freedom thanks to SCO-NPs spin which can be 

addressed by temperature or light and read-out electrically or optically.  

All in all, a new smart heterostructure which mimics the bistability displayed by spin-crossover 

materials but ignores the typical drawbacks of these compounds have been synthesized. 

Interestingly, our approach could be easily expanded to other 2D materials offering a yet 

unexplored modulation of their properties and opening new frontiers for strain engineering, 

towards their application in multifunctional devices for beyond conventional electronics.  

Methods 
 
Materials. All chemical reagents were purchased and used without further purification: (3-

Iodopropyl)trimethoxysilane, 1-Iodooctadecane (Sigma-Aldrich), Tetraethyl orthosilicate 98% 

(Sigma-Aldrich), Triton X-100 (Sigma-Aldrich), ascorbic acid (Sigma-Aldrich), 1,2,4-triazole 

(Sigma-Aldrich), iron tetrafluoroborate hexahydrate (Sigma-Aldrich), n-hexanol (Sigma-

Aldrich), cyclohexane (Sigma-Aldrich, ethanol absolute (Sigma-Aldrich) ultra-pure water (18.2 

MΩ).  Molybdenum(IV) sulfide (Alfa Aesar), n-butyllithium solution 1.6 M in hexane (Sigma-

Aldrich), anhydrous hexane (Sigma-Aldrich). SiO2 (285 nm)/Si substrates were bought from 

NOVA Electronic Materials LLC, Flower Mound, TX. 

Chemical exfoliation MoS2 (CE-MoS2). The chemical exfoliation of MoS2 was carried out 

according to the experimental protocol reported by M. Morant-Giner et al.48 

Chemical exfoliated MoS2 in 2H-phase.  

CE-MoS2 flakes retrieved by centrifugation is spin coated on SiO2 (285 nm)/Si substrates and 

heated up at 200ºC for 2 h under an inert atmosphere (O2 < 0.1 ppm, H2O < 0.1 ppm), to induce 

the 1T-to-2H-phase transition 

70 x 50 nm [Fe(Htrz)(trz)(BF4)]@SiO2 Nanoparticles. The nanoparticles were synthetized 

following a strategy very close to that previously reported in by R. Torres-Cavanillas et al.44 

but with slight modifications. An aqueous solution of Fe(BF4)2·6H2O (0.5 mL, 1.25 M) and 
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tetraethyl orthosilicate (TEOS) (0.1 mL) is added to a freshly prepared mixture containing 

Triton X-100 (1.8 mL, ω = 9), n-hexanol (1.8 mL), cyclohexane (7.5 mL). A microemulsion of 

this mixture is obtained by stirring at room temperature during 15 minutes. Then, an aqueous 

solution of 1,2,4-1H-triazole (0.5 mL, 4.5 M) ligand containing the TEOS (0.1 mL) is added to 

a similarly prepared organic solution and stirred at room temperature for 15 min. In order to  

permit a micellar exchange, both microemulsions are combined and stirred for 2 h. The formed 

nanoparticles are isolated by precipitation upon addition of acetone and collected by 

centrifugation (12000 rpm, 10 min), followed by washing with ethanol (x4 times), to remove 

the excess of surfactant, and acetone (x1 time). Finally, the powdered samples are dried at 70oC 

for 2 h. 

40 x 40 nm [Fe(Htrz)(trz)(BF4)]@SiO2 NPs. The synthesis of the smallest NPs follows the 

same procedure as for the 70 nm but using 2 mL of Triton X.100. 

MoS2 IPTS functionalization (PTS-MoS2). Firstly, a 5 mM aqueous suspension of CE-MoS2 

flakes is prepared from the mother one. Independently, a solution of 3-

iodopropyl(trimethoxysilane) (IPTS), 0.1 M in ethanol is prepared. Later the IPTS solution is 

slowly added over the aqueous suspension in water:ethanol ratio, 2:1, under strong stirring, and 

let it react for 12h. Finally, the functionalized nanosheets are washed by several cycles of 

centrifugation (at 7000 rpm, 15 min) and dispersed in water:ethanol, 2:1 (x3 times), and in 

ethanol (x3 times). 

 SCO/MoS2. The functionalized PTS-MoS2 is suspended in ethanol under vigorous stirring in 

a concentration of 5 mM. Later, a colloidal suspension of 70 nm SCO-NPs, 10 mg·ml-1, is added 

and leave it to react for 48 h. Finally, several cycles of centrifugation and dispersion at different 

rates are carried out until the supernatant has no residues of SCO-NPs. Induced coupled plasma 

optical emission spectrometry (ICP-OES) of acid-digested samples, indicates a Fe:Mo ratio of 

2:1. (SCO/MoS2-1). 
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For the synthesis of the analogue hybrid with smaller size nanoparticles, at different Fe:Mo 

ratios, an equivalent procedure was followed but adding 40 nm SCO-NPs suspension in 10, 1, 

or 20 mg·ml-1 for: SCO/MoS2-2a, SCO/MoS2-2b and SCO/MoS2-2c, respectively. ICP-OES 

Fe:Mo ratios of 2:1 for SCO/MoS2-2a, 0.4:1 for SCO/MoS2-2b and 5:1 for SCO/MoS2-2c are 

measured. 
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