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SUMMARY 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a devastating respiratory and 
inflammatory illness caused by a new coronavirus that is rapidly spreading throughout the human 
population. Over the past 6 months, SARS-CoV-2, the virus responsible for COVID-19, has already 
infected over 11.6 million (25% located in United States) and killed more than 540K people around the 
world. As we face one of the most challenging times in our recent history, there is an urgent need to 
identify drug candidates that can attack SARS-CoV-2 on multiple fronts. We have therefore initiated a 
computational dynamics drug pipeline using molecular modeling, structure simulation, docking and 
machine learning models to predict the inhibitory activity of several million compounds against two 
essential SARS-CoV-2 viral proteins and their host protein interactors; S/Ace2, Tmprss2, Cathepsins L 
and K, and Mpro to prevent binding, membrane fusion and replication of the virus, respectively. All 
together we generated an ensemble of structural conformations that increase high quality docking 
outcomes to screen over >6 million compounds including all FDA-approved drugs, drugs under clinical 
trial (>3000) and an additional >30 million selected chemotypes from fragment libraries. Our results 
yielded an initial set of 350 high value compounds from both new and FDA-approved compounds that 
can now be tested experimentally in appropriate biological model systems. We anticipate that our 
results will initiate screening campaigns and accelerate the discovery of COVID-19 in vitro and in vivo 
studies. Our studies examine the biochemistry underling the inhibition of three crucial targets in 
pathway underlying the virus progression, which we are currently performing X-ray studies and live 
virus screening to determine. 

 
INTRODUCTION 
COVID-19 is a disease cause by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It 
was identified in Wuhan city, in the Hubei province of China in December 2019 (Chen et al., 2020; 
Huang et al., 2020; Zhu et al., 2020). The virus is spread between people via small droplets produce by 
talking, sneezing and coughing. The disease was declared a global pandemic by the World health 
organization (WHO) on March 11th, 2020. While a large proportion of the cases results in mild 
symptoms such as fever, cough, fatigues, loss of smell and taste, as well as shortness of breath, some 
cases progress into more acute respiratory symptoms such as pneumonia, multiple-organ failure, septic 
shock and blood clots. These more severe symptoms can lead to death and are likely to be precipitated 
by a cytokine storm after infection and multiplication of the virus in humans. Indeed, recent data 
indicate that the levels of IL-6 correlate with respiratory and organ failures (Gubernatorova et al., 2020). 
So far, the estimated death rate of SARS-CoV-2 is above 1.3%, which is more than 10 times higher 
than the death rate of seasonal influenza (Abdollahi et al., 2020). Older patients and patients who have 
serious underlying medical conditions such as hypertension, diabetes, and asthma are at higher risk for 
severe disease outcomes (Tian et al., 2020). A clear understanding of the genetics and molecular 
mechanisms controlling severe illness remains to be determined. 

 
SARS-CoV-2 is a positive-sense, single-stranded RNA betacoronavirus, closely related to SARS-CoV- 
1, which caused severe acute respiratory syndrome (SARS) in 2003, and Middle East respiratory 
syndrome coronavirus (MERS-CoV), which caused MERS in 2012. Positive-strand RNA viruses are a 
large fraction of known viruses including common pathogens such as rhinoviruses that cause common 
colds, as well as dengue virus, hepatitis C virus (HCV), West Nile virus. The first genome sequence of 
SARS-CoV-2 was released in early January on the open access virological website 
(http://virological.org/) (Zhou et al., 2020). Its genome is ~29.8 kb and possesses 14 open reading 
frames (ORFs), encoding 27 proteins (Wu et al., 2020a). The genome contains four structural proteins: 
spike (S) glycoprotein, envelope (E) protein, membrane (M) protein, and nucleocapsid (N) protein. The 
E and M proteins form the viral envelope, while the N protein binds to the virus’s RNA genome. The 
spike glycoprotein is a key surface protein that interacts with cell surface receptor, angiotensin- 
converting enzyme 2 (Ace2) mediating entrance of the virus into host cells (Zhu et al., 2018). In addition 
to its dependence on the binding of S to Ace2, cell entry also requires priming of S by the host serine 
protease, transmembrane serine protease 2 (Tmprss2). Tmprss2 proteolytically processes S, 
promoting membrane fusion, cell invasion and viral uptake (Heurich et al., 2014; Hoffmann et al., 2020). 
Blocking viral entry by targeting S/Ace2 interaction or Tmprss2-mediated priming may constitute an 



effective treatment strategy for COVID-19. The non-structural proteins, which include the main viral 
protease (nsp5 or Mpro) and RNA polymerase (nsp12), regulate virus replication and assembly. They 
are expressed as two long polypeptides, pp1a and pp1ab, which are proteolytically processed by Mpro. 
The key role of Mpro in viral replication makes it a good therapeutic target as well. A third group of 
proteins are described as accessory proteins. This group is the least understood, but its members are 
thought to counteract host innate immunity (Kim et al., 2020, Cell 181, 914–921) (Fig. 1A). 

 
There is currently no treatment or vaccine available to prevent or treat COVID-19 (Baden and Rubin, 
2020; Lurie et al., 2020) (https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19- 
update-daily-roundup-june-1-2020). While the FDA has granted emergency use authorization (EUA) for 
the 65-year-old antimalarial drug, hydroxychloroquine, COVID-19 treatment based on early results from 
clinical trial in China and France (Gao et al., 2020; Gautret et al., 2020a; Gautret et al., 2020b; Million et 
al., 2020), more recent results reported that hydroxychloroquine does not decrease viral replication, 
pneumonia or hospital mortality, and may in fact increase cardiac arrest in patients infected with 
COVID-19 (Mehra et al., 2020; Rosenberg et al., 2020). The accuracy of the statistical analyses in 
these studies raised serious concerns in the scientific community. More accurate data are needed to 
reach a conclusion about the effect of hydroxychloroquine in COVID-19 patients. In another recent 
study published in the New England Journal of Medicine, the antiviral remdesivir, an unapproved drug 
that was originally developed to fight Ebola, seemed to improve patients with severe breathing 
problems (Beigel et al., 2020) and has also recently been granted EUA by the FDA. Repurposing drugs 
that are designed to treat other diseases is one of the quickest ways to find therapeutics to control the 
current pandemic. Such drugs have already been tested for toxicity issues and can be granted EUA by 
the FDA to help doctors to treat COVID-19 patients. 

 
Another efficient way to attack the virus is to use drug cocktails to target multiple enzymes/pathways 
used by the virus. Combination therapy has the advantage of being less likely to select for treatment- 
resistant viral mutants. Such a strategy has been successfully used to treat hepatitis C virus (HCV) and 
human-immunodeficiency virus (HIV) infections. In the case of HCV, the treatment, Enpclusa, combines 
sofosbuvir, which inhibits the viral RNA-dependent RNA polymerase (NS5B), and velpatasvir, a 
defective substrate that inhibits NS5A. Antiretroviral therapy (ART) against HIV combines drugs from 
different drug classes to target disparate aspects of the HIV replication cycle. These drug classes 
include nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, 
protease inhibitors, fusion inhibitors, CCR5 antagonists, post-attachment inhibitors, and integrase 
inhibitors. One example from HIV-AIDS literature is the randomized comparison of 4 groups of patients 
comparing monotherapy to combination therapies: zidovudine (ZDV) monotherapy; ZDV zidovudine 
and didanosine; ZDV plus zalcitabine; or didanosine monotherapy. This randomized trial showed 
positive results when ZDT was combined with didanosine or zalcitabine, and for didanosine compared 
to ZDT monotherapy in raising CD4 counts greater than 50% (Hammer et al., 1996). Combination 
therapy has become standard of care initial treatment in other infectious diseases such as 
Mycobacterium tuberculosis and failure to cure with monotherapy and requires multidrug therapy (MDT) 
(Collaborative Group for the Meta-Analysis of Individual Patient Data in et al., 2018). Similar MDT is 
also found effective in hepatitis C virus infection using glecaprevir and pibrentasivr combination 
therapies which lead to sustained virological response rates as far out as 12 weeks' post-treatment 
(Wang et al., 2019). 

 
We propose an effective combination therapy for COVID-19 could target the SARS-CoV-2 replication 
cycle at multiple levels to synergistically inhibit viral spread and dissemination. Using a computational 
pipeline that aimed to expeditiously identify lead compounds against COVID-19, we combined 
compound library preparation, molecular modeling, and structure simulations to generate an ensemble 
of conformations and increase high quality docking outcomes against two essential SARS-CoV-2 viral 
proteins and their host protein interactions; S/Ace2, Tmprss2, Cathepsin L and K, and Mpro that are 



known to control both viral binding, entry and virus replication (Fig. 1A). Our in silico approach (Fig. 
1B) leads into experimental virus screening and structural characterization of binding interactions by X-
ray crystallography, and compound safety profiling. Virtual screening (VS) is a rational driven controller 
for identification of new hits from compound libraries (Willett, 2006) using either ligand- based (LBvs) or 
structure-based (SBvs) virtual screening (Dror et al., 2004). LBvs tactics use structural and biological 
data of known active compounds to select favorable candidates with biological activity from 
experiments (Jahn et al., 2009; Maldonado et al., 2006). SBvs approaches, on the other hand, examine 
quantitative structure-activity relationships (QSAR), clustering, pharmacophore and 3D shape matching 
(Villoutreix et al., 2007). The utility of VS is evident in the growth of our knowledge base of new 
compounds and existing drugs as well as the expansion of our structural databases. SBvs is generally 
the preferred approach when access to the target 3D-information derived from NMR, X-ray 
crystallography or homology models (Jahn et al., 2009; Maldonado et al., 2006) is possible. Molecular 
docking (docking) is the most common SBvs approach used today (Bottegoni et al., 2009; Corbeil et al., 
2012; Fernandez-Recio et al., 2005; Friesner et al., 2006; McGann, 2012; Morris et al., 2009) and 
searches for the ideal position and orientation (called "pose") of the small molecule within a target's 
binding site, which gives a score for the pose. When including knowledge of experimentally known 
compounds ("actives") from a 3D target, LBvs and SBvs can be combined to increase likelihood of 
obtaining new actives from searches (Kruger and Evers, 2010). 

 
Hit identification in VS also requires careful selection of the methods used based on the goal of the 
project (e.g. compound databases and libraries can be either proprietary, commercial or public) 
(Bender, 2010). ZINC is one such large public database often used in VS (Irwin and Shoichet, 2005), 
which contains millions of compounds. By contrast, other libraries have structure-activity relationships 
(SAR) databases (Scior et al., 2007) that integrate information about compound interactions with their 
known targets. DrugBank, Chem-Space are other attractive sources of compounds for drug 
repurposing (or repositioning) (Ashburn and Thor, 2004; Duenas-Gonzalez et al., 2008; O'Connor and 
Roth, 2005) (Wishart et al., 2008), and maintain drug diversity that is useful for scaffold development 
(Gozalbes et al., 2008; Schreiber, 2000). 

 
Advances in computing power have increased utility of in silico screening capabilities and balanced the 
need for accuracy with virtual high-throughput screening approximations and assumptions (Anthony, 
2009; Lee et al., 2008; McGaughey et al., 2007; Plewczynski et al., 2009), while recent techniques 
have improved accuracy without sacrificing CPU time (Caulfield and Devkota, 2012; Caulfield et al., 
2011; Jiang et al., 2014; MacKerell et al., 1998; Phillips et al., 2005) (Fig. 1B). Further innovations in 
docking methods have improved the exactness of empirical docking equations (Corbeil et al., 2012; 
Fernandez-Recio et al., 2005; Friesner et al., 2006; Kalid et al., 2012; Kruger and Evers, 2010; 
McGann, 2012). Accuracy is improved by incorporating molecular flexibility with simulations (Caulfield, 
2012; Caulfield et al., 2019; Caulfield and Medina-Franco, 2011; Caulfield et al., 2011; Caulfield et al., 
2014; Kayode et al., 2016), thus capturing conformational information on structural changes that 
directly impact compound docking results. 

 
Here, we present in silico screening of both the approved FDA compound library and >30 million 
compounds representing new chemical entities (NCEs) (Clecildo Barreto Bezerra et al., 2018; Ekins et 
al., 2014; Janes et al., 2018; Pillaiyar et al., 2020). Other libraries consisting of approved drugs, natural 
products, and a subset of the ZINC data base were also included based on relationship with SARS- 
CoV-2 virus (Corsello et al., 2017; Lagarde et al., 2018; Riva et al., 2020)(Irwin and Shoichet, 2005). 
Our findings include >350 compounds, including both NCEs (310) and FDA repurposing compounds 
(40). Our approach combines VS and careful library selection with advanced docking techniques to 
efficiently search the behemoth chemical landscape of possible organic compounds (Bohacek et al., 
1996) and identify high value hits toward key SARS-CoV-2 targets. 



RESULTS 
To target the COVID19 problem on multiple fronts (e.g. Ace2:S protein, Tmprss2, Mpro, and Cathepsin L 
and K), as well as improve our screening accuracy using our selected repurposing libraries and new 
chemical entity libraries (ZINC database), we implemented a novel method that integrates protein 
flexibility/shape, adaptive biasing algorithms, machine learning from drug data, and final Z-score matrix 
weighting to our drug modeling. We matched all FDA compounds with our realistic (X-ray derived) 
protein structures over a dynamic range of protein conformations with accelerated dynamics using our 
algorithms, such as Maxwell's demon molecular dynamics (MdMD); this approach combines docking 
with simulations for exploration of both ligand and protein flexibility (Caulfield, 2012; Caulfield et al., 
2019; Caulfield and Devkota, 2012; Caulfield and Medina-Franco, 2011; Caulfield et al., 2014; Kayode 
et al., 2016; von Roemeling et al., 2018). We then refined the drug-target interface our specific leader- 
like hit compounds using the quantum mechanics (QM)-based scoring within our MdMD matrix 
(Caulfield, 2012) to make our go/no-go assessment, which is particularly useful with NCEs and de novo 
compound design (DCDs). The protocol for library, structural modeling, dynamics, refinement, and hit 
identification as part of a pipeline is given (Fig. 1B). Our screened compounds will be examined with 
organ-on-chip (Yu Shrike Zhang Lab, Harvard Medical School) testing these compounds in receptors of 
Liver, Kidney, Lung, and GI systems, which follows after the live virus screenings at University of California 
Center for Infectious Disease and Vector Research. 

 
I. Modeling and Simulations for Improved Docking Outcome 
To improve our docking outcome, we constructed x-ray structure-based models of Ace2 bound to S- 
protein, Mpro, and Tmprss2 in our molecular dynamics simulations (MDS) and virtual screening (Fig. 
1B,S1). As S-protein interfaces with Ace2 at a distinct region from the active site (Fig. S1A-D), 
inhibition of the binding site by ligands may disrupt the Ace2/S-protein interaction. Canonical inhibitors 
of Ace2 bind at the active site where angiotensin interacts, whereas drugs directed at the structural 
region for S-protein binding are not overlapping with the binding site. The modulation of Ace2/S-protein 
interaction by canonical Ace2 inhibitors is likely allosteric and suboptimal. Therefore, directly targeting 
the interface of the interaction should increase efficacy of the approach and block COVID viral binding, 
precluding entry (Fig. S1). Additional investigation into the glycosylation sites of the S-protein 
demonstrated that the Ace2 binding site is mostly unaffected by these additions (Fig. S2). 

 
A. S-protein:Ace2 interaction (protein-protein inhibitor, PPI) requires dynamics to reveal binding 
site 
To get the optimal interface for drug screening, we used our grid searching algorithms, as well as site 
mapping and protein-protein docking, to examine the protein-protein interactions surface using MDS 
(Fig. 2-3,S1) (Bhachoo and Beuming, 2017; Caulfield and Devkota, 2012; Caulfield et al., 2011; 
Caulfield and Harvey, 2007; Fernandez-Recio et al., 2005; Kozakov et al., 2006). The protein-protein 
inhibitor (PPI) interaction complex did not identify any immediate binding site on the surface of the PPI 
interfaces. Nevertheless, a small pore around one single beta-sheet in the center of the PPI interaction 
area could be exploited as a weak point that may perturb the interface equilibrium. Using UniProt, 
which contains information about a number of confirmed mutations, we determined the relative 
potencies of PPI binding residues, identifying those that would likely affect the integrity of the complex 
(Fig. 2). Residues K353 and Y41, which interact with D155 at the center of the PPI, are likely stabilizing 
its surface, potentially forming a useful “hot spot” for targeted druggability (Fig. 2-3,S2). 

 
To check whether this is true and to understand how Ace2:S-protein cooperation functions, we 
performed two MD simulations, one with and one without the mutation of Y41A. This mutation causes 
strict inability to form the S-protein:Ace2 complex. Analysis of the trajectory of the wild-type protein, 
which possessed an intact complex, revealed the three most stable conformations of the “hot spot” 
region with expanded pores inside the triangle of residues K353, D155, Y41. Since it is impossible to 
determine which of these three conformations is the most stable, we ran three high-throughput 
screenings based on the donor-acceptor atoms and hydrophobic areas of the region. We then 
performed three MD simulations with top pose ligands. As demonstrated in Figure 3K, ligands failed 



binding within 10 ns, while docked ligands became leaders, as determined by energetic stability, during 
MD and interaction energy values (electrostatic – red, Van der Waals - blue) (Fig. 3J/L). 

 
B. Identification of predicted inhibitors to interrupt S-protein:Ace2 PPI via docking 
To identify inhibitors of the S-protein:Ace2 interaction via docking, we used the best scoring compounds 
obtained after combination of molecular docking and molecular dynamics simulations, which feeds into 
the pipeline for constraint-based screening. The high-throughput screening (HTS) of a PPI library did 
not produce any results, since the PPI binding sites were weakly identified shallow regions (Fig. 2,4A- 
D,S1). Compounds that made good insertion into the sites situated between Ace2 and S-protein were 
able to perturb the association of S-protein with Ace2 via steric hindrance of S-protein association (Fig. 
3). From the MDS, we detected compounds that decreased energy of stability between the Ace2:S- 
protein complex, which is desired in an inhibitor of protein-protein interaction. As a whole, this approach 
identified a deep and narrow binding site to disturb the S-protein interaction with Ace2 (Fig. 3,4A-D). 

 
C. Tmprss2 and Mpro modeling requires dynamics to reveal optimal inhibitor binding 
To optimize the binding site of our inhibitors, we constructed a full-length (zymogen) model of Tmprss2 
(epitheliasinogen), as well as a mature version of the protease (epitheliasin), as described in our 
method section (Fig. 4E-G). The mature protease model was used for MDS studies to generate a 
reference dynamical profile that can be used to assist in silico screening of Tmprss2 inhibitors. A 
control experiment was also completed with the uncleaved (non-catalytic) form of Tmprss2 to 
demonstrate the pocket's instability and poor ligand binding capacity (Fig. S3) (Ko et al., 2015; Lucas et 
al., 2014; Wilson et al., 2005). A full-length model of monomeric Mpro was also constructed, as well as a 
homodimer (Fig. 4H-K,S1). The structure derived from PDB code 6Y2F with its ligand was used for a 
consensus virtual screen (Zhang et al., 2020). In addition, we used the dimer to generate a reference 
dynamical profile to assist with in silico screening and study its interdomain behavior. 

 
D. Tmprss2 inhibitors identified 
We acquired the dimer protein sequence from the UniProt database. BLAST search showed the 
highest identification values against factor XI, prothrombin, kallikrein proteases (~41-42%). However, 
we focused on ligands that could be active against active form of Tmprss2 protein. Thus, we found the 
ligand: (2s)-1-[(2r)-2-(Benzylsulfonylamino)-5-Guanidino-Pentanoyl]-N-[(4- 
Carbamimidoylphenyl)methyl]pyrrolidine-2-Carboxamide, contained within the ChemblDB repository 
(CHEMBL1229259) and active against Tmprss2, prothrombin, and Factor XI. Likewise, another docked 
model was recovered with macrocyclic ligand (CHEMBL3699198), called: Ethyl14-[[(E)-3-[5-chloro-2- 
(tetrazol-1-yl)phenyl]prop-2-enoyl]amino]-5-(methoxycarbonylamino)-17-oxo-8,16 
diazatricyclo[13.3.1.02,7]nonadeca-1(18),2(7),3,5,15(19)-pentaene-9-carboxylate. We launched several 
molecular dynamics simulations (up to 75 ns of duration) to understand the interaction with the target 
protein-binding site. Figure S3 shows the initial and stable/final states of our various models (Fig. 4E- 
G). The MD analysis provided useful results for selecting the appropriate model. After 15 ns MD, the 
putative binding site collapsed (Fig. S3,4E-G). Although the active form of thrombin was used for 
Tmprss2 modeling, as a negative control we also examined the region with prothrombin-based binding 
site for completeness of the docking study (Fig. S3). The overlay of the average homology model 
structure from MD and structure 3F68 (PDB code) was used as a template to compare protein-ligand 
interaction map and assign docking constraints (Baum et al., 2009). Two optimal inhibitors for Tmprss2 
were selected for demonstration purpose in Figure 5. We also modeled Cathepsins L and K for 
preliminary work, since these can be implicated in late-endosomal entry of the virus (Fig. S4). 

 
E. Mpro inhibitors identified 
For the viral main proteinase, Mpro, a key enzyme for coronavirus replication (SARS-CoV-2), and a 
potential target for anti-SARS drug development, several peptidomimetics synthetized in early 2012 
against SARS-CoV-1 proteases were identified as selective. There is a high degree of sequence 



identity between the SARS-CoV-1 and SARS-CoV-2 Mpro. This means that SARS-focused ligands 
could form similar interaction map with Mpro protein and offers good launching points for 3D- 
QSAR/Machine Learning-drive based drug design for future iterations. To perform the virtual screening, 
protein structure was taken from the PDB code 7BQY complex and significant attention was paid to the 
interaction between the crystallized ligand from the complex and protein-binding site (Jin et al., 2020) 
(Fig. 6). As the binding site is quite large (Fig. 6A) we used a set of additional crystal structures (PDB 
code 6Y2F and fragment-like compounds from https://www.diamond.ac.uk/) to narrow the source of 
possible conformations. The binding of the compounds inserted into this region demonstrated a very 
canonic and recurring interacting motif, represented with α-Keto amide group flanked with aliphatic or 
saturated rings. We then performed molecular dynamics of 75 ns for the ligand-free dimer structure of 
the Mpro to evaluate and “catch” the most flexible elements of the binding site. Our simulation revealed 
that the extended binding pocket was not very stable, unlike its individual sub-pocket, which contains 
active cysteine (C145) residue (Fig. 6B,6C). We began our molecular docking after assigning several 
combinations of constraints that should define specific interactions with the protein-binding site. We 
performed several high-throughput screening procedures using the same set of features in different 
combinations of constraints by partial matching algorithm (Fig. 6D-E). We then ranged docking scores 
and compared obtained conformations inside the binding site with the co-crystalized ligands from 
7BQY, 6Y2F structures to select the most potent compounds. 

 
II. Analysis of Identified Compounds 
By disrupting the SARS-CoV-2 viral process in three different critical routes: Binding, Entry, and 
Replication with our virtual screening approaches against dynamic structures, we were able to identify 
350 compounds (Dataset S1) and compile data reflecting physiochemical and chemoinformatic 
properties. An exemplar top hit from each target is summarized for docking score in Table 1. To 
classify the compounds and their chemical space, we completed various regression, K-means analyses 
and fingerprint measurements, and provide further details about their structures and properties, 
including commonly evaluated traits: MW, HBA, HBD, docking score, Rule of Three (Jorgensen), Rule 
of Five (Lipinksi), logPo/w, and logS (Dataset S2). We focused on new compound searches. The MW for 
these initial screening compounds ranges from large fragment (~250 Da) to mature drug sized 
molecules (~500 Da) with only 10 of the 310 top scoring compounds being over 500 Da in size and the 
smallest fragment-based compound measured 178 Da. Overall the docking scores were very good with 
median around -7 kcal/mol using the Glide XP calculations. We also generated a list of most commonly 
related drugs and discuss some of our best hits to known and clinical trial drugs (Dataset S3). The 
general process for pruning the >30 million total chemical fragments and compounds from 
commercially available compounds for the initial round of virtual screening is described (Fig. 1B), which 
reduces the primary large set to 3 million per conformation of target. 

 
Table 1. Top 40 FDA predicted compounds for Ace2:S protein, MPro, and Tmprss2. 
 

Drug 
 

Synonyms 
Predicted 

Protein 
In Silico 
Score 

 
Target 

 
CAS 

Metaproterenol 
sulfate 

Orciprenaline 
Sulfate 

 
Ace2 

 
-8.05 

 
Others 

5874-97- 
5 

 
 
 
 
 
Isoprenaline HCl 

Isuprel, 
Isadrine, 
Euspiran, 
Proternol, NSC 
37745, NSC 
89747 

 
 
 
 
 

Ace2 

 
 
 
 
 

-7.44 

 
 
 
 

Adrenergic 
Receptor 

 
 
 
 
 

51-30-9 
 
Epinephrine HCl 

 
N/A 

 
Ace2 

 
-7.12 

Adrenergic 
Receptor 

 
55-31-2 



 
Levosulpiride 

 
N/A 

 
Ace2 

 
-6.87 

Dopamine 
Receptor 

23672- 
07-3 

Metaraminol 
bitartrate 

Metaradrine 
Bitartrate 

 
Ace2 

 
-6.84 

 
Others 

33402- 
03-8 

 
Valganciclovir HCl 

 
N/A 

 
Ace2 

 
-6.58 

Antifection 
(Anti-infection) 

175865- 
59-5 

 
 
 
 
 
Isoprenaline HCl 

Isuprel, 
Isadrine, 
Euspiran, 
Proternol, NSC 
37745, NSC 
89747 

 
 
 
 
 

Ace2 

 
 
 
 
 

-6.45 

 
 
 
 

Adrenergic 
Receptor 

 
 
 
 
 
51-30-9 

 
 
S4817 Atenolol 

Tenormin, 
Normiten, 
Blokium 

 
 

Ace2 

 
 

-6.35 

 
β1 receptor, β2 
receptor 

 
29122- 
68-7 

S3783 
Echinacoside 

 
N/A 

 
Ace2 

 
-6.09 

 
Others 

82854- 
37-3 

 
Propafenone 

Rythmol SR, 
Rytmonorm 

 
Ace2 

 
-6.04 

Sodium 
Channel 

34183- 
22-7 

 
Amikacin sulfate 

 
BB-K8 

 
Ace2 

 
-5.98 

 
Antifection 

39831- 
55-5 

 
 
Pro-chlorperazine 
dimaleate salt 

Prochlorperazin, 
Compazine, 
Capazine, 
Stemetil 

 
 
 

Ace2 

 
 
 

-5.79 

 
 

Dopamine 
Receptor 

 
 
 
30718 

Isoetharine 
mesylate 

 
N/A 

 
Ace2 

 
-5.47 

 
Others 

7279-75- 
6 

 
Levosulpiride 

 
N/A 

 
Ace2 

 
-6.87 

Dopamine 
Receptor 

23672- 
07-3 

 
S5023 Nadolol 

Corgard, Solgol, 
Anabet 

 
Ace2 

 
-5.16 

Androgen 
Receptor 

42200- 
33-9 

 
Benserazide HCl 

 
Ro-4-4602 

 
Ace2 

 
-5.93 

Dopamine 
Receptor 

14919- 
77-8 

 
S3694 
Glucosamine (HCl) 

2-Amino-2- 
deoxy-glucose 
HCl 

 
 

Ace2 

 
 

-5.57 

 
 
Others 

 
 
66-84-2 

 
S4701 2-Deoxy-D- 
glucose 

 
2-deoxyglucose, 
NSC 15193 

 
 

Ace2 

 
 

-5.18 

 
 
Others 

 
 
154-17-6 

 
 
Inulin 

 
 
N/A 

 
 

Ace2 

 
 

-5.18 

 
 
Others 

 
9005-80- 
5 

 
 
 
Cephalexin 

Alcephin, 
Cefablan, 
Keflex, Cefadin, 
Tepaxin 

 
 
 

Ace2 

 
 
 

-5.11 

 
 
 
Antifection 

 
 
15686- 
71-2 

 
 
S4722 (+)- 
Catechin 

 
Cianidanol, 
Catechinic acid, 
Catechuic acid 

 
 

MPro 

 
 
 

-6.73 

 
 
 
Others 

 
 
 
154-23-4 



 
 
S4723 (-) 
Epicatechin 

 
 
L-Epicatechin, (- 
)-Epicatechol 

MPro  
 
 

-6.32 

 
 
 
Others 

 
 
 
490-46-0 

S5105 
Proanthocyanidins 

condensed 
tannins 

MPro  
-6.19 

 
Others 

20347- 
71-1 

 
Carbenicillin 
disodium 

 
 
N/A 

MPro  
 

-5.78 

 
 
Antifection 

 
4800-94- 
6 

AG-120 
(Ivosidenib) 

 
N/A 

MPro  
-5.52 

 
Dehydrogenase 

1448347- 
49-6 

Atorvastatin 
calcium 

 
N/A 

MPro  
-5.39 

HMG-CoA 
Reductase 

134523- 
03-8 

 
Bezafibrate 

 
N/A 

MPro  
-4.93 

 
PPAR 

41859- 
67-0 

 
PF299804 

 
N/A 

MPro  
-4.34 

 
EGFR 

1110813- 
31-4 

 
Bumetanide 

 
Bumex 

 
Tmprss2 

 
-6.5 

 
Others 

28395- 
03-1 

 
Aloin 

 
Barbaloin 

 
Tmprss2 

 
-6.45 

 
Tyrosinase 

1415-73- 
2 

 
 
Salbutamol sulfate 

Ventolin, 
Asthalin, 
Asthavent 

 
 

Tmprss2 

 
 

-6.1 

 
Adrenergic 
Receptor 

 
51022- 
70-9 

 
 
S4953 Usnic acid 

 
 
Usniacin 

 
 

Tmprss2 

 
 

-5.8 

 
 
Others 

 
 
125-46-2 

 
Avanafil 

 
N/A 

 
Tmprss2 

 
-5.62 

 
PDE 

330784- 
47-9 

S3612 Rosmarinic 
acid 

 
Rosemary acid 

 
Tmprss2 

 
-5.6 

 
IKK-β 

20283- 
92-5 

S5105 Proantho- 
cyanidins 

Condensed 
tannins 

 
Tmprss2 

 
-5.51 

 
Others 

20347- 
71-1 

 
Ractopamine HCl 

 
N/A 

 
Tmprss2 

 
-5.22 

 
Others 

90274- 
24-1 

Neohesperidin 
dihydrochalcone 

Neohesperidin 
dhc 

 
Tmprss2 

 
-5.2 

 
Others 

20702- 
77-6 

 
Cidofovir 

 
Vistide 

 
Tmprss2 

 
-5.18 

 
Others 

113852- 
37-2 

 
Zidovudine 

 
azidothymidine 

 
Tmprss2 

 
-5.02 

Reverse 
Transcriptase 

30516- 
87-1 

 

As an example, when examining some prototype compounds from our selected dataset of >300 NCEs 
screened from >10 million total compounds, we find the predicted interactions between drug and 
protein (Table S2) have some common binding modalities. When looking at the dynamical data for the 
drugs binding to the protein-protein site on Ace2, we find the RMSD, RMSF, and H-bond occupancy 
evidence strong binding capability, as calculated from three separate simulations of Ace2 with different 
ligands, referred to as 300, 392, and 488 (Fig. 4,S1). These observations can be applied to generate 
constraints for additional virtual screening to improve the performance at higher throughput. Based on 



these results, ligand 392 reduced the overall RMSD and per residue RMSF, while maintaining strong 
hydrogen bonds, as demonstrated by its greater occupancy during the simulation (Table S1). This 
information, particularly H-bond occupancy and modulation of interface residue RMSFs, can be used in 
conjunction with docking and other data to profile the compounds more thoroughly (Fig. 4). In some 
cases, where constraints were utilized, the docking score underrepresents the compound and testing is 
needed to get important single-point data to clarify actives from non-actives, as well as determine the 
real IC50s for the selected active compounds. We will enrich our dataset with the top compounds for 
future rounds of parallel chemical screening and eventual de novo chemical design for novel chemical 
entities. Current results of our approach are presented on all three targets (Ace2, Tmprss2, MPro). 

 
III. Screening FDA-approved drugs for repurposing to minimize delay towards clinical benefit 
For each of our targets, we screened for hits from a library of FDA-approved compounds alongside the 
more extensive library of NCEs. Our final result across all three targets identified a total of 350 specific 
compounds, with 167 against Ace2, 40 against Tmprss2, and 103 against Mpro. Among these are FDA- 
approved drugs that could be repurposed: 21 against Ace2, 11 against Tmprss2, and 8 against Mpro 
(Supplemental Dataset TableS1_topNCE-FDA-hits.xlsx). The NCEs represent new classes of 
compounds for screening in live virus (host cells) and animal models/organ-on-a-chip. 

 
A. Ace2 Repurposing Drugs (FDA set) 
Isoprenaline hydrochloride (isoprotenerol) is an adrenoreceptor agonist that can be repurposed as a 
vasopressor to augment cardiovascular function with a beta-receptor side benefit of bronchodilation to 
improve breathing function. Metaraminol bitartrate, a stereoisomer of meta-hydroxynorephedrine, is a 
potent sympathomimetic amine to raise blood pressure. Atenolol and nadolol are beta-receptor blocking 
agents used in chronic hypertension, a comorbid risk factor in COVID-19 patients. Propafenone is an 
anti-arrhythmic agent approved for patients with life-threatening ventricular tachycardia. Levosulpiride is 
an atypical antipsychotic medication with prokinetic function that can be used in patients with agitated 
delirium, and gut immotility. Valganciclovir hydrochloride is an antiviral agent used for cytomegalovirus 
(CMV), varicella zoster virus (VZV), and preventative medication in HIV patients (Wu et al., 2020b). 
Recent data shows COVID-19 deplete CD8 T helper cells similar to HIV (Zheng et al., 2020). Amikacin 
sulfate and cephalexin are antibiotic anti-bacterial drugs that can treat bacterial super-infection. 
Prochlorperazine dimaleate is a phenothiazine derivative prescribed in medicine for nausea. 
Isoetharine mesylate is a selective adrenergic beta-2 agonist and fast-acting aerosolized bronchodilator 
for COVID-19 respiratory distress. Benserazide hydrochloride is an aromatic L-amino acid 
decarboxylase (DOPA decarboxylase inhibitor) used with levodopa for the treatment of Parkinsonism. 
Glucosamine hydrochloride is constituent found in cartilage and used for osteoarthritis joint pains. 
S4701 or 2-Deoxy-D- glucose (2D-DG) compound can induce ketogenic state, a powerful pathway 
involved in reducing systemic inflammation. Inulin is a natural prebiotic agent that enhances GI function 
and digestion by increasing prebiotic GI homeostasis critical to stabilize downstream anti-inflammatory 
effects and prevent overgrowth of harmful bacteria. Metaproterenol is a bronchodilator (beta-2 receptor 
agonist) that is commonly used to treat a variety of respiratory disorders including asthma, COPD, 
bronchitis and wheezing associated with viral pneumonias in clinical practice. The novelty of this drug is 
that is aerosolized and can be given as a breathing treatment and similar reach the lungs, which have a 
tremendous surface area and enter the blood rapidly. By inhalation this drug acts rapidly and potentially 
with or in combination with other aerosolized drugs or oral or IV combination drugs. Its inhalational 
route of delivery also can reach alveolar type II cells which express Ace2 for dual synergism. 
Metaraminol bitartrate, a stereoisomer of meta-hydroxynorephedrine, is a potent sympathomimetic 
amine. This drug is used in patients with hypotension or low blood pressure. COVID-19 hospitalized 
patients in the intensive care unit (ICU) setting often need vasopressor agents to raise blood pressure 
in a condition called shock (dangerously low blood pressure) from COVID-19 disease or sepsis. 
Therefore, metaraminol has dual purpose of antiviral function at Ace2 docking site /entry as well as 
helping with systemic blood pressure in those acutely ill COVID-19 patients. This drug has immediate 
repurposing use in this patient population. 



B. Mpro Repurposing Drugs (FDA set) 
Atorvastatin is a statin drug with anti-inflammatory, immunomodulatory (Diamantis et al., 2017) and 
endothelial benefits (Ackermann et al., 2020; Varga et al., 2020). Carbenicillin disodium is a penicillin 
derivative antibacterial antimicrobial agent. Catechins are derived from plants with many beneficial 
properties in human health including anticancer, anti-obesity, antidiabetic, anti-cardiovascular, anti- 
infectious, hepatoprotective, and neuroprotective effects (Isemura, 2019). These substances fall 
outside FDA purview since supplements and generally have a wide safety margin that will be tested on 
the multidrug platform. Epicatechine S5105 is a naturally occurring flavonoid found in chocolate with 
anti-sarcopenic effects on skeletal muscle (Gutierrez-Salmean et al., 2014). Ivosidenib is an 
experimental drug for treatment of several forms of cancer. Bezafibrate is a fibrate lipid-lowering drug, 
which creates a favorable anti-inflammatory ratio against cardiovascular diseases. PF299804 or 
dacomitinib is an EGFR inhibitor used in cancer therapeutics. Metaproterenol is a bronchodilator (beta- 
2 receptor agonist) that is commonly used to treat a variety of respiratory disorders with viral 
pneumonias in clinical practice. Carbenicillin disodium is a penicillin derivative antibacterial 
antimicrobial agent that as mentioned above can be used in conjunction with other anti-SARS-Cov-2 
agents to shut down antiviral effects and used in combination with those COVID-19 patients with 
secondary super-infection with bacterial infection of lung, blood, or skin. 

 
C. Tmprss2 Repurposing Drugs (FDA set) 
Bumetanide is a loop-diuretic used to remove extra fluid in the body (edema) such as pulmonary 
edema. Aloin is an anthraquinone glycoside found naturally in aloe vera plants, a natural cathartic, and 
decreases 16s rRNA sequencing of dysbiosis-producing butyrate producing bacterial species via an 
emodin breakdown product (Gokulan et al., 2019). Emodin blocks Ace2 and viral docking (Ho et al., 
2007). Salbutamol sulfate (albuterol) is a bronchodilator used in various breathing disorders. S4953 
usnic acid is a naturally occurring dibenzofuran derivative found in lichen plant species, in some 
kombucha teas, with adrenergic function to raise blood pressure and potential bronchodilator. Usnic 
acid is an active ingredient in some and a preservative in others and has a wide array of antimicrobial 
action against human and plant pathogens with antiviral, antiprotozoal, antiproliferative, anti- 
inflammatory, and analgesic activity (Ingolfsdottir, 2002). Avanafil is a class of medications called 
phosphodiesterase (PDE) inhibitors, which are pulmonary artery and circulation dilators. S3612 
Rosmarinic acid is a naturally occurring compound found in plants (rosemary and sage), which has 
broad range of antimicrobial activity including antiviral activity including HIV (Shekarchi et al., 2012). 
Ractopamine is a beta-agonist function used for bronchodilatation. Neohesperidin dihydrochalcone 
(NHDC) is a naturally derived plant sweetener (bitter orange) with anti-Tmprss2 effects. Cidofovir and 
zidovudine (ZDV) are both antiviral drugs used in HIV patients. 

 
 

DISCUSSION 
 

Clinical Unmet Need for COVID-19 Acute Therapeutics 
There is a critical unmet patient need for therapeutics to treat the acute phase of COVID-19 disease 
now and for the future. Efforts to create and trial a vaccine are underway, but 11.6 million patients are 
confirmed infected globally (>540K deaths) with 25% infected within the United States and we are just 
at the midpoint of 2020. Therefore, there is an urgent need to rapidly speed drug discovery from the 
bench to the bedside. In order to accelerate drug discovery, translation and human application, a 
design funnel using high-powered artificial intelligence is needed to screen millions of compounds 
against macromolecular mechanistic targets against the virus. At the back end of this funnel 40 drug 
candidates emerged, many of which may represent repurposing candidates for use in humans due to 
known safety and tolerability profiles. However, the approach with the highest probability of overall 
clinical therapeutic success may be not a single drug therapy for this viral RNA disease but rather a 



multi-pronged drug approach gleaned from decades of HIV-AIDS epidemic research. A multidrug 
approach for HIV has improved survival, markedly reduced viral loads, and vastly improved 
management of the disease by preventing AIDS end-stage fatal complications. We therefore suggest 
that a multifaceted drug approach for SARS-Cov-2 may prove superior by attacking 3 viral entry and 
replication cycle sites simultaneously: Ace2 receptor docking site and entry, Tmprss2 endosomal 
packaging, and MPro viral replication. Multiple drug targets for each of the 3 sites also allow 
permutations and optimization for combinatorial success. 

 
Comparison of FDA compounds identified from other recent screening 
A recent study that screened commercially available >10,000 clinical-staged and FDA-approved small 
molecules against SARS-CoV-2 in a cell-based assay (Riva et al., 2020) identified interesting 
compounds for alternative targets that complement our results. These FDA approved compounds 
included MDL-28170, a selective Cathepsin B inhibitor; VBY-825, a non-specific Cathepsin B, L, S, V 
inhibitor; Apilimod, an inhibitor of production of the interleukins IL-12 and IL-23; Z-LVG-CHN2, a tri- 
peptide derivative inhibitor for cysteine proteinases; ONO 5334, a selective Cathepsin K inhibitor; and 
SL-11128, a polyamine analogs designed against E. cuniculi, a antimicrobial agents used as an 
adjuvant treatment for opportunistic AIDS-associated infections. Overall these compounds are 
Cathepsin-centric or antibiotic in nature, with little to no effect on our intended targets (Tmprss2, Ace2, 
MPro). Additional top hits identified by Riva et al. include: AMG-2674, an AMGEN compound inhibitor of 
TRPV-1 (Vanilloid Receptor); SB-616234-A that possesses high affinity for human 5-HT1B receptors; 
SDZ 62-434 that strongly inhibited various inflammatory responses induced by lipopolysaccharide 
(LPS) or function-activating antibody to CD29; Hafangchin A (also called "Tetrandrine"), a bis- 
benzylisoquinoline alkaloid, which acts as a calcium channel blocker; Elopiprazole an antipsychotic 
drug of the phenylpiperazine class (antagonist at dopamine D2 and D3 receptors and an agonist at 
serotonin1A receptors) that was never marketed; YH-1238, which inhibits dipeptidyl peptidase IV (DPP- 
IV) enzyme prolonging the action of the incretin hormones, glucagon-like peptide-1 (GLP-1) and 
glucose-dependent insulinotropic polypeptide (GIP); KW-8232, an anti-osteoporotic agent that can 
reduce the biosynthesis of PGE2; Astemizole, an antihistamine; N-tert-butyl Isoquine (also called 
"GSK369796"), an antimalarial drug candidate; and Remdesivir, a broad-spectrum antiviral medication 
developed by the biopharmaceutical company Gilead Sciences. Again, none of these compounds were 
geared toward targeting Tmprss2 or Mpro, and are also not specific to Ace2. While the lack of overlap 
may be surprising, results generated by Riva and colleagues are not in opposition to our findings and 
both approaches can complement each other. Most importantly, these approved FDA compounds can 
be combined with our set of identified NCE (310 compounds) that have been demonstrated to have low 
toxicity issues based on our chemoinformatics filtering (Fig. 1B). All NCE compounds identified were 
chemical moieties that do not overlap any FDA drugs. Altogether, the data presented here 
complements previously generated data and should help prioritize and rapidly identify safe treatments 
for COVID-19. Future work will rely on advanced 3D-QSAR, fragment-based drug design principles for 
de novo drug optimization. 

 
Selective AI-SARS-Cov-2 Targeting and Drug Repurposing Data - Ace2, Tmprss2, Mpro 
Among millions of potential COVID-19 drugs screened the majority of the final 40 drug candidates have 
known medical use and/or FDA approval for a primary indication (e.g., hypertension, cardiac indication, 
hyperlipidemia) with well-established patient safety and tolerability profiles from large phase III human 
trials and post- market (Phase IV) analyses. These large human data provide both a clinically 
significant and scientifically innovative window of opportunity to test 40 compounds on the multidrug 
platform, and, in conjunction, observe longitudinal human survival outcomes of COVID-19 patients on 
these drugs for comparative effectiveness within established and ongoing patient registries. An 
emerging example of this important parallel is Ace2 pathway drugs (Ace inhibitors [AceI] and 
angiotensin receptor blocking drugs [ARB]), which are increasingly observed in humans with COVID-19 
to be associated with improved survival advantage (Jarcho et al., 2020; Mancia et al., 2020; Mehta et 



al., 2020; Patel and Verma, 2020; Vaduganathan et al., 2020). However, there is a scientific knowledge 
gap within human registries data regarding a scientifically robust and testable translational platform to 
test mechanistic effects of these different molecular compounds. Therefore, creation of a “pandemic 
platform” using newer technology of compound AI drug throughput screening combined with animal 
multi-drug screening models creates an early Phase I/II safety, tolerability and early efficacy platform 
which is rapidly needed to expedite bedside human use for COVID-19 pandemic, and as a platform that 
can be used in future pandemics. 

 
NCE set of compounds 
A flurry of activity to identify compounds for SARS CoV-2 targets has been underway by academic labs 
globally. Here in our approach we introduce our novel Maxwell's demon molecular dynamics method for 
screening flexibility required to get rare and essential conformational transitions and pathways to find 
the most likely druggable state. We also used our quantum docking technique (QM-driven adaptive 
molecular dynamics scanning docking) (Caulfield, 2012) to identify compounds effective for targeting 
Ace2, Tmprss2 and Mpro. The compounds identified by our large-scale in silico platform can next be 
experimentally validated as binders for intended targets and for efficacy in models of the disease, 
evaluated for EC50/safety-toxicity data, and carried into hit-to-lead and lead optimization in a drug 
development pipeline. Structural studies such as X-ray crystallography will also be important to 
generate structural SAR data for these efforts. 

 
In sum, our leading edge in silico methods incorporating structural dynamics have produced a set of 
350 candidate compounds suitable for screening in biological disease models. Among these, 40 FDA- 
approved compounds are eligible for rapid clinical trial testing. Additionally, our results bring forward 
310 NCEs predicted to possess potency and specificity for viral or human accessory target proteins to 
lower the viral load. Moreover, this resource offers the community a set of chemical tools to probe the 
behavior of these enzymes essential for SARS-CoV-2 progression, namely, binding, entry and 
replication. As SARS-CoV-2 is already endemic, the rapid identification of effective antivirals remains a 
paramount focus until we have an efficient vaccine to provide long-lasting protection. 



STAR*METHODS 
I. General Modeling Methods 
In general, COOT was used for building in missing residues and regularizing geometry (Emsley and 
Cowtan, 2004; Emsley et al., 2010). More details for the preparation of each model are given in the 
respective subsections. Since these structures were all used in downstream computational studies, a 
uniform structural preparation was implemented. The full-length structures are comprised of all residues 
and side chains. We added missing atoms in rotamers and de-clashed atoms, added missing residues 
for chain continuity, and removed extraneous molecules/atoms (e.g. artifacts of crystallography or 
alternative conformations of residues were removed (keeping the highest occupancy)), and the B- 
factors were set to isotropic. The PDBePISA server was used to data mine the interface between Ace2 
and S-protein (Krissinel and Henrick, 2007). Surface interactions data is provided (Supplemental). 
Calculations on molecular dynamics trajectories including RMSD, RMSF, and H-bonds were performed 
using VMD and internal tools thereof (RMSD trajectory tool and Tk Console). Prior to calculations, the 
backbone (CONC〈) atoms of each frame of the trajectories were aligned to the first frame as a 
reference, to remove the effect of random rotation/translation. After alignment, the per residue average 
of RMSF or RMSD per frame in Å across the entire MDS trajectory is given. For the Ace2-ligand 
simulations, the number of hydrogen bonds between the protein and ligand were recorded for each 
frame, and the occupancy of each specific H-bond is defined as the percentage of frames the bond is 
present. RMSD, RMSF, and H-bond data were plotted in 2D format in Excel. The RMSF was also 
appended to the beta column of the PDB and heat-mapped to the structure using a custom Tcl/Tk script 
and PyMOL. All molecular graphics were generated in PyMOL (Mooers, 2016). 

 
II. General Dynamics Conditions 
Molecular Dynamics and Monte Carlo simulations were performed on the protein to allow local regional 
changes for full-length structure for all acids of each structure. 

The X-ray refinement for Monte Carlo was built using YASARA SSP/PSSM Method (Altschul et 
al., 1997; Hooft et al., 1996a; Hooft et al., 1996b; King and Sternberg, 1996; Krieger et al., 2009; Qiu 
and Elber, 2006). The structure was relaxed to the YASARA/Amber force field using knowledge-based 
potentials within YASARA. The side chains and rotamers were adjusted with knowledge-based 
potentials, simulated annealing with explicit solvent, and small equilibration simulations using 
YASARA’s refinement protocol (Laskowski RA, 1993). The entire full-length structure was modeled, 
filling in any gaps or unresolved portions from the X-ray. 

Refinement of the finalized models was completed using either Schrodinger’s LC-MOD Monte 
Carlo-based module or NAMD2 protocols. These refinements started with YASARA generated initial 
refinement of Tmprss2 (Altschul et al., 1997; Hooft et al., 1996a; Hooft et al., 1996b; Krieger et al., 
2009). The superposition and subsequent refinement of each protein regions yields a complete model. 
The final structures were subjected to energy optimization with PR conjugate gradient with an R- 
dependent dielectric. 

Atom consistency was checked for all amino acids of the full-length wild-type structure, verifying 
correctness of chain name, dihedrals, angles, torsions, non-bonds, electrostatics, atom typing, and 
parameters. Model was exported to the following formats: Maestro (MAE), YASARA (PDB). Model 
manipulation was done with Maestro (Macromodel, version 9.8, Schrodinger, LLC, New York, NY, 
2010), or Visual Molecular Dynamics (VMD) (Humphrey et al., 1996). 

MDS and MC searching were completed on each model for conformational sampling, using 
methods previously described in the literature (Caulfield and Devkota, 2012; Caulfield and Medina- 
Franco, 2011; Caulfield, 2011; Caulfield et al., 2011). Briefly, each protein system was minimized with 
relaxed restraints using either Steepest Descent or Conjugate Gradient PR, then allowed to undergo 
the MC search criteria, as shown in the literature (Caulfield and Devkota, 2012; Caulfield and Medina- 
Franco, 2011; Caulfield, 2011; Caulfield et al., 2011). The primary purpose of MC, in this scenario, is 
examining any conformational variability that may occur with each protein. 



III. Structural modeling Ace2/S-protein 
For Ace2/S-protein, PDB code 6VW1 was used to construct the model (Shang et al., 2020). While the 

structure was mostly complete, chain F (S-protein) was missing more residues, though it had residue 
Ala522. Chain E (S-protein) was only missing residue 522. Residue Ala522 was built into chain E using 
COOT and where the extraneous molecules (solvent/cryoprotectant) and chains were deleted to leave 
only the heterodimer Ace2/S-protein, which was processed to be used for computational studies, not to 
generate a de novo model or complete structure with missing atoms and sections. 
All information about the protein was found on the corresponding Uniprot page. After identifying the hot 

spot residues using SiteMap or protein-protein interfaces, we used MD to find out how the Y41A 
mutation can affect of PPI inhibition. We performed MD for wild type and mutated protein. Residual 
mutation was also performed using PyMol's built-in tools. Gromacs 2018 and amber99 force field were 
used to conduct MD and further analysis of the results (Baugh et al., 2011; Dilip et al., 2016; Janson et 
al., 2017; Makarewicz and Kazmierkiewicz, 2013, 2016; Mooers, 2016). Visual inspection of every 10 
frames allowed us to determine some tendency of structural deformation in a certain place on the 
protein surface. According to the literature data and our finding, we focused on the predicted binding 
site. Then, each trajectory was analyzed via the built-in clustering tool based on the RMSD distribution. 
Three the most stable conformations of the binding site were chosen for the docking studies. All 
received docking poses from each docking study were evaluated based on the docking scores, 
interaction diagrams and solvent exposure. To make some prediction regarding the binding method, we 
carried out another molecular dynamics simulation for the upper poses of each docking. After such a 
confirmation of our assumptions, we selected the most powerful and accurate compounds from the 
results of docking. 

 
IV. Structural modeling Tmprss2 
A homology model was constructed on the basis of prothrombin crystal structure in complex with the 
ligand analog (PDB code 3F68) (Baum et al., 2009). We modeled the 492 amino acid Tmprss2 protein 
two different ways: YASARA based and SwissModel server based (Krieger et al., 2002; Waterhouse et 
al., 2018; Zoete et al., 2011). First, the YASARA based model begins with the FASTA sequence: 
MALNSGSPPAIGPYYENHGYQPENPYPAQPTVVPTVYEVHPAQYYPSPVPQYAPRVLTQASNPVVCT 
QPKSPSGTVCTSKTKKALCITLTLGTFLVGAALAAGLLWKFMGSKCSNSGIECDSSGTCINPSNWCDG 
VSHCPGGEDENRCVRLYGPNFILQVYSSQRKSWHPVCQDDWNENYGRAACRDMGYKNNFYSSQGI 
VDDSGSTSFMKLNTSAGNVDIYKKLYHSDACSSKAVVSLRCIACGVNLNSSRQSRIVGGESALPGAWP 
WQVSLHVQNVHVCGGSIITPEWIVTAAHCVEKPLNNPWHWTAFAGILRQSFMFYGAGYQVEKVISHPN 
YDSKTKNNDIALMKLQKPLTFNDLVKPVCLPNPGMMLQPEQLCWISGWGATEEKGKTSEVLNAAKVLL 
IETQRCNSRYVYDNLITPAMICAGFLQGNVDSCQGDSGGPLVTSKNNIWWLIGDTSWGSGCAKAYRP 
GVYGNVMVFTDWIYRQMRADG. Topological domains have the following characteristics: residues 1 – 
84 forms the cytoplasmic sequence; residues 85 – 105 form the transmembrane domain region (helical 
21 aa); and residues 106 – 492 form the Signal-anchor for type II membrane protein (extracellular), 
where the protein as two main chains: non-catalytic chain (Met1-Arg225) and catalytic chain (Ile256- 
Gly492), where each domain modeled as a separate unit built together in composite. Disulfide bonds 
exist between several residues (113 ↔ 126), (120 ↔ 139), (133 ↔ 148), (172 ↔ 231), (185 ↔ 241), 
(244 ↔ 365), (281 ↔ 297), (410 ↔ 426), (437 ↔ 465), which can be informative for building the 
structure. Glycosylation sites are also possible at residues N213 and N249. Cleavage site (active) 
exists between Arg255 and Ile256 (see refinement section). 

The second method, homological modeling was performed using the SwissModel server after 
performing a BLAST search on available protein structures in the RCSB database. Molecular dynamics 
simulations of 100 ns of both, suggested and re-modeled protein structures, was performed with 
GROMACS 2018 (Makarewicz and Kazmierkiewicz, 2013, 2016). Based on the structural analysis and 
the generated Connolly surfaces, we identified critical changes in the binding site of the proposed 
model and began creating a mesh for the binding site of the new homology model. Since our model 



was based on the structure of thrombin, we used its co-crystallized ligand as a template for assigning 
constraints and ensured we built the catalytically active state. 

 
V. Structural modeling Mpro 
For Mpro (PDB 6Y2F) co-crystallization with tert-butyl (1-((S)-1-(((S)-4-(benzylamino)-3,4-dioxo-1-((S)-2- 
oxopyrrolidin-3-yl)butan-2-yl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-2-oxo-1,2-dihydropyridin-3- 
yl)carbamate (also referred to as alpha-ketoamide 13b) was used; the structure was also mostly 
complete. Residues E47 and D48 were built in using COOT, where the other preparations previously 
described were also performed. To build the missing residues, the coordinates and structure factors 
were downloaded, generated 2mFo-DFc and FEM maps, and real space refine zone/regularize zone 
were used to fit to electron density and optimize local geometry. The ligand (alpha-ketoamide 13b) was 
left for usage as a cognate ligand for virtual screening. 

The protein structure was initially studied using MD to find out if the binding site is cruel enough 
or can break down without a ligand molecule during the simulation. Simulation of the dimeric complex 
for 100 ns was sufficient to compare conformational changes from different MD states. A set of 
positional and hydrogen bonds were assigned based on the available peptidomimetic structure. Thus, 
two screenings were conducted with an emphasis on positional constraints or interactions of hydrogen 
bonds. 

 
VI. Structure-refinement of Ace2 (S-protein:Ace2), Tmprss2, and Mpro Models 

Using MDS and MC refinement with Schrodinger and/or YASARA SSP/PSSM methods 
(Altschul et al., 1997; Hooft et al., 1996a; Hooft et al., 1996b; King and Sternberg, 1996; Krieger et al., 
2009; Qiu and Elber, 2006), each structure was relaxed to the YASARA/Amber force field using 
knowledge-based potentials within YASARA. The side chains and rotamers were adjusted with 
knowledge-based potentials, simulated annealing with explicit solvent, and small equilibration 
simulations using YASARA’s refinement protocol (Laskowski RA, 1993). The entire full-length structure 
was modeled, filling in any gaps or unresolved portions from the X-ray structure. 

Refinement of the finalized models was completed using either Schrodinger’s Monte Carlo- 
based module or in-house protocols. These refinements started with generated initial refinement for 
each independent structure (Altschul et al., 1997; Hooft et al., 1996a; Hooft et al., 1996b; Krieger et al., 
2009). The superposition and subsequent refinement of the overlapping regions yields a complete 
model for all four proteins. The final structures were subjected to energy optimization with PR conjugate 
gradient with an R-dependent dielectric. 

Atom consistency was checked for all amino acids (and atoms) of the full-length wild-type 
model, verifying correctness of chain name, dihedrals, angles, torsions, non-bonds, electrostatics, atom 
typing, and parameters. A multimeric-complex model is predicted, including cofactors and ions. All of 
the models were exported in the following formats Maestro (MAE), YASARA (PDB). Model 
manipulation was done with Maestro (Macromodel, version 9.8, Schrodinger, LLC, New York, NY, 
2010), or Visual Molecular Dynamics (VMD) (Humphrey et al., 1996). Analyses were emphasized on 
the protein-protein interaction regions containing. 

Monte Carlo dynamics searching (MC-search) was completed on each model for additional 
conformational sampling, using methods previously described in the literature (Caulfield and Devkota, 
2012; Caulfield, 2011; Caulfield et al., 2011). Briefly, each protein system was minimized with relaxed 
restraints using either Steepest Descent or Conjugate Gradient PR, then allowed to undergo the MC 
search criteria, as shown in the literature (Caulfield and Devkota, 2012; Caulfield, 2011; Caulfield et al., 
2011). The primary purpose of MC, in this scenario, is examining any conformational variability that 
may occur with different orientations in the region near to protein-protein interfaces. 

 
VII. MD Simulation Protocol 

The total atomic force field was used to minimize the energy of the system, namely, the descent 
algorithm for 20,000 steps with an iteration interval of 2 fs. The equilibrium of the solvent was carried 



out using positional restrictions imposed on the atoms of protein structures, while the solvent molecules 
remained mobile for all 100 ps. Each system was placed in a box in which the layer of the TIP3P water 
molecule was 10 Å. The final systems were neutralized by the addition of Na + and Cl– ions to a 
concentration of 150 mM. All simulations were performed under periodic boundary conditions using the 
V-Rescale Thermostat algorithm to maintain temperature (310 K) and the Parrinello-Rahman Barostat 
algorithm for constant pressure (1 bar) (Bussi et al., 2007; Parrinello and Rahman, 1981). Long-range 
unrelated interactions were calculated using the Particle-Mesh-Ewald (PME) method (Abraham and 
Gready, 2011). All molecules were relaxed with a molecular dynamics simulation of 100 ns. Ligand 
topologies were created using the antechamber module from the AmberTools18 package (Case et al., 
2005). 

 
VIII. DOCKING METHODS 
A. Site Mapping on Proteins 

We used SiteMapper (Bhachoo and Beuming, 2017) to identify possible binding sites for 
docking affinity with the proteins Ace2 (allosteric site), Tmprss2, and Mpro. We also used our novel MDS 
biasing technique algorithm, Maxwell’s demon MD, for searching within these sites for potential flexible 
zones that would have beneficial peptide interactions, which served as a reductive filter limiting the total 
number of possible sites screened on the proteins to those with adequately deep binding grooves 
(Caulfield, 2011; Kayode et al., 2016) or interesting insertion sites (Ace2). 

 
B. Glide Docking 

Prior to the docking with the Ace2 (allosteric site), Tmprss2, and Mpro, we had completed 
rigorous molecular dynamics simulations (MDS) and Monte Carlo (MC) conformational searching for 
each model for additional conformational sampling, using methods previously described in the literature 
(Caulfield and Devkota, 2012; Caulfield, 2011; Caulfield et al., 2011). The primary purpose of MC, in 
this scenario, is examining any conformational variability that may occur with different orientations in 
the region near to protein-protein interfaces. 

Over three million compounds were docked to each site using the Glide XP docking program 
(Bhachoo and Beuming, 2017). All compounds were accounted for using OPLS3 within Maestro 
program (Maestro-9.4, 2014). Using our published docking protocols on each identified site, we 
reductively scanned from 100s to the top 10 poses from each docking and then did cross-comparisons 
of docking scores to retain only the top binding pose of each compound from each site in a winner- 
takes-all strategy. 

 
C. Other Docking (positional constraints) 
Each compound has been converted into a set of energy minimized three-dimensional shapes with the 

Ligprep module. Without protein preparation, it was used for the correct distribution of protonation and 
post-minimization in the OPLS3 force field. In the case of assigning restrictions based on ligands (Mpro, 
Tmprss2), we tried to cover the most important and strong interactions. In the case of Ace2, a set of 
constraints was generated in sufficient quantities to generate combinations of possible interactions. 
Positional constrains (1.8 A radius) and h-bond constraints were generated in the Schrodinger Glide 
module, namely in the mesh generation tool. Aromatic and hydrophobic features were represented with 
short SMARTS. A partial matching protocol for applying constraints has also been used to improve 
process accuracy. A high throughput screening protocol with regulated ligand flexibility was applied. 

 
D. Docking Parameters 

Each compound has been converted into a set of energy minimized three-dimensional shapes 
with the Ligprep module. Without protein preparation, it was used for the correct distribution of 
protonation and post-minimization in the OPLS3 force field. In the case of assigning restrictions based 
on ligands (Mpro, Tmprss2), we tried to cover the most important and strong interactions. In the case of 
Ace2, a set of constraints was generated in sufficient quantities to generate combinations of possible 



interactions. Positional constrains (1.8 A radius) and h-bond constraints were generated in the 
Schrodinger Glide module, namely in the mesh generation tool. Aromatic and hydrophobic features 
were represented with short SMARTS. A partial matching protocol for applying constraints has also 
been used to improve process accuracy. A high throughput screening protocol with regulated ligand 
flexibility was applied. 

Conformations of compound orientations were generated using our standard protocols 
(Bhachoo and Beuming, 2017; Kalid et al., 2012; Unger et al., 2015). The starting conformation of 
relaxed protein structures was first obtained by the method of Polak-Ribière conjugate gradient (PRCG) 
energy minimization with the Optimized Potentials for Liquid Simulations (OPLS) 2005 force field 
(Jorgensen, 2004; Jorgensen and Tiradorives, 1988) for 5000 steps, or until the energy difference 
between subsequent structures was less than 0.001 kJ/mol-Å units. Our docking methodology has 
been described previously (Caulfield and Devkota, 2012; Friesner et al., 2006; Loving et al., 2009; 
Vivoli et al., 2012). 

Briefly, compounds were docked within the Schrödinger software suite (Mohamadi et al., 1990) 
using a virtual screening workflow (VSW) (Bhachoo and Beuming, 2017; Friesner et al., 2006; 
Jacobson et al., 2002; Kalid et al., 2012; Kozakov et al., 2006). Alternative docking methods were also 
employed, including in-house software techniques for top leads for SAR elucidation. The top seeded 
poses were ranked and unfavorable scoring poses were discarded. Top favorable scores from initial 
dockings yielded hundreds of poses with the top five poses retained. Molecular interactions of the 
ligand-protein interfaces were used to help determine the optimal binding set, which included 
descriptors were used to obtain atomic energy terms like hydrogen bond interaction, electrostatic 
interaction, hydrophobic enclosure and π-π stacking interaction that result during the docking run. 
Molecular modeling for importing and refining the proteins was completed (Maestro-9.4, 2014). 

Examinations of structure stability were examined for all proteins investigated, S-protein:Ace2, 
Tmprss2, and Mpro, respectively (Caulfield and Devkota, 2012; Caulfield and Medina-Franco, 2011; 
Caulfield, 2011; Reumers et al., 2005; Schymkowitz et al., 2005; Zhang et al., 2013). Object stability 
was used to determine if any changes in structure that were deleterious to function from immediate 
inspection, which the FoldX algorithm can provide, prior to docking studies. Thus, we examined the 
local residues around the docking site and determined an electrostatic calculation may be useful to 
explain the change in function. The molecular model for the full structure and its truncated form are 
given (Fig. S1) using our state of the art methods, which have been established (Abdul-Hay et al., 
2013; Ando et al., 2017; Caulfield and Devkota, 2012; Caulfield and Medina-Franco, 2011; Caulfield, 
2011; Caulfield et al., 2011; Caulfield et al., 2014; Caulfield et al., 2015; Fiesel et al., 2015a; Fiesel et 
al., 2015b; Puschmann et al., 2017; Zhang et al., 2013). 

Local residues within the 12Å cutoff near docking sites were analyzed (Fig. S1-S2). Any 
interactions requiring inducible fit, or Threonine/Serine hydroxyl rotation or other docking parameter (π- 
stacking/halogen-directionality) were also included. Mapping electrostatics was accomplished using the 
Poisson-Boltzmann calculation for solvation on all amino acids for each docked structure (Caulfield and 
Devkota, 2012; Caulfield and Medina-Franco, 2011; Caulfield, 2011; Reumers et al., 2005; 
Schymkowitz et al., 2005; Zhang et al., 2013) 

 
E. Libraries used 
Compounds were derived from either a set of all FDA approved and clinical tested compounds, 
bioactive set of compounds, or a large multi-million compound set from ZINC database. In the all cases 
the libraries were prepared using LigPrep described above. The ZINC database was pruned using 
parameters for better drug-like profile and removal of reactive functional groups and poor 
chemoinformatics properties delivering a large set suitable for screening on all targets across dynamic 
time points from MDS. 
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FIGURE LEGENDS 
Figure 1. Flowchart for drug pipeline for attacking COVID-19 via polypharma small molecule 
approach using in silico screening and advanced simulation biasing. (A) Biological infection of 
SARS-CoV-2 from initial binding, entry and replication for virus proliferation. (B) Overview of COVID-19 
Drug Discovery Pipeline. 

 
Figure 2. Protein-Protein Interaction (PPI) region on the surface of Ace2 identifies key residues. 
(A) PPI region (yellow) on the surface of Ace2 is shown with important residues K353, D155, Y41, K31 
highlighted in yellow. (B) Zoomed in detail panel shows beta sheet secondary structure and H-bond 
interactions targeted for disruption by docked small molecules. 

 
Figure 3. Ace2 protein docked with exemplar ligands during MD simulations and used as basis 
for large-scale constraint-based screening. (A) protein and its final state of MD (B), which differs 
from Y41A mutant due to significant surface changes (C). (D-E) examination of the binding pockets 
change in shape as during MD simulations with the tested ligands bound with key interaction residues 
in red. (G-I) Surfaces removed and zoom into the ligands docked at the site (inserted versus slipping 
out). (J-L) Energy of the ligand lowers system (more stable versus slippage, where no effect observed). 

 
Figure 4. Modeling requires molecular dynamics to reflect optimal inhibitor binding sites. (A-D) 
Ace2:S protein stabilization and effect of ligand binding at allosteric site. (A) Number of hydrogen bonds 
for each ligand with Ace2 against each frame of the simulation. Blue is ligand 300, orange is ligand 392, 
green is ligand 488. (B) RMSD of Ace2 across every frame in the simulation, bound to different ligands. 
(C) RMSF per residue of Ace2 in each MDS bound to different ligands. (D) RMSF heat-mapped onto 
Ace2 and ligand 300. A call-out box shows a close-up of ligand and binding site. Ligand and binding 
site residues represented as sticks with labels and interaction distances. The scale is a BWR gradient 
from 0 to 2.0 Å RMSF. (E-G) Tmprss2 dynamics reveal the catalytically active form suitable for 
inhibition. (E) RMSD in Å across the 25 ns MDS trajectory mapped as a 2D plot. (F) Per residue 
average RMSF in Å across the trajectory mapped as a 2D plot. Disulfide bonds and catalytic triad are 
represented as sticks. The scale is a BWR gradient from 0 to 2.0 Å RMSF. (G) Post-cleavage (mature 
protease) extracellular domain of Tmprss2. Call-out box shows close-up of canonical serine protease 
catalytic triad of mature Tmprss2, with distances of polar contacts. (H_K) Model refinement for Mpro 
reveals ligand binding sites suitable for docking. (H) Average RMSF per residue heat-mapped onto the 
Mpro structure. The scale is a BWR gradient from 0 to 2.0 Å RMSF. (I) RMSD of Mpro for each frame of 
the simulation. (J) Average RMSF per residue of Mpro (each chain measured separately). (K) Mpro 
(orange) with small molecule inhibitor (cyan). 



 

Figure 5. Modelled catalytically active form of Tmprss2 bound to inhibitors. (A) Homology model 
of TMPRSS2 based on crystal structure of thrombin (3F68) is shown docked with 1-(2-Fluoro-5- 
methylphenyl)-N-[2-(4-fluorophenyl)-2-hydroxypropyl]-4-hydroxy-1H-pyrazole-3-carboxamide (B). A 
proposed macrocycle-bound structure (C) and docked N-(2-4-[3-(2-Carbamoylphenyl)propanoyl]-1,1- 
dioxido-2-thiomorpholinyl}ethyl)-2-oxo-2,3-dihydro-1H-benzimidazole-4-carboxamide (D) as further 
exemplars for inhibition of Tmprss2. 

 
Figure 6. Druggability of Mpro is demonstrated with detailed analysis of α-Keto amide group 
binding using MD simulations. (A) The alignment of two Mpro crystal structures (7BQY/cyan and Mpro- 
x0434/purple from diamond.ac.uk) bound to compounds containing an α-Keto amide group flanked by 
hydrophobic groups is shown. Sufficient structural stability of the binding site is demonstrated via 
comparative visualization of initial (B) and final (C) states of MD. Binding site retains its geometry and 
shape across the MD. (D) Two bound states of hit compounds from the large library of compounds give 
further exemplars: Z1609752806 (D) and Z1143050660 (E) in complex with Mpro protein. 
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SUPPLEMENTAL SECTION 
 
Table S1. Hydrogen bond occupancy over 15 ns MDS trajectory for each ligand with ACE2. 
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Figure S1: Ace2:S protein interface and indication of allosteric site relative to active binding site. 
(A) Sagittal view of ACE2 (gray) interface with RBD of COVID19 S-protein (green); the blue surface 
highlights the binding site for ligands that disrupt the interface between the two proteins. (B) ACE2 (gray) 
and S-protein (green) sagittal view. In maroon is the active site of ACE2. (C) ACE2 (salmon) with ligand 
300 (blue) rendered as surfaces. 50% left side slab to examine deep insertion in more detail. (D) Full 
surface view of ACE2 and ligand 300. (E) 50% right side slab to examine deep insertion in more detail. 
(F) Example of docked compound that disrupts interface between ACE2 and S-protein. Close-up of 
binding site of ACE2 (salmon) and ligand 300 (blue) with residues and polar contact distances labeled. 
(G) Ligand Interaction Diagram rendered with Maestro for ACE2 with ligand 300 at the 
allosteric site impacting S-protein binding from SAR-CoV2. This 2D "flat" representation shows 
the interactions at this particular compounds interface on Ace2 that would interfere with S 
protein binding. In particular, extending from deeply inserted to superficial, the interactions are 
described in the subsequent sentences. D382 and D350 are hydrogen bond acceptors (side 
chains) from the opposite NH+ on the piperazine-like ring deeply inserted into the binding 
pocket. R393 is a hydrogen bond donor (side chain) to the alcohol group connecting the 
piperazine-like ring to the fused ring. E37 is a hydrogen bond acceptor (side chain) to one of 
the NH on the fused ring. The fluorocyclohexane group is entirely solvent-exposed at the 
mouth of the binding pocket. 

 
 



Figure S2 Glycosylation sites of Ace2 protein (D616G highlighted red). 
Although glycosylation sites at residues N165, N234, N343 from S-protein (PDB 
code 6VSB), are nearby the ACE2:S-protein binding interface, they do not overlap 
and interfere with the protein-protein interface, offering an adjacent site is readily 
available for PPI docking (S-prot glycosylation analysis: DOI: 
10.1126/science.abb9983; 10.1101/2020.04.29.069054}. The majority of 
glycosylation sites are not on the RBD (Fig. S2), the glycosylation site that is 
actually present on the RBD, N343, is not in 3D proximity to the binding interface. 
Recently, a variant of the S-protein, D614G, was identified to possess enhanced 
transmissibility and resistance to contemporary interventions and this site is not 
present on the RBD. Neither the glycosylation sites, nor the enhanced 
transmissibility variant D614G, are within the 3D proximity to the drug binding site 
for our targeted protein-protein interface disrupting therapeutics for Ace2. 

 
 
 
 
 
 

 
 



 
 
 
 

 
 

Figure S3. Gradually crumbling binding site. (A) Initital and (B) Final states - of the 
protein model, while catalytically active state has better preserved binding site. 
Prothrombin binding site (PDB 3F68) with its inhibitor (C) and the final state of 
Prothrombin (D) are shown. Again, Prothrombin binding site (3F68) with its inhibitor 
(E) and proposed structural model – a prothrombin-based homology model of 
TRPMSS2 (F), which looks more accurate then previous (B) model structure. This 
version maintains structural stability and is good candidate for drug docking with 
ligands. Purple spheres are constraints used to impose good relative positioning. 



 

 
Figure S4. Proteases cathepsin L and K can be also used in blocking ENTRY of 
COVID-19 during late-endosome progression. Top panel. Structures for cathepsin K 
(PDB code: 4N8W, green) and cathepsin L (PDB code: 2YJB, cyan), shown with an 
inhibitor (blue). The active site residues are colored maroon. These represent additional 
host protease targets at another stage of the viral entry cycle. Bottom panel. Same as top 
but rotated 180°. Cathepsins K and L represent additional host protease targets at another 
stage of the viral entry cycle. Future efforts and alternative methods on our part may involve 
discovering effective compounds to exploit this point of intervention in synergy with our 
other therapeutics. In anticipation of this, we have already constructed models of both of 
these cathepsins, which exhibit remarkable structural homology with each other. For 
cathepsin K, 4N8W.pdb {PMID: 25422423} was used as a base from which to construct the 
model, and 2YJB.pdb {PMID: 21898833} was used for cathepsin L. 
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TABLE S2. Top 310 NCE compounds docked with Ace2, TMRPSS2, and Mpro (from >10million compounds on all targets) 

 
 

2D	Structure	
 

Compound	Name	
 

ENZYME	
 
Docking	Score	

 
Smile	

 

 

 
 

N-[(4-methylmorpholin-2-yl)methyl]-4-[(4-	
methylpiperazin-1-yl)methyl]benzamide	

 
 

ACE2	

 
 

-7.415595	

 
 
CN1CCN(Cc2ccc(cc2)C(=O)NCC2CN(C)	

CCO2)CC1	

 
 

 
 

2-(3-hydroxypiperidin-1-yl)-N-(4-methyl-3-	
sulfamoylphenyl)acetamide	

 
 

ACE2	

 
 

-7.377284	

 
 
Cc1ccc(NC(=O)CN2CCCC(O)C2)cc1S(N)	

(=O)=O	

 

 

 
 
2-{4-[(1,3-benzothiazol-2-yl)methyl]piperazin-1-yl}-	
N-{4-[(pyrrolidin-1-yl)methyl]phenyl}acetamide	

 
 

ACE2	

 
 

-7.733448	

 
 
O=C(CN1CCN(Cc2nc3ccccc3s2)CC1)Nc	

1ccc(CN2CCCC2)cc1	

 
 

 
 
3-({[(2,5-difluorophenyl)methyl]amino}methyl)-N-	

methylbenzene-1-sulfonamide	

 
 

ACE2	

 
 

-7.527599	

 
 
CNS(=O)(=O)c1cccc(CNCc2cc(F)ccc2F)	

c1	

 

 

 
N-methyl-3-({[(3-	

nitrophenyl)methyl]amino}methyl)benzene-1-	
sulfonamide	

 
 

ACE2	

 
 

-7.486144	

 
 
CNS(=O)(=O)c1cccc(CNCc2cccc(c2)[N+	

]([O-])=O)c1	

 

 

 
 
(1S,2R)-1-{[(1H-imidazol-2-yl)methyl]amino}-2,3-	

dihydro-1H-inden-2-ol	

 
 

ACE2	

 
 

-7.818057	

 
 
O[C@@H]1Cc2ccccc2[C@@H]1NCc1n	

cc[nH]1	

 

 

 
 
1,3-dimethyl-7-({6-methylimidazo[1,2-a]pyridin-2-	
yl}methyl)-2,3,6,7-tetrahydro-1H-purine-2,6-dione	

 
 

ACE2	

 
 

-7.813326	

 
 
Cc1ccc2nc(Cn3cnc4n(C)c(=O)n(C)c(=O	

)c34)cn2c1	

 

 

 
 
7-({6-chloroimidazo[1,2-a]pyridin-2-yl}methyl)-1,3-	
dimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione	

 
 

ACE2	

 
 

-7.787989	

 
 
Cn1c2ncn(Cc3cn4cc(Cl)ccc4n3)c2c(=O	

)n(C)c1=O	

 

 

 
1-[4-({[(thiophen-3-	

yl)methyl]amino}methyl)phenyl]piperidine-3-	
carboxamide	hydrochloride	

 
 

ACE2	

 
 

-7.346939	

 
 
Cl.NC(=O)C1CCCN(C1)c1ccc(CNCc2ccs	

c2)cc1	

 
 

 
[3-({[(2,5-	

difluorophenyl)methyl]amino}methyl)phenyl]meth	
anol	

 
 

ACE2	

 
 

-7.273845	

 
 

OCc1cccc(CNCc2cc(F)ccc2F)c1	

 

 

 
1-[4-({[(5-methylfuran-2-	

yl)methyl]amino}methyl)phenyl]piperidine-3-	
carboxamide	hydrochloride	

 
 

ACE2	

 
 

-7.368915	

 
 
Cl.Cc1ccc(CNCc2ccc(cc2)N2CCCC(C2)C	

(N)=O)o1	

 

 

 
[(4-cyclopropylmorpholin-2-yl)methyl]({2,6-	

dimethylimidazo[2,1-b][1,3]thiazol-5-	
yl}methyl)amine	

 
 

ACE2	

 
 

-7.838944	

 
 
Cc1cn2c(CNCC3CN(CCO3)C3CC3)c(C)n	

c2s1	

 

 

 
 

N-{2-[2-(4-methylpiperazin-1-	
yl)ethoxy]phenyl}thiophene-2-carboxamide	

 
 

ACE2	

 
 

-7.649969	

 
 
CN1CCN(CCOc2ccccc2NC(=O)c2cccs2)	

CC1	



 

 

 
 

N-{2-[2-(4-methylpiperazin-1-	
yl)ethoxy]phenyl}furan-2-carboxamide	

 
 

ACE2	

 
 

-7.32206	

 
 
CN1CCN(CCOc2ccccc2NC(=O)c2ccco2)	

CC1	

 

 

 
 

N-{2-[2-(4-methylpiperazin-1-	
yl)ethoxy]phenyl}cyclohex-3-ene-1-carboxamide	

 
 

ACE2	

 
 

-7.790159	

 
 
CN1CCN(CCOc2ccccc2NC(=O)C2CCC=	

CC2)CC1	

 

 

 
 
N-{2-[2-(4-methylpiperazin-1-yl)ethoxy]phenyl}-3-	

(naphthalen-1-yl)prop-2-enamide	

 
 

ACE2	

 
 

-7.25658	

 
 
CN1CCN(CCOc2ccccc2NC(=O)C=Cc2cc	

cc3ccccc23)CC1	

 
 

 
1-{[3-({[(2,5-	

difluorophenyl)methyl]amino}methyl)phenyl]meth	
yl}piperidine-3-carboxamide	

 
 

ACE2	

 
 

-7.835397	

 
 
NC(=O)C1CCCN(Cc2cccc(CNCc3cc(F)cc	

c3F)c2)C1	

 
 

 
 

1-(2,4-difluorophenyl)-N-[(1H-imidazol-2-	
yl)methyl]pyrrolidin-3-amine	

 
 

ACE2	

 
 

-7.890993	

 
 
Fc1ccc(N2CCC(C2)NCc2ncc[nH]2)c(F)c	

1	

 

 

 
 
N-[2-methyl-3-(4-methylpiperazin-1-yl)propyl]-1H-	

1,3-benzodiazole-2-carboxamide	

 
 

ACE2	

 
 

-7.198821	

 
 
CC(CNC(=O)c1nc2ccccc2[nH]1)CN1CC	

N(C)CC1	

 

 

 
 
2-[(4,5-dimethyl-1H-imidazol-1-yl)methyl]-1-ethyl-	

4-fluoro-1H-1,3-benzodiazole	

 
 

ACE2	

 
 

-7.938425	

 
 
CCn1c(Cn2cnc(C)c2C)nc2c(F)cccc12	

 

 

 
 
4-[(2-amino-2,3-dimethylbutyl)amino]-N-methyl-3-	

nitrobenzene-1-sulfonamide	

 
 

ACE2	

 
 

-7.442683	

 
 
CNS(=O)(=O)c1ccc(NCC(C)(N)C(C)C)c(c	

1)[N+]([O-])=O	

 
 

 
 

1-ethyl-N-{2-fluoro-5-[2-(2-methylpiperidin-1-	
yl)acetamido]phenyl}-1H-pyrazole-4-carboxamide	

 
 

ACE2	

 
 

-7.589474	

 
 
CCn1cc(cn1)C(=O)Nc1cc(NC(=O)CN2C	

CCCC2C)ccc1F	

 

 

 
 

3-ethyl-1-(2-{4-[(6-methylpyridin-2-	
yl)amino]piperidin-1-yl}propanoyl)urea	

 
 

ACE2	

 
 

-7.789715	

 
 
CCNC(=O)NC(=O)C(C)N1CCC(CC1)Nc1	

cccc(C)n1	

 

 

 
 
2-(4-chlorophenyl)-2-({3-nitroimidazo[1,2-a]pyridin	

2-yl}amino)acetamide	

 
 

ACE2	

 
 

-7.548985	

 
 

NC(=O)C(Nc1nc2ccccn2c1[N+]([O-	
])=O)c1ccc(Cl)cc1	

 

 

 
 

N-{[(2-bromophenyl)carbamoyl]methyl}-2-{4-	
[(thiophen-3-yl)methyl]piperazin-1-yl}acetamide	

 
 

ACE2	

 
 

-7.056257	

 
 
Brc1ccccc1NC(=O)CNC(=O)CN1CCN(Cc	

2ccsc2)CC1	

 

 

 
 

6-chloro-4-{[(1,4-dimethylpiperazin-2-	
yl)methyl]amino}quinoline-3-carbonitrile	

 
 

ACE2	

 
 

-7.690945	

 
 
CN1CCN(C)C(CNc2c(cnc3ccc(Cl)cc23)C	

#N)C1	

 

 

 
7-[({[1-(difluoromethyl)-1H-imidazol-2-	

yl]methyl}(methyl)amino)methyl]-3-methyl-5H-	
[1,3]thiazolo[3,2-a]pyrimidin-5-one	

 
 

ACE2	

 
 

-7.368598	

 
 
CN(Cc1nccn1C(F)F)Cc1cc(=O)n2c(C)cs	

c2n1	

 

 

 
 

N-(3-cyanophenyl)-2-({imidazo[1,2-a]pyridin-2-	
yl}methoxy)benzamide	

 
 

ACE2	

 
 

-7.272896	

 
 
O=C(Nc1cccc(c1)C#N)c1ccccc1OCc1cn	

2ccccc2n1	



 

 

 
 

N-[(2-fluorophenyl)methyl]-2-({imidazo[1,2-	
a]pyridin-2-yl}methoxy)benzamide	

 
 

ACE2	

 
 

-7.504407	

 
 
Fc1ccccc1CNC(=O)c1ccccc1OCc1cn2cc	

ccc2n1	

 

 

 
 

N-(4-fluoro-2-methylphenyl)-2-({imidazo[1,2-	
a]pyridin-2-yl}methoxy)benzamide	

 
 

ACE2	

 
 

-7.256458	

 
 
Cc1cc(F)ccc1NC(=O)c1ccccc1OCc1cn2	

ccccc2n1	

 

 

 
 
N-(2-carbamoylcyclohexyl)-4-[(4-methylpiperazin-1	

yl)methyl]benzamide	

 
 

ACE2	

 
 

-7.2544	

 
 
CN1CCN(Cc2ccc(cc2)C(=O)NC2CCCCC2	

C(N)=O)CC1	

 

 

 
 

3-bromo-5-chloro-2-hydroxy-N-[(1-methyl-1H-	
imidazol-2-yl)methyl]benzamide	

 
 

ACE2	

 
 

-7.396006	

 
 
Cn1ccnc1CNC(=O)c1cc(Cl)cc(Br)c1O	

 

 

 
 
3,7-dimethyl-1-[3-(morpholin-4-yl)propyl]-2,3,6,7-	

tetrahydro-1H-purine-2,6-dione	

 
 

ACE2	

 
 

-7.740514	

 
 
Cn1cnc2n(C)c(=O)n(CCCN3CCOCC3)c(	

=O)c12	

 
 

 
 

2-(4-benzylmorpholin-2-yl)-N-[2-hydroxy-3-(4-	
methylpiperazin-1-yl)propyl]-N-methylacetamide	

 
 

ACE2	

 
 

-7.062327	

 
 
CN(CC(O)CN1CCN(C)CC1)C(=O)CC1CN	

(Cc2ccccc2)CCO1	

 
 

 
N-[3-({[(2-chloro-4-	

fluorophenyl)methyl]amino}methyl)phenyl]-2-	
(dimethylamino)acetamide	

 
 

ACE2	

 
 

-7.794252	

 
 
CN(C)CC(=O)Nc1cccc(CNCc2ccc(F)cc2	

Cl)c1	

 

 

 
2-({imidazo[1,2-a]pyridin-2-yl}methoxy)-N-	

({[1,2,4]triazolo[4,3-a]pyridin-3-	
yl}methyl)benzamide	

 
 

ACE2	

 
 

-7.670744	

 
 
O=C(NCc1nnc2ccccn12)c1ccccc1OCc1	

cn2ccccc2n1	

 

 

 
 

2,5-difluoro-4-methyl-N-[(piperidin-3-	
yl)methyl]benzamide	hydrochloride	

 
 

ACE2	

 
 

-7.244727	

 
 
Cl.Cc1cc(F)c(cc1F)C(=O)NCC1CCCNC1	

 

 

 
 
2,5-dichloro-N-[(piperidin-3-yl)methyl]benzamide	

hydrochloride	

 
 

ACE2	

 
 

-7.847098	

 
 
Cl.Clc1ccc(Cl)c(c1)C(=O)NCC1CCCNC1	

 

 

 
 

6-chloro-N-[(piperidin-3-yl)methyl]pyridine-2-	
carboxamide	hydrochloride	

 
 

ACE2	

 
 

-7.817936	

 
 

Cl.Clc1cccc(n1)C(=O)NCC1CCCNC1	

 

 

 
 
5-chloro-1-methyl-N-[2-(piperidin-3-yl)ethyl]-1H-	

imidazole-4-sulfonamide	hydrochloride	

 
 

ACE2	

 
 

-7.845325	

 
 
Cl.Cn1cnc(c1Cl)S(=O)(=O)NCCC1CCCN	

C1	

 

 

 
 

N-{2-[2-(dimethylamino)ethyl]-2,3-dihydro-1H-	
isoindol-4-yl}-2-(4-hydroxyphenyl)acetamide	

 
 

ACE2	

 
 

-7.443014	

 
 
CN(C)CCN1Cc2cccc(NC(=O)Cc3ccc(O)c	

c3)c2C1	

 

 

 
 
1-(4-fluorophenyl)-3-{[(1-methyl-1H-imidazol-2-	

yl)methyl]amino}butan-1-ol	

 
 

ACE2	

 
 

-7.334131	

 
 

CC(CC(O)c1ccc(F)cc1)NCc1nccn1C	

 

 

 
 

[1-(1-methyl-1H-imidazol-2-yl)ethyl]({[6-(2-	
methylmorpholin-4-yl)pyridin-3-yl]methyl})amine	

 
 

ACE2	

 
 

-7.83441	

 
 
CC(NCc1ccc(nc1)N1CCOC(C)C1)c1nccn	

1C	



 

 

 
N-[3-({methyl[(1,3-thiazol-4-	

yl)methyl]amino}methyl)phenyl]pyrrolidine-2-	
carboxamide	hydrochloride	

 
 

ACE2	

 
 

-7.740865	

 
 
Cl.CN(Cc1cscn1)Cc1cccc(NC(=O)C2CC	

CN2)c1	

 

 

 
 

5-methyl-2-{[3-(4-methylpiperazin-1-	
yl)propyl]sulfanyl}-1H-1,3-benzodiazole	

 
 

ACE2	

 
 

-7.876119	

 
 
CN1CCN(CCCSc2nc3cc(C)ccc3[nH]2)CC	

1	

 

 

 
 

{[6-methyl-2-(pyrrolidin-1-yl)pyridin-3-	
yl]methyl}[(5-methylfuran-2-yl)methyl]amine	

 
 

ACE2	

 
 

-7.84725	

 
 
Cc1ccc(CNCc2ccc(C)nc2N2CCCC2)o1	

 

 

 
 

N-[3-(1-{[(4-methoxypyridin-2-	
yl)methyl]amino}ethyl)phenyl]acetamide	

 
 

ACE2	

 
 

-7.566234	

 
 
COc1ccnc(CNC(C)c2cccc(NC(C)=O)c2)c	

1	

 

 

 
3-({[(4-cyclopropylmorpholin-2-	

yl)methyl]amino}methyl)-N,N-dimethylpyridin-4-	
amine	

 
 

ACE2	

 
 

-7.891833	

 
 
CN(C)c1ccncc1CNCC1CN(CCO1)C1CC1	

 

 

 
[(1,3-diphenyl-1H-pyrazol-5-yl)carbamoyl]methyl	3-	

[(1,1-dioxo-1λ⁶,2-benzothiazol-3-	
yl)amino]propanoate	

 
 

ACE2	

 
 

-7.414	

 
 
O=C(COC(=O)CCNC1=NS(=O)(=O)c2cc	
ccc12)Nc1cc(nn1-c1ccccc1)-c1ccccc1	

 

 

 
 
2-fluoro-6-hydroxy-N-[2-(1-methyl-1H-imidazol-2-	

yl)ethyl]benzamide	

 
 

ACE2	

 
 

-7.366927	

 
 

Cn1ccnc1CCNC(=O)c1c(O)cccc1F	

 

 

 
5-{[3-({2-[(dimethylamino)methyl]pyridin-4-	

yl}oxy)pyrrolidin-1-yl]methyl}-2,3-dihydro-1H-1,2,4	
triazol-3-one	

 
 

ACE2	

 
 

-7.785194	

 
 
CN(C)Cc1cc(OC2CCN(Cc3nc(=O)[nH][n	

H]3)C2)ccn1	

 

 

 
2-amino-6-[({1-[3-(4-	

fluorophenyl)propanoyl]pyrrolidin-3-	
yl}(methyl)amino)methyl]-3,4-dihydropyrimidin-4-	

one	

 
 

ACE2	

 
 

-7.643808	

 
 
CN(Cc1cc(=O)[nH]c(N)n1)C1CCN(C1)C	

(=O)CCc1ccc(F)cc1	

 
 

 
[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-	

yl)carbamoyl]methyl	2-({[(4-	
fluorophenyl)carbamoyl]methyl}sulfanyl)propanoa	

te	

 
 

ACE2	

 
 

-7.465323	

 
 
CC(SCC(=O)Nc1ccc(F)cc1)C(=O)OCC(=	

O)Nc1c(C)nn(c1C)-c1ccccc1	

 

 

 
 
[(1-methyl-1H-imidazol-5-yl)methyl]({[2-methyl-4-	

(trifluoromethyl)phenyl]methyl})amine	

 
 

ACE2	

 
 

-7.915507	

 
 

Cc1cc(ccc1CNCc1cncn1C)C(F)(F)F	

 

 

 
 
3-[(4-methylpiperazin-1-yl)methyl]-N-[1-(4H-1,2,4-	

triazol-3-yl)cyclobutyl]benzamide	

 
 

ACE2	

 
 

-7.344405	

 
 
CN1CCN(Cc2cccc(c2)C(=O)NC2(CCC2)c	

2nnc[nH]2)CC1	

 

 

 
 
N-[2-(dimethylamino)-2-phenylethyl]-2-[(5-methyl-	

1H-1,3-benzodiazol-2-yl)sulfanyl]acetamide	

 
 

ACE2	

 
 

-7.040755	

 
 
CN(C)C(CNC(=O)CSc1nc2cc(C)ccc2[nH]	

1)c1ccccc1	

 
 

 
N-[2-(carbamoylmethyl)-1,2,3,4-	

tetrahydroisoquinolin-7-yl]-2-oxo-2,3-dihydro-1H-	
1,3-benzodiazole-5-carboxamide	

 
 

ACE2	

 
 

-7.125758	

 
 
NC(=O)CN1CCc2ccc(NC(=O)c3ccc4[nH	

]c(=O)[nH]c4c3)cc2C1	

 

 

 
 

[(2-bromo-6-fluorophenyl)methyl]({[1-	
(difluoromethyl)-1H-imidazol-2-yl]methyl})amine	

 
 

ACE2	

 
 

-7.863935	

 
 

FC(F)n1ccnc1CNCc1c(F)cccc1Br	



 

 

 
 
[1-(5-chloropyridin-2-yl)piperidin-4-yl](1H-imidazol-	

2-yl)methanol	

 
 

ACE2	

 
 

-7.910061	

 
 
OC(C1CCN(CC1)c1ccc(Cl)cn1)c1ncc[nH	

]1	

 

 

 
 

5-bromo-2-hydroxy-N-[2-	
(methylamino)propyl]benzamide	

 
 

ACE2	

 
 

-7.621056	

 
 

CNC(C)CNC(=O)c1cc(Br)ccc1O	

 

 

 
 
6-{1-[(6-methoxy-1,2,3,4-tetrahydronaphthalen-1-	

yl)amino]ethyl}-2,3-dihydropyridazin-3-one	

 
 

ACE2	

 
 

-7.855813	

 
 
COc1ccc2C(CCCc2c1)NC(C)c1ccc(=O)[	

nH]n1	

 

 

 
 

4-[(pyrrolidin-2-yl)methoxy]benzene-1-	
sulfonamide	hydrochloride	

 
 

ACE2	

 
 

-7.907147	

 
 
Cl.NS(=O)(=O)c1ccc(OCC2CCCN2)cc1	

 
 

 
 
N-[1-(1H-imidazol-1-yl)propan-2-yl]-1-(piperidin-3-	

yl)-1H-pyrazole-3-carboxamide	

 
 

ACE2	

 
 

-7.895666	

 
 
CC(Cn1ccnc1)NC(=O)c1ccn(n1)C1CCC	

NC1	

 

 

 
 

methyl({[1-(1,2,3,4-tetrahydroisoquinoline-3-	
carbonyl)piperidin-3-yl]methyl})amine	

 
 

ACE2	

 
 

-7.078639	

 
 
CNCC1CCCN(C1)C(=O)C1Cc2ccccc2CN	

1	

 

 

 
 
N-[2-hydroxy-2-(2-methoxyphenyl)ethyl]piperidine-	

2-carboxamide	

 
 

ACE2	

 
 

-7.278091	

 
 
COc1ccccc1C(O)CNC(=O)C1CCCCN1	

 

 

 
 
N-[2-(4-chlorophenyl)-2-hydroxyethyl]morpholine-	

3-carboxamide	

 
 

ACE2	

 
 

-7.905742	

 
 
OC(CNC(=O)C1COCCN1)c1ccc(Cl)cc1	

 
 

 
 

3-{[3-({2-[(dimethylamino)methyl]pyridin-4-	
yl}oxy)pyrrolidin-1-yl]methyl}pyridin-2-amine	

 
 

ACE2	

 
 

-7.520437	

 
 
CN(C)Cc1cc(OC2CCN(Cc3cccnc3N)C2)c	

cn1	

 

 

 
 
N-({thieno[3,2-b]thiophen-2-yl}methyl)-5H,6H,7H-	

pyrrolo[1,2-a]imidazol-7-amine	

 
 

ACE2	

 
 

-7.928268	

 
 

C(NC1CCn2ccnc12)c1cc2sccc2s1	

 

 

 
 
3-{[6-(4-methylpiperazin-1-yl)pyridin-3-yl]methyl}-	

1-[(pyridin-2-yl)methyl]urea	

 
 

ACE2	

 
 

-7.875927	

 
 
CN1CCN(CC1)c1ccc(CNC(=O)NCc2cccc	

n2)cn1	

 

 

 
 
1,3-dimethyl-7-(2-methylpropyl)-8-[(piperidin-1-	
yl)methyl]-2,3,6,7-tetrahydro-1H-purine-2,6-dione	

 
 

ACE2	

 
 

-7.933447	

 
 
CC(C)Cn1c(CN2CCCCC2)nc2n(C)c(=O)n	

(C)c(=O)c12	

 

 

 
 
(4-amino-1,1-difluorobutan-2-yl)({[1-cyclopentyl-3-	

(pyridin-2-yl)-1H-pyrazol-4-yl]methyl})amine	

 
 

ACE2	

 
 

-7.875737	

 
 

NCCC(NCc1cn(nc1-	
c1ccccn1)C1CCCC1)C(F)F	

 

 

 
 

4-methoxy-N-{2-[2-(piperazin-1-	
yl)ethoxy]phenyl}azepane-1-carboxamide	

 
 

ACE2	

 
 

-7.309969	

 
 
COC1CCCN(CC1)C(=O)Nc1ccccc1OCCN	

1CCNCC1	

 

 

 
 

3-chloro-6-{[(1,4-oxazepan-2-	
yl)methyl]amino}pyridine-2-carbonitrile	

 
 

ACE2	

 
 

-7.860086	

 
 

Clc1ccc(NCC2CNCCCO2)nc1C#N	



 

 

 
 
3-chloro-2-fluoro-4-methyl-N-[(1,4-oxazepan-2-	

yl)methyl]benzamide	

 
 

ACE2	

 
 

-7.936678	

 
 
Cc1ccc(C(=O)NCC2CNCCCO2)c(F)c1Cl	

 

 

 
 

({1-[1-(4-fluorophenyl)-1H-imidazole-5-	
carbonyl]pyrrolidin-3-yl}methyl)(methyl)amine	

 
 

ACE2	

 
 

-7.931379	

 
 

CNCC1CCN(C1)C(=O)c1cncn1-	
c1ccc(F)cc1	

 

 

 
 

2-(4-benzyl-1,4-diazepan-1-yl)-N-{[(4-	
fluorophenyl)carbamoyl]methyl}acetamide	

 
 

ACE2	

 
 

-7.271333	

 
 
Fc1ccc(NC(=O)CNC(=O)CN2CCCN(Cc3c	

cccc3)CC2)cc1	

 

 

 
3-methyl-7-[2-methyl-3-(pyrimidin-2-	

ylsulfanyl)propyl]-8-(4-methylpiperazin-1-yl)-	
2,3,6,7-tetrahydro-1H-purine-2,6-dione	

 
 

ACE2	

 
 

-7.751422	

 
 
CC(CSc1ncccn1)Cn1c(nc2n(C)c(=O)[nH	

]c(=O)c12)N1CCN(C)CC1	

 

 

 
1,3-dimethyl-8-[(4-methylpiperazin-1-yl)methyl]-7-	
(2-methylpropyl)-2,3,6,7-tetrahydro-1H-purine-2,6-	

dione	

 
 

ACE2	

 
 

-7.931598	

 
 
CC(C)Cn1c(CN2CCN(C)CC2)nc2n(C)c(=	

O)n(C)c(=O)c12	

 

 

 
 

3-methyl-8-(piperazin-1-yl)-7-(prop-2-en-1-yl)-	
2,3,6,7-tetrahydro-1H-purine-2,6-dione	

 
 

ACE2	

 
 

-7.460227	

 
 
Cn1c2nc(N3CCNCC3)n(CC=C)c2c(=O)[	

nH]c1=O	

 

 

 
 
3-methyl-7-(2-methylprop-2-en-1-yl)-8-(piperazin-	

1-yl)-2,3,6,7-tetrahydro-1H-purine-2,6-dione	

 
 

ACE2	

 
 

-7.33643	

 
 
CC(=C)Cn1c(nc2n(C)c(=O)[nH]c(=O)c1	

2)N1CCNCC1	

 

 

 
1-methyl-8-[2-(morpholin-4-yl)ethyl]-	

1H,2H,3H,4H,6H,7H,8H-imidazo[1,2-g]purine-2,4-	
dione	

 
 

ACE2	

 
 

-7.330341	

 
 
Cn1c2nc3N(CCN4CCOCC4)CCn3c2c(=	

O)[nH]c1=O	

 

 

 
 
rac-1-[(1R,2R)-2-aminocyclohexyl]-3-{imidazo[1,2-	

a]pyridin-7-yl}urea	

 
 

ACE2	

 
 

-7.3361	

 

 

 

 
 

N-(benzyloxy)-2-({imidazo[1,2-a]pyridin-2-	
yl}methoxy)benzamide	

 
 

ACE2	

 
 

-7.671655	

 
 
O=C(NOCc1ccccc1)c1ccccc1OCc1cn2c	

cccc2n1	

 

 

 
 

2-methoxy-5-(pyrrolidine-2-amido)pyridine-3-	
carboxamide	

 
 

ACE2	

 
 

-7.783586	

 
 
COc1ncc(NC(=O)C2CCCN2)cc1C(N)=O	

 

 

 
 
5-bromo-N-[(piperidin-3-yl)methyl]-1H-indazole-3-	

carboxamide	

 
 

ACE2	

 
 

-7.822889	

 
 
Brc1ccc2[nH]nc(C(=O)NCC3CCCNC3)c	

2c1	

 

 

 
 

N-[(piperidin-3-yl)methyl]-1H-indazole-3-	
carboxamide	

 
 

ACE2	

 
 

-7.917339	

 
 
O=C(NCC1CCCNC1)c1n[nH]c2ccccc12	

 

 

 
2-(furan-2-yl)-N4-[(pyrrolidin-2-	

yl)methyl]imidazo[1,5-a]pyrimidine-4,8-	
dicarboxamide	

 
 

ACE2	

 
 

-7.250268	

 
 

NC(=O)c1ncn2c(cc(nc12)-	
c1ccco1)C(=O)NCC1CCCN1	

 

 

 
N4-(3-amino-4-methylpentyl)-2-(furan-2-yl)-N4-	

methylimidazo[1,5-a]pyrimidine-4,8-	
dicarboxamide	

 
 

ACE2	

 
 

-7.521512	

 
 
CC(C)C(N)CCN(C)C(=O)c1cc(nc2c(ncn1	

2)C(N)=O)-c1ccco1	



 

 

 
 

N-(4,4-difluoropiperidin-3-yl)-5-	
(methylsulfamoyl)furan-3-carboxamide	

 
 

ACE2	

 
 

-7.306415	

 
 
CNS(=O)(=O)c1cc(co1)C(=O)NC1CNCC	

C1(F)F	

 
 

 
2-({3-[2-(azepan-1-	

yl)acetamido]phenyl}carbamoyl)-2-methylacetic	
acid	

 
 

ACE2	

 
 

-7.696227	

 
 
CC(C(O)=O)C(=O)Nc1cccc(NC(=O)CN2	

CCCCCC2)c1	

 

 

 
 

N-(4,4-difluoropiperidin-3-yl)-5-methyl-4-	
sulfamoylfuran-2-carboxamide	

 
 

ACE2	

 
 

-7.550276	

 
 
Cc1oc(cc1S(N)(=O)=O)C(=O)NC1CNCC	

C1(F)F	

 

 

 
3-methyl-7-{2-methyl-3-[(1-phenyl-1H-1,2,3,4-	

tetrazol-5-yl)sulfanyl]propyl}-8-(4-methylpiperazin-	
1-yl)-2,3,6,7-tetrahydro-1H-purine-2,6-dione	

 
 

ACE2	

 
 

-7.596339	

 
CC(CSc1nnnn1-	

c1ccccc1)Cn1c(nc2n(C)c(=O)[nH]c(=O)	
c12)N1CCN(C)CC1	

 

 

 
 
1-(3-methylpiperazin-1-yl)-2-[2-(4H-1,2,4-triazol-3-	

yl)-1,3-thiazol-4-yl]ethan-1-one	

 
 

ACE2	

 
 

-7.906252	

 
 

CC1CN(CCN1)C(=O)Cc1csc(n1)-	
c1nnc[nH]1	

 

 

 
 

4-{[2-(4-methylpiperazin-1-	
yl)propyl]amino}quinoline-3-carboxylic	acid	

 
 

ACE2	

 
 

-7.251865	

 
 
CC(CNc1c(cnc2ccccc12)C(O)=O)N1CC	

N(C)CC1	

 

 

 
 

6-{3-[(3R)-3-hydroxypyrrolidin-1-yl]azetidine-1-	
carbonyl}pyridine-2-carboxamide	

 
 

ACE2	

 
 

-7.815683	

 
 
NC(=O)c1cccc(n1)C(=O)N1CC(C1)N1C	

C[C@@H](O)C1	

 

 

 
 
2-{2-[(dimethylamino)methyl]morpholin-4-yl}-1,8-	

naphthyridine-3-carbonitrile	

 
 

ACE2	

 
 

-7.596166	

 
 
CN(C)CC1CN(CCO1)c1nc2ncccc2cc1C#	

N	

 

 

 
2-[3-butyl-8-(hydroxymethyl)-2,6-dioxo-7-propyl-	

2,3,6,7-tetrahydro-1H-purin-1-yl]-N-[4-	
(trifluoromethyl)phenyl]acetamide	

 
 

ACE2	

 
 

-7.861967	

 
 
CCCCn1c2nc(CO)n(CCC)c2c(=O)n(CC(=	

O)Nc2ccc(cc2)C(F)(F)F)c1=O	

 

 

 
 

rac-1-{[(2R,3R)-4-ethyl-3-phenylmorpholin-2-	
yl]methyl}-3-{imidazo[1,2-a]pyridin-6-yl}urea	

 
 

ACE2	

 
 

-7.339682	

 

 

 

 
 

2-[(1,2-dimethyl-1H-imidazol-5-yl)methyl]-5,8-	
dimethoxy-1,2,3,4-tetrahydroisoquinolin-4-ol	

 
 

ACE2	

 
 

-7.821377	

 
 
COc1ccc(OC)c2C(O)CN(Cc3cnc(C)n3C)	

Cc12	

 

 

 
 
N-[1-(piperidin-2-yl)ethyl]pyridine-2-carboxamide	

 
 

ACE2	

 
 

-7.85541	

 
 

CC(NC(=O)c1ccccn1)C1CCCCN1	

 

 

 
 

6-({3a-amino-octahydrocyclopenta[c]pyrrol-2-	
yl}methyl)pyridazin-3-amine	

 
 

ACE2	

 
 

-7.279934	

 
 

Nc1ccc(CN2CC3CCCC3(N)C2)nn1	

 

 

 
 
N-(2-aminopropoxy)-3-(2,6-difluorophenyl)prop-2-	

enamide	

 
 

ACE2	

 
 

-7.900215	

 
 

CC(N)CONC(=O)C=Cc1c(F)cccc1F	

 

 

 
 

N-ethyl-6-(1-methylpiperazine-2-amido)-2,3-	
dihydro-1H-indole-1-carboxamide	

 
 

ACE2	

 
 

-7.505628	

 
 
CCNC(=O)N1CCc2ccc(NC(=O)C3CNCC	

N3C)cc12	



 

 

 
 

[(2-chloro-1-benzofuran-3-yl)methyl](1,3-	
diaminopropan-2-yl)amine	

 
 

ACE2	

 
 

-7.91669	

 
 

NCC(CN)NCc1c(Cl)oc2ccccc12	

 

 

 
 
N-{2-[(4-fluorophenyl)methyl]-1H-1,3-benzodiazol-	

5-yl}-2-(4-methylpiperazin-1-yl)acetamide	

 
 

ACE2	

 
 

-7.82796	

 
 
CN1CCN(CC(=O)Nc2ccc3[nH]c(Cc4ccc(	

F)cc4)nc3c2)CC1	

 

 

 
rac-(3R,4S)-1-[(3-cyclopentyl-1,2,4-oxadiazol-5-	

yl)methyl]-4-(1-methyl-1H-imidazol-5-yl)pyrrolidin-	
3-amine	

 
 

ACE2	

 
 

-7.82452	

 

 
 

 
 
N-{[6-(3-aminopyrrolidin-1-yl)pyridin-2-yl]methyl}-	

1H-pyrazole-5-carboxamide	

 
 

ACE2	

 
 

-7.821383	

 
 
NC1CCN(C1)c1cccc(CNC(=O)c2ccn[nH]	

2)n1	

 

 

 
7-methyl-N-[(3S,4R)-1-methyl-4-(1-methyl-1H-	

imidazol-5-yl)pyrrolidin-3-yl]imidazo[1,5-a]pyridine-	
1-carboxamide	

 
 

ACE2	

 
 

-7.856272	

 
 
CN1C[C@@H](NC(=O)c2ncn3ccc(C)cc	

23)[C@@H](C1)c1cncn1C	

 

 

 
N-[(3S,4R)-1-methyl-4-(1-methyl-1H-imidazol-5-	
yl)pyrrolidin-3-yl]-3H-imidazo[4,5-b]pyridine-5-	

carboxamide	

 
 

ACE2	

 
 

-7.71168	

 
 
CN1C[C@@H](NC(=O)c2ccc3nc[nH]c3	

n2)[C@@H](C1)c1cncn1C	

 

 

 
 

N-(piperidin-3-yl)methanesulfonamide	

 
 

ACE2	

 
 

-7.829874	

 
 

CS(=O)(=O)NC1CCCNC1	

 

 

 
 

3-{[(1,5-dimethyl-1H-1,3-benzodiazol-2-	
yl)methyl]amino}-1,1-difluoro-2-methylpropan-2-ol	

 
 

ACE2	

 
 

-7.784154	

 
 
Cc1ccc2n(C)c(CNCC(C)(O)C(F)F)nc2c1	

 

 

 
 
({imidazo[1,2-a]pyridin-8-yl}methyl)({[4-(propan-2-	

yloxy)phenyl]methyl})amine	

 
 

ACE2	

 
 

-7.797499	

 
 
CC(C)Oc1ccc(CNCc2cccn3ccnc23)cc1	

 

 

 
 
N-{2-[(dimethylamino)methyl]-1H-1,3-benzodiazol-	

6-yl}-1-methyl-1H-pyrazole-5-sulfonamide	

 
 

ACE2	

 
 

-7.921568	

 
 
CN(C)Cc1nc2ccc(NS(=O)(=O)c3ccnn3C	

)cc2[nH]1	

 
 

 
 

N-[3-(1-{[(5-methylfuran-2-	
yl)methyl]amino}ethyl)phenyl]acetamide	

 
 

ACE2	

 
 

-7.57716	

 
 
CC(NCc1ccc(C)o1)c1cccc(NC(C)=O)c1	

 

 

 
 
2-methyl-N-[(1-propyl-1H-imidazol-5-yl)methyl]-	

1,2,3,4-tetrahydroisoquinolin-4-amine	

 
 

ACE2	

 
 

-7.915427	

 
 
CCCn1cncc1CNC1CN(C)Cc2ccccc12	

 
 

 
N-[3-({[(5-chlorothiophen-2-	

yl)methyl]amino}methyl)phenyl]-2-	
methoxyacetamide	

 
 

ACE2	

 
 

-7.445454	

 
 
COCC(=O)Nc1cccc(CNCc2ccc(Cl)s2)c1	

 

 

 
 
2-{imidazo[1,2-a]pyridin-2-yl}-N-{[6-(1H-imidazol-1-	

yl)pyridin-3-yl]methyl}acetamide	

 
 

ACE2	

 
 

-7.33799	

 
 
O=C(Cc1cn2ccccc2n1)NCc1ccc(nc1)-	

n1ccnc1	

 
 

 
 

4-(1H-1,3-benzodiazol-2-yl)-N-[2-(1,2,3,4-	
tetrahydroisoquinolin-2-yl)ethyl]butanamide	

 
 

ACE2	

 
 

-7.425942	

 
 
O=C(CCCc1nc2ccccc2[nH]1)NCCN1CCc	

2ccccc2C1	



 

 

 
 
4-(1H-1,3-benzodiazol-2-yl)-N-[2-(dimethylamino)-	

2-(4-ethylphenyl)ethyl]butanamide	

 
 

ACE2	

 
 

-7.538094	

 
 
CCc1ccc(cc1)C(CNC(=O)CCCc1nc2cccc	

c2[nH]1)N(C)C	

 

 

 
 

2-chloro-N-[3-(4-ethylpiperazin-1-yl)propyl]-6-	
fluorobenzamide	

 
 

ACE2	

 
 

-7.878207	

 
 
CCN1CCN(CCCNC(=O)c2c(F)cccc2Cl)CC	

1	

 

 

 
 

2-{[(2-{imidazo[1,2-a]pyridin-2-	
yl}ethyl)carbamoyl]amino}-2-phenylacetamide	

 
 

ACE2	

 
 

-7.495692	

 
 
NC(=O)C(NC(=O)NCCc1cn2ccccc2n1)c	

1ccccc1	

 
 

 
 
N-{[2-(4-methylpiperazin-1-yl)pyridin-4-yl]methyl}-	

2-(2-oxo-1,3-thiazolidin-3-yl)acetamide	

 
 

ACE2	

 
 

-7.935508	

 
 
CN1CCN(CC1)c1cc(CNC(=O)CN2CCSC2	

=O)ccn1	

 
 

 
 

3-(2-{imidazo[1,2-a]pyridin-2-yl}ethyl)-1-[2-	
(morpholin-4-yl)propyl]urea	

 
 

ACE2	

 
 

-7.478851	

 
 
CC(CNC(=O)NCCc1cn2ccccc2n1)N1CC	

OCC1	

 

 

 
 
N-(2-ethoxyphenyl)-2-[({imidazo[1,2-a]pyridin-2-	

yl}methyl)amino]-2-phenylacetamide	

 
 

ACE2	

 
 

-7.382268	

 
 
CCOc1ccccc1NC(=O)C(NCc1cn2ccccc2	

n1)c1ccccc1	

 

 

 
 
6,7-dimethoxy-2-[(4-methylpiperazin-1-yl)methyl]-	

3,4-dihydroquinazolin-4-one	

 
 

ACE2	

 
 

-7.85665	

 
 
COc1cc2nc(CN3CCN(C)CC3)[nH]c(=O)c	

2cc1OC	

 

 

 
 

1-{[(2-oxo-2,3-dihydro-1H-1,3-benzodiazol-5-	
yl)carbamoyl]methyl}piperidine-4-carboxamide	

 
 

ACE2	

 
 

-7.011648	

 
 
NC(=O)C1CCN(CC(=O)Nc2ccc3[nH]c(=	

O)[nH]c3c2)CC1	

 
 

 
2-({[(5-chloro-2-	

methoxyphenyl)carbamoyl]methyl}(methyl)amino)-	
N-(2-oxo-2,3-dihydro-1H-1,3-benzodiazol-5-	

yl)acetamide	

 
 

ACE2	

 
 

-7.666898	

 
 
COc1ccc(Cl)cc1NC(=O)CN(C)CC(=O)Nc	

1ccc2[nH]c(=O)[nH]c2c1	

 
 

 
 
2-(decahydroisoquinolin-2-yl)-N-(2-oxo-2,3-dihydro	

1H-1,3-benzodiazol-5-yl)acetamide	

 
 

ACE2	

 
 

-7.392527	

 
 
O=C(CN1CCC2CCCCC2C1)Nc1ccc2[nH]	

c(=O)[nH]c2c1	

 

 

 
3-(furan-2-carbonyl)-1-[6-({[(furan-2-	

yl)formamido]methanethioyl}amino)pyridin-2-	
yl]thiourea	

 
 

ACE2	

 
 

-7.848658	

 
 
O=C(NC(=S)Nc1cccc(NC(=S)NC(=O)c2c	

cco2)n1)c1ccco1	

 

 

 
 

5-chloro-7-[(4-methylpiperazin-1-	
yl)methyl]quinolin-8-ol	

 
 

ACE2	

 
 

-7.666059	

 
 
CN1CCN(Cc2cc(Cl)c3cccnc3c2O)CC1	

 

 

 
 

N-[(4-methylpiperazin-1-yl)methyl]pyrazine-2-	
carboxamide	

 
 

ACE2	

 
 

-7.566398	

 
 

CN1CCN(CNC(=O)c2cnccn2)CC1	

 

 

 
 
5-ethoxy-1,3-bis[(3-hydroxypiperidin-1-yl)methyl]-	

2,3-dihydro-1H-1,3-benzodiazole-2-thione	

 
 

ACE2	

 
 

-7.6796	

 
 
CCOc1ccc2n(CN3CCCC(O)C3)c(=S)n(C	

N3CCCC(O)C3)c2c1	

 

 

 
6-[({6-chloroimidazo[1,2-a]pyridin-2-	

yl}methyl)sulfanyl]-2,3,4,5-tetrahydro-1,2,4-	
triazine-3,5-dione	

 
 

ACE2	

 
 

-7.577509	

 
 
Clc1ccc2nc(CSc3n[nH]c(=O)[nH]c3=O)	

cn2c1	



 

 

 
13-{[2-(dimethylamino)ethyl]amino}-11-methyl-12-	
(3-methylbutyl)-1,8-diazatricyclo[7.4.0.0²,⁷]trideca-	

2,4,6,8,10,12-hexaene-10-carbonitrile	

 
 

ACE2	

 
 

-7.305675	

 
 
CC(C)CCc1c(C)c(C#N)c2nc3ccccc3n2c1	

NCCN(C)C	

 

 

 
16-{[2-(diethylamino)ethyl]amino}-1,8-	
diazatetracyclo[7.7.0.0²,⁷.0¹¹,¹⁵]hexadeca-	
2,4,6,8,10,15-hexaene-10-carbonitrile	

 
 

ACE2	

 
 

-7.363593	

 
 
CCN(CC)CCNc1c2CCCc2c(C#N)c2nc3cc	

ccc3n12	

 
 

 
N-[3-({[(2,5-	

difluorophenyl)methyl]amino}methyl)phenyl]-2-	
methylpropanamide	

 
 

ACE2	

 
 

-7.412559	

 
 
CC(C)C(=O)Nc1cccc(CNCc2cc(F)ccc2F)	

c1	

 

 

 
 

[(2,5-difluorophenyl)methyl]({[6-(2,6-	
dimethylmorpholin-4-yl)pyridin-3-
yl]methyl})amine	

 
 

ACE2	

 
 

-7.830545	

 
 
CC1CN(CC(C)O1)c1ccc(CNCc2cc(F)ccc	

2F)cn1	

 
 

 
N-[3-({[(3-	

methylphenyl)methyl]amino}methyl)phenyl]-3-	
(morpholin-4-yl)propanamide	

 
 

ACE2	

 
 

-7.438191	

 
 
Cc1cccc(CNCc2cccc(NC(=O)CCN3CCOC	

C3)c2)c1	

 

 

 
3-{[({2-[(2,6-dimethylmorpholin-4-	

yl)methyl]phenyl}methyl)amino]methyl}benzonitril	
e	

 
 

ACE2	

 
 

-7.301904	

 
 
CC1CN(Cc2ccccc2CNCc2cccc(c2)C#N)C	

C(C)O1	

 

 

 
2-{[(4-methoxyphenyl)(phenyl)methyl]amino}-N-(2-	

oxo-2,3-dihydro-1H-1,3-benzodiazol-5-	
yl)acetamide	

 
 

ACE2	

 
 

-7.302589	

 
 
COc1ccc(cc1)C(NCC(=O)Nc1ccc2[nH]c(	

=O)[nH]c2c1)c1ccccc1	

 

 

 
1-[4-({[(3-	

fluorophenyl)methyl]amino}methyl)phenyl]piperidi	
ne-3-carboxamide	

 
 

ACE2	

 
 

-7.795565	

 
 
NC(=O)C1CCCN(C1)c1ccc(CNCc2cccc(F	

)c2)cc1	

 
 

 
1-[4-({[(thiophen-2-	

yl)methyl]amino}methyl)phenyl]piperidine-3-	
carboxamide	

 
 

ACE2	

 
 

-7.26034	

 
 
NC(=O)C1CCCN(C1)c1ccc(CNCc2cccs2)	

cc1	

 

 

 
1-[4-({[(3-	

cyanophenyl)methyl]amino}methyl)phenyl]piperidi	
ne-3-carboxamide	

 
 

ACE2	

 
 

-7.247289	

 
 
NC(=O)C1CCCN(C1)c1ccc(CNCc2cccc(c	

2)C#N)cc1	

 

 

 
2-({2-[({imidazo[1,2-a]pyridin-2-	

yl}methyl)sulfanyl]phenyl}formamido)propanamid	
e	

 
 

ACE2	

 
 

-7.695058	

 
 
CC(NC(=O)c1ccccc1SCc1cn2ccccc2n1)	

C(N)=O	

 

 

 
 
2-[({imidazo[1,2-a]pyridin-2-yl}methyl)sulfanyl]-N-	

(1,3,4-thiadiazol-2-yl)benzamide	

 
 

ACE2	

 
 

-7.843258	

 
 
O=C(Nc1nncs1)c1ccccc1SCc1cn2ccccc	

2n1	

 
 

 
 
N-({6-chloroimidazo[1,2-a]pyridin-2-yl}methyl)-4-	

[(4-methylpiperazin-1-yl)methyl]benzamide	

 
 

ACE2	

 
 

-7.623186	

 
 
CN1CCN(Cc2ccc(cc2)C(=O)NCc2cn3cc(	

Cl)ccc3n2)CC1	

 

 

 
 
8-[(4-acetylpiperazin-1-yl)methyl]-3,7-dimethyl-	

2,3,6,7-tetrahydro-1H-purine-2,6-dione	

 
 

ACE2	

 
 

-7.252306	

 
 
CC(=O)N1CCN(Cc2nc3n(C)c(=O)[nH]c(	

=O)c3n2C)CC1	

 

 

 
 
5-chloro-2-methoxy-N-{2-[(morpholin-4-yl)methyl]-	

1H-1,3-benzodiazol-6-yl}benzamide	

 
 

ACE2	

 
 

-7.268946	

 
 
COc1ccc(Cl)cc1C(=O)Nc1ccc2nc(CN3C	

COCC3)[nH]c2c1	



 

 

 
 

2-hydroxy-5-methoxy-N-[(morpholin-2-	
yl)methyl]benzamide	

 
 

ACE2	

 
 

-7.411243	

 
 
COc1ccc(O)c(c1)C(=O)NCC1CNCCO1	

 

 

 
 

N-[5-(ethanesulfonyl)-2-hydroxyphenyl]-2-	
{imidazo[2,1-b][1,3]thiazol-6-yl}acetamide	

 
 

ACE2	

 
 

-7.304225	

 
 
CCS(=O)(=O)c1ccc(O)c(NC(=O)Cc2cn3c	

csc3n2)c1	

 

 

 
 
2-({6-chloroimidazo[1,2-a]pyridin-2-yl}methyl)-1,2-	

dihydrophthalazin-1-one	

 
 

ACE2	

 
 

-7.361447	

 
 
Clc1ccc2nc(Cn3ncc4ccccc4c3=O)cn2c	

1	

 

 

 
 
6-hydroxy-N-{2-[(morpholin-4-yl)methyl]-1H-1,3-	

benzodiazol-6-yl}pyridine-3-carboxamide	

 
 

ACE2	

 
 

-7.398419	

 
 
Oc1ccc(cn1)C(=O)Nc1ccc2nc(CN3CCO	

CC3)[nH]c2c1	

 

 

 
 

4-acetyl-N-{2-[(morpholin-4-yl)methyl]-1H-1,3-	
benzodiazol-6-yl}-1H-pyrrole-2-carboxamide	

 
 

ACE2	

 
 

-7.627306	

 
 
CC(=O)c1c[nH]c(c1)C(=O)Nc1ccc2nc(C	

N3CCOCC3)[nH]c2c1	

 

 

 
 
6-{[4-(2,2-difluoroethyl)piperazin-1-yl]methyl}-1-	
methyl-1H,4H,5H-pyrazolo[3,4-d]pyrimidin-4-one	

 
 

ACE2	

 
 

-7.78928	

 
 
Cn1ncc2c1nc(CN1CCN(CC(F)F)CC1)[n	

H]c2=O	

 

 

 
 
N-{[4-(1H-1,3-benzodiazol-1-yl)phenyl]methyl}-2-	

(1H-imidazol-1-yl)propanamide	

 
 

ACE2	

 
 

-7.800908	

 
 

CC(C(=O)NCc1ccc(cc1)-	
n1cnc2ccccc12)n1ccnc1	

 

 

 
 
N-[(1-ethylpiperidin-4-yl)methyl]-2-{imidazo[2,1-	

b][1,3]thiazol-6-yl}acetamide	

 
 

ACE2	

 
 

-7.597419	

 
 
CCN1CCC(CNC(=O)Cc2cn3ccsc3n2)CC	

1	

 

 

 
 

N-({1-[(1-phenyl-1H-1,2,3,4-tetrazol-5-	
yl)methyl]pyrrolidin-3-yl}methyl)pyridin-2-amine	

 
 

ACE2	

 
 

-7.576307	

 
 

C(Nc1ccccn1)C1CCN(Cc2nnnn2-	
c2ccccc2)C1	

 

 

 
 
1-(2,5-difluorophenyl)-2-{5H,6H,7H,8H-imidazo[1,2	

a]pyrazin-7-yl}ethan-1-ol	

 
 

ACE2	

 
 

-7.881457	

 
 
OC(CN1CCn2ccnc2C1)c1cc(F)ccc1F	

 
 

 
 

3-(furan-2-yl)-5-({5H,6H,7H,8H-imidazo[1,2-	
a]pyrazin-7-yl}methyl)-1,2,4-oxadiazole	

 
 

ACE2	

 
 

-7.871089	

 
 
C(N1CCn2ccnc2C1)c1nc(no1)-c1ccco1	

 

 

 
 
1-{5H,6H,7H,8H-imidazo[1,2-a]pyrazin-7-yl}-3-(4-	

methylphenoxy)propan-2-ol	

 
 

ACE2	

 
 

-7.796023	

 
 
Cc1ccc(OCC(O)CN2CCn3ccnc3C2)cc1	

 

 

 
2-(1-{5H,6H,7H,8H-imidazo[1,2-a]pyrazin-7-	
yl}ethyl)-5,6-dimethyl-3H,4H-thieno[2,3-	

d]pyrimidin-4-one	

 
 

ACE2	

 
 

-7.890335	

 
 
CC(N1CCn2ccnc2C1)c1nc2sc(C)c(C)c2c	

(=O)[nH]1	

 

 

 
 

1-{5H,6H,7H,8H-imidazo[1,2-a]pyrazin-7-yl}-3-	
(naphthalen-1-yloxy)propan-2-ol	

 
 

ACE2	

 
 

-7.909158	

 
 
OC(COc1cccc2ccccc12)CN1CCn2ccnc2	

C1	

 

 

 
 

2-(1-{5H,6H,7H,8H-imidazo[1,2-a]pyrazin-7-	
yl}ethyl)-5-(thiophen-2-yl)-1,3,4-oxadiazole	

 
 

ACE2	

 
 

-7.595696	

 
 

CC(N1CCn2ccnc2C1)c1nnc(o1)-	
c1cccs1	



 
 

 
 

2-(furan-2-yl)-5-({5H,6H,7H,8H-imidazo[1,2-	
a]pyrazin-7-yl}methyl)-1,3,4-oxadiazole	

 
 

ACE2	

 
 

-7.402563	

 
 
C(N1CCn2ccnc2C1)c1nnc(o1)-c1ccco1	

 
 

 
 

2-(3-{5H,6H,7H,8H-imidazo[1,2-a]pyrazin-7-	
yl}propyl)-1,3-benzoxazole	

 
 

ACE2	

 
 

-7.644226	

 
 
C(CN1CCn2ccnc2C1)Cc1nc2ccccc2o1	

 

 

 
 

1-(2,3-dihydro-1H-indol-1-yl)-3-{5H,6H,7H,8H-	
imidazo[1,2-a]pyrazin-7-yl}propan-1-one	

 
 

ACE2	

 
 

-7.778121	

 
 
O=C(CCN1CCn2ccnc2C1)N1CCc2ccccc	

12	

 

 

 
 
N-[3-(1H-1,3-benzodiazol-1-yl)propyl]-3-methyl-2-	

(naphthalene-2-sulfonamido)butanamide	

 
 

MPRO	

 
 

-7.638746	

 
 
CC(C)C(NS(=O)(=O)c1ccc2ccccc2c1)C(	

=O)NCCCn1cnc2ccccc12	

 

 

 
 
4-methoxy-N-[3-(2-oxopyrrolidin-1-yl)phenyl]-3-{[2-	

(pyridin-2-yl)ethyl]sulfamoyl}benzamide	

 
 

MPRO	

 
 

-7.644347	

 
 
COc1ccc(cc1S(=O)(=O)NCCc1ccccn1)C(	

=O)Nc1cccc(c1)N1CCCC1=O	

 

 

 
4-[(3-benzyl-7-butyl-2,6-dioxo-2,3,6,7-tetrahydro-	

1H-purin-8-yl)methyl]-3,4-dihydro-2H-1,4-	
benzoxazine-2-carboxamide	

 
 

MPRO	

 
 

-7.759647	

 
 
CCCCn1c(CN2CC(Oc3ccccc23)C(N)=O)	
nc2n(Cc3ccccc3)c(=O)[nH]c(=O)c12	

 

 

 
 

2-[2-(4-ethoxyphenyl)pyrrolidin-1-yl]-N-(3-	
sulfamoylphenyl)acetamide	

 
 

MPRO	

 
 

-7.748233	

 
 
CCOc1ccc(cc1)C1CCCN1CC(=O)Nc1ccc	

c(c1)S(N)(=O)=O	

 

 

 
 

4-[2-(4-cyanophenoxy)acetyl]-N-methyl-3,4-	
dihydro-2H-1,4-benzoxazine-2-carboxamide	

 
 

MPRO	

 
 

-7.673447	

 
 
CNC(=O)C1CN(C(=O)COc2ccc(cc2)C#N	

)c2ccccc2O1	

 

 

 
 

4-[({[phenyl(pyridin-3-	
yl)methyl]carbamoyl}amino)methyl]benzamide	

 
 

MPRO	

 
 

-7.749195	

 
 
NC(=O)c1ccc(CNC(=O)NC(c2ccccc2)c2	

cccnc2)cc1	

 

 

 
 

N-[4-(2-{[(2,3-dihydro-1H-inden-1-	
yl)carbamoyl]amino}ethyl)phenyl]acetamide	

 
 

MPRO	

 
 

-7.640749	

 
 
CC(=O)Nc1ccc(CCNC(=O)NC2CCc3cccc	

c23)cc1	

 
 

 
 
2-{imidazo[1,5-a]pyridin-3-ylsulfanyl}-N-(2-oxo-2,3-	
dihydro-1H-1,3-benzodiazol-5-yl)propanamide	

 
 

MPRO	

 
 

-7.711375	

 
 
CC(Sc1ncc2ccccn12)C(=O)Nc1ccc2[nH	

]c(=O)[nH]c2c1	

 
 

 
 
N-(3-methanesulfinylphenyl)-2-[3-(trifluoromethyl)-	

1H-pyrazol-1-yl]acetamide	

 
 

MPRO	

 
 

-7.618535	

 
 
CS(=O)c1cccc(NC(=O)Cn2ccc(n2)C(F)(F	

)F)c1	

 

 

 
 
N-[(1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)methyl]-	

3-{[(furan-2-yl)methyl]sulfamoyl}benzamide	

 
 

MPRO	

 
 

-7.646959	

 
 
Cc1nn(Cc2ccccc2)c(C)c1CNC(=O)c1ccc	

c(c1)S(=O)(=O)NCc1ccco1	

 
 

 
 
1-[1-(2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)ethyl]-	

3-[2-oxo-1-(propan-2-yl)pyrrolidin-3-yl]urea	

 
 

MPRO	

 
 

-7.6444	

 
 
CC(C)N1CCC(NC(=O)NC(C)c2ccc3NC(=	

O)CCc3c2)C1=O	

 
 

 
2-{[(3-chlorophenyl)methyl](methyl)amino}-N-(2-	

oxo-2,3-dihydro-1H-1,3-benzodiazol-5-	
yl)propanamide	

 
 

MPRO	

 
 

-7.705485	

 
 
CC(N(C)Cc1cccc(Cl)c1)C(=O)Nc1ccc2[n	

H]c(=O)[nH]c2c1	



 
 

 
2-{[1-(4-ethylphenyl)-2-methylpropyl]amino}-N-(2-	

oxo-2,3-dihydro-1H-1,3-benzodiazol-5-	
yl)propanamide	

 
 

MPRO	

 
 

-7.654702	

 
 
CCc1ccc(cc1)C(NC(C)C(=O)Nc1ccc2[nH	

]c(=O)[nH]c2c1)C(C)C	

 

 

 
 
1-tert-butyl-N-(3-carbamoyl-4-fluorophenyl)-3-(2-	

ethoxyphenyl)-1H-pyrazole-4-carboxamide	

 
 

MPRO	

 
 

-7.656709	

 
CCOc1ccccc1-	

c1nn(cc1C(=O)Nc1ccc(F)c(c1)C(N)=O)	
C(C)(C)C	

 

 

 
 

2-[(2-{2-[2-(4-methoxyphenyl)azepan-1-	
yl]acetamido}phenyl)sulfanyl]acetamide	

 
 

MPRO	

 
 

-7.739322	

 
 
COc1ccc(cc1)C1CCCCCN1CC(=O)Nc1cc	

ccc1SCC(N)=O	

 

 

 
 
N-[2-(3-chlorophenyl)-2-methoxyethyl]-2-oxo-2,3-	

dihydro-1H-1,3-benzodiazole-5-carboxamide	

 
 

MPRO	

 
 

-7.666192	

 
 
COC(CNC(=O)c1ccc2[nH]c(=O)[nH]c2c	

1)c1cccc(Cl)c1	

 

 

 
 
N-[3-(pyrrolidine-1-carbonyl)phenyl]-3-(1H-1,2,4-	

triazol-1-yl)piperidine-1-carboxamide	

 
 

MPRO	

 
 

-7.708583	

 
 
O=C(Nc1cccc(c1)C(=O)N1CCCC1)N1CC	

CC(C1)n1cncn1	

 

 

 
1-benzyl-3-hydroxy-N-[(3-hydroxy-5,6-	

dimethylpyridazin-4-yl)methyl]pyrrolidine-3-	
carboxamide	

 
 

MPRO	

 
 

-7.768783	

 
 
Cc1nnc(O)c(CNC(=O)C2(O)CCN(Cc3ccc	

cc3)C2)c1C	

 

 

 
 

3-cyclohexyl-3-[2-(3-methyl-2,4-dioxo-1,2,3,4-	
tetrahydropyrimidin-1-yl)acetamido]propanamide	

 
 

MPRO	

 
 

-7.651972	

 
 
Cn1c(=O)ccn(CC(=O)NC(CC(N)=O)C2C	

CCCC2)c1=O	

 

 

 
N-({2',3'-dihydrospiro[cyclopropane-1,1'-inden]-3-	

yl}methyl)-2-{1H-pyrrolo[2,3-b]pyridin-3-	
yl}acetamide	

 
 

MPRO	

 
 

-7.679692	

 
 
O=C(Cc1c[nH]c2ncccc12)NCC1CC11CC	

c2ccccc12	

 

 

 
1-(2-{1-methyl-4-oxo-1H,4H,5H-pyrazolo[3,4-	

d]pyrimidin-5-yl}acetyl)-octahydro-1H-indole-2-	
carboxylic	acid	

 
 

MPRO	

 
 

-7.705968	

 
 
Cn1ncc2c1ncn(CC(=O)N1C3CCCCC3CC	

1C(O)=O)c2=O	

 

 

 
 

4-{[2-(6-fluoro-1H-indol-3-yl)-N-	
methylacetamido]methyl}benzoic	acid	

 
 

MPRO	

 
 

-7.737004	

 
 
CN(Cc1ccc(cc1)C(O)=O)C(=O)Cc1c[nH]	

c2cc(F)ccc12	

 

 

 
 

N-[1-(4-hydroxyphenyl)propan-2-yl]-3-oxo-3,4-	
dihydro-2H-1,4-benzoxazine-8-carboxamide	

 
 

MPRO	

 
 

-7.626542	

 
 
CC(Cc1ccc(O)cc1)NC(=O)c1cccc2NC(=	

O)COc12	

 

 

 
2-{2-[(methylsulfanyl)methyl]-1H-1,3-benzodiazol-	

1-yl}-N-({[1,2,4]triazolo[4,3-a]pyridin-3-	
yl}methyl)acetamide	

 
 

MPRO	

 
 

-7.632684	

 
 
CSCc1nc2ccccc2n1CC(=O)NCc1nnc2cc	

ccn12	

 

 

 
 
4-{[2-(2,5-difluorophenyl)-4-hydroxypyrrolidin-1-	

yl]methyl}benzamide	

 
 

MPRO	

 
 

-7.676844	

 
 
NC(=O)c1ccc(CN2CC(O)CC2c2cc(F)ccc	

2F)cc1	

 

 

 
 
3-(2-methyl-2,3-dihydro-1H-inden-2-yl)-1-{1-[4-	

(methylsulfamoyl)phenyl]ethyl}urea	

 
 

MPRO	

 
 

-7.75727	

 
 
CNS(=O)(=O)c1ccc(cc1)C(C)NC(=O)NC	

1(C)Cc2ccccc2C1	

 

 

 
 

5-[2-(4-fluorophenyl)-4-hydroxypyrrolidine-1-	
carbonyl]pyridine-2-carboxamide	

 
 

MPRO	

 
 

-7.718797	

 
 
NC(=O)c1ccc(cn1)C(=O)N1CC(O)CC1c1	

ccc(F)cc1	



 

 

 
2-{2-[1-(2-methoxyphenyl)-5-oxopyrrolidin-3-yl]-	

1H-1,3-benzodiazol-1-yl}-N-methyl-N-	
phenylacetamide	

 
 

MPRO	

 
 

-7.687013	

 
 
COc1ccccc1N1CC(CC1=O)c1nc2ccccc2	

n1CC(=O)N(C)c1ccccc1	

 

 

 
4-(2-{[1-(4-ethoxyphenyl)-1H-1,3-benzodiazol-2-	

yl]sulfanyl}acetyl)-3,3-dimethyl-1,2,3,4-	
tetrahydroquinoxalin-2-one	

 
 

MPRO	

 
 

-7.629347	

 
CCOc1ccc(cc1)-	

n1c(SCC(=O)N2c3ccccc3NC(=O)C2(C)C	
)nc2ccccc12	

 

 

 
6-methyl-N-{3-[(1H-pyrazol-1-yl)methyl]phenyl}-	

octahydro-1H-pyrrolo[2,3-c]pyridine-1-	
carboxamide	

 
 

MPRO	

 
 

-7.762516	

 
 
CN1CCC2CCN(C2C1)C(=O)Nc1cccc(Cn	

2cccn2)c1	

 

 

 
 

N-cyclopropyl-3-[2-(2,3,4,5,6-	
pentafluorophenyl)acetamido]benzamide	

 
 

MPRO	

 
 

-7.647161	

 
 
Fc1c(F)c(F)c(CC(=O)Nc2cccc(c2)C(=O)	

NC2CC2)c(F)c1F	

 

 

 
 
{[1-(2,4-difluorophenyl)ethyl]carbamoyl}methyl	2-	
[3-(4-methoxyphenyl)propanamido]benzoate	

 
 

MPRO	

 
 

-7.620529	

 
 
COc1ccc(CCC(=O)Nc2ccccc2C(=O)OCC	

(=O)NC(C)c2ccc(F)cc2F)cc1	

 

 

 
2-({4-amino-5-[(4-methoxyphenyl)methyl]-4H-	

1,2,4-triazol-3-yl}sulfanyl)-N-(3,5-dimethylphenyl)-	
2-phenylacetamide	

 
 

MPRO	

 
 

-7.684616	

 
 
COc1ccc(Cc2nnc(SC(C(=O)Nc3cc(C)cc(	

C)c3)c3ccccc3)n2N)cc1	

 

 

 
 
{7-[(ethoxycarbonyl)amino]-2-oxo-2H-chromen-4-	
yl}methyl	2-(3-bromobenzenesulfonamido)acetate	

 
 

MPRO	

 
 

-7.636072	

 
 
CCOC(=O)Nc1ccc2c(COC(=O)CNS(=O)(	

=O)c3cccc(Br)c3)cc(=O)oc2c1	

 

 

 
5-methyl-N-{3-	

[(phenylcarbamoyl)methoxy]phenyl}-2-(4H-1,2,4-	
triazol-4-yl)benzamide	

 
 

MPRO	

 
 

-7.70219	

 
 
Cc1ccc(c(c1)C(=O)Nc1cccc(OCC(=O)Nc	

2ccccc2)c1)-n1cnnc1	

 

 

 
 

[(9,10-dioxo-9,10-dihydroanthracen-1-	
yl)carbamoyl]methyl	2-(thiophen-3-yl)acetate	

 
 

MPRO	

 
 

-7.757383	

 
 
O=C(COC(=O)Cc1ccsc1)Nc1cccc2C(=O)	

c3ccccc3C(=O)c12	

 

 

 
 

2-({[(9,10-dioxo-9,10-dihydroanthracen-1-	
yl)carbamoyl]methyl}sulfanyl)pyridin-1-ium-1-olate	

 
 

MPRO	

 
 

-7.802135	

 
[O-	

][n+]1ccccc1SCC(=O)Nc1cccc2C(=O)c3	
ccccc3C(=O)c12	

 

 

 
 

[(3-acetylphenyl)carbamoyl](phenyl)methyl	3-	
[methyl(phenyl)sulfamoyl]benzoate	

 
 

MPRO	

 
 

-7.784198	

 
CN(c1ccccc1)S(=O)(=O)c1cccc(c1)C(=O	
)OC(C(=O)Nc1cccc(c1)C(C)=O)c1ccccc	

1	

 

 

 
2-amino-3-nitro-N-{[4-(propan-2-yloxy)-2-	
(trifluoromethyl)phenyl]methyl}pyridine-4-	

carboxamide	

 
 

MPRO	

 
 

-7.691484	

 
 
CC(C)Oc1ccc(CNC(=O)c2ccnc(N)c2[N+]	

([O-])=O)c(c1)C(F)(F)F	

 

 

 
 

4-[(4-carbamoylphenyl)methyl]-N-methyl-3,4-	
dihydro-2H-1,4-benzoxazine-2-carboxamide	

 
 

MPRO	

 
 

-7.658907	

 
 
CNC(=O)C1CN(Cc2ccc(cc2)C(N)=O)c2c	

cccc2O1	

 

 

 
N-(3-	

{[(carbamoylmethyl)carbamoyl]amino}phenyl)-1H-	
indole-7-carboxamide	

 
 

MPRO	

 
 

-7.68726	

 
 
NC(=O)CNC(=O)Nc1cccc(NC(=O)c2ccc	

c3cc[nH]c23)c1	

 

 

 
ethyl	 2-{2-[(6-ethoxy-1H-1,3-benzodiazol-2-	
yl)sulfanyl]propanamido}-6-methyl-4,5,6,7-	
tetrahydro-1-benzothiophene-3-carboxylate	

 
 

MPRO	

 
 

-7.618485	

 
 
CCOC(=O)c1c(NC(=O)C(C)Sc2nc3ccc(O	

CC)cc3[nH]2)sc2CC(C)CCc12	



 

 

 
N-[1-(4-fluorophenyl)-3-methyl-1H-pyrazol-5-yl]-2-	

{[1,2,4]triazolo[4,3-a]pyridin-3-	
ylsulfanyl}acetamide	

 
 

MPRO	

 
 

-7.703882	

 
 
Cc1cc(NC(=O)CSc2nnc3ccccn23)n(n1)-	

c1ccc(F)cc1	

 

 

 
 

2-phenyl-2-{[1,2,4]triazolo[4,3-a]pyridin-3-	
ylsulfanyl}-N-[3-(trifluoromethyl)phenyl]acetamide	

 
 

MPRO	

 
 

-7.618894	

 
 
FC(F)(F)c1cccc(NC(=O)C(Sc2nnc3ccccn	

23)c2ccccc2)c1	

 

 

 
2-(4-hydroxyphenyl)-1-{3-[1-methyl-4-	

(trifluoromethyl)-1H-imidazol-2-yl]piperidin-1-	
yl}ethan-1-one	

 
 

MPRO	

 
 

-7.722702	

 
 
Cn1cc(nc1C1CCCN(C1)C(=O)Cc1ccc(O)	

cc1)C(F)(F)F	

 

 

 
2-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-N-	
methyl-N-{[(2R,3S)-1-methyl-2-(1-methyl-1H-	
pyrazol-5-yl)piperidin-3-yl]methyl}acetamide	

 
 

MPRO	

 
 

-7.712632	

 
 
CN(C[C@@H]1CCCN(C)[C@H]1c1ccnn	

1C)C(=O)Cn1ccc(=O)[nH]c1=O	

 

 

 
 

N-(3-carbamoylphenyl)-4-(2-fluorophenyl)-1,4-	
diazepane-1-carboxamide	

 
 

MPRO	

 
 

-7.652268	

 
 
NC(=O)c1cccc(NC(=O)N2CCCN(CC2)c2	

ccccc2F)c1	

 

 

 
N-[3-(difluoromethyl)-5-methyl-1H-pyrazol-4-yl]-2-	

oxo-1H,2H,3H-imidazo[4,5-b]pyridine-6-	
carboxamide	

 
 

MPRO	

 
 

-7.796011	

 
 
Cc1[nH]nc(C(F)F)c1NC(=O)c1cnc2[nH]	

c(=O)[nH]c2c1	

 

 

 
 
3-(2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)-N-{[4-(2-	
oxopyrrolidin-1-yl)phenyl]methyl}propanamide	

 
 

MPRO	

 
 

-7.747528	

 
 
O=C(CCC1Cc2ccccc2NC1=O)NCc1ccc(c	

c1)N1CCCC1=O	

 

 

 
methyl	3-[(7-fluoro-2-oxo-1,2,3,4-	

tetrahydroquinolin-4-yl)formamido]-3-	
phenylpropanoate	

 
 

MPRO	

 
 

-7.771538	

 
 
COC(=O)CC(NC(=O)C1CC(=O)Nc2cc(F)	

ccc12)c1ccccc1	

 

 

 
 
5-[3-(4-fluorophenyl)prop-2-enoyl]-2,3-dihydro-1H-	

1,3-benzodiazol-2-one	

 
 

MPRO	

 
 

-7.719031	

 
 
Fc1ccc(C=CC(=O)c2ccc3[nH]c(=O)[nH]	

c3c2)cc1	

 

 

 
 
5-[3-(2,6-dichlorophenyl)prop-2-enoyl]-2,3-dihydro	

1H-1,3-benzodiazol-2-one	

 
 

MPRO	

 
 

-7.693111	

 
 
Clc1cccc(Cl)c1C=CC(=O)c1ccc2[nH]c(=	

O)[nH]c2c1	

 

 

 
 
N-(3-{[(furan-2-yl)methyl]sulfamoyl}phenyl)-3-(2-	
oxo-1,2,3,4-tetrahydroquinolin-3-yl)propanamide	

 
 

MPRO	

 
 

-7.706308	

 
 
O=C(CCC1Cc2ccccc2NC1=O)Nc1cccc(c	

1)S(=O)(=O)NCc1ccco1	

 

 

 
N-{3-[5-(2-fluorophenyl)-1-(2-methoxyacetyl)-4,5-	

dihydro-1H-pyrazol-3-	
yl]phenyl}methanesulfonamide	

 
 

MPRO	

 
 

-7.733552	

 
 
COCC(=O)N1N=C(CC1c1ccccc1F)c1ccc	

c(NS(C)(=O)=O)c1	

 

 

 
 

4-[2-(4-chloro-2-nitrophenoxy)acetyl]-1,2,3,4-	
tetrahydroquinoxalin-2-one	

 
 

MPRO	

 
 

-7.749496	

 
[O-	

][N+](=O)c1cc(Cl)ccc1OCC(=O)N1CC(=	
O)Nc2ccccc12	

 

 

 
 

2-(4-fluorobenzenesulfonamido)-N-[3-(2-	
oxopyrrolidin-1-yl)phenyl]benzamide	

 
 

MPRO	

 
 

-7.643129	

 
 
Fc1ccc(cc1)S(=O)(=O)Nc1ccccc1C(=O)	

Nc1cccc(c1)N1CCCC1=O	

 

 

 
1-[(2-chloro-4-nitrophenyl)carbamoyl]ethyl	2-[(4-	

tert-butylphenyl)formamido]-4-	
(methylsulfanyl)butanoate	

 
 

MPRO	

 
 

-7.697784	

 
CSCCC(NC(=O)c1ccc(cc1)C(C)(C)C)C(=	
O)OC(C)C(=O)Nc1ccc(cc1Cl)[N+]([O-	

])=O	



 

 

 
N-{2-[hydroxy(pyridin-2-yl)methyl]phenyl}-7-	
methoxy-1,2,3,4-tetrahydronaphthalene-1-	

carboxamide	

 
 

MPRO	

 
 

-7.680547	

 
 
COc1ccc2CCCC(C(=O)Nc3ccccc3C(O)c	

3ccccn3)c2c1	

 

 

 
 

N-(3-cyanophenyl)-3-[(4-	
methoxyphenyl)(methyl)sulfamoyl]benzamide	

 
 

MPRO	

 
 

-7.608325	

 
 
COc1ccc(cc1)N(C)S(=O)(=O)c1cccc(c1)	

C(=O)Nc1cccc(c1)C#N	

 

 

 
 
3-benzyl-4-oxo-N-[1-(4-sulfamoylphenyl)ethyl]-3,4-	

dihydrophthalazine-1-carboxamide	

 
 

MPRO	

 
 

-7.71278	

 
 
CC(NC(=O)c1nn(Cc2ccccc2)c(=O)c2ccc	

cc12)c1ccc(cc1)S(N)(=O)=O	

 

 

 
 

2-{[2-(2-methyl-2,3-dihydro-1H-indol-1-yl)-2-	
oxoethyl]sulfanyl}quinoline-4-carboxamide	

 
 

MPRO	

 
 

-7.642768	

 
 
CC1Cc2ccccc2N1C(=O)CSc1cc(C(N)=O)	

c2ccccc2n1	

 

 

 
N-cyclopropyl-3-{[2-(2,2-dimethyl-3-oxo-1,2,3,4-	
tetrahydroquinoxalin-1-yl)-2-oxoethyl]amino}-4-	

methoxybenzene-1-sulfonamide	

 
 

MPRO	

 
 

-7.783271	

 
 
COc1ccc(cc1NCC(=O)N1c2ccccc2NC(=	

O)C1(C)C)S(=O)(=O)NC1CC1	

 

 

 
N'-benzyl-N-[({2-[(3-	

methylphenyl)carbamoyl]phenyl}carbamoyl)methy	
l]ethanediamide	

 
 

MPRO	

 
 

-7.640353	

 
 
Cc1cccc(NC(=O)c2ccccc2NC(=O)CNC(=	

O)C(=O)NCc2ccccc2)c1	

 

 

 
N-(3-cyclopropyl-1-phenyl-1H-pyrazol-5-yl)-2-	
{2,4,5,7-tetraazatricyclo[6.4.0.0²,⁶]dodeca-	

1(12),3,5,8,10-pentaen-3-ylsulfanyl}acetamide	

 
 

MPRO	

 
 

-7.809379	

 
 
O=C(CSc1nnc2[nH]c3ccccc3n12)Nc1cc	

(nn1-c1ccccc1)C1CC1	

 

 

 
 
N-[3-(N',N'-diphenylhydrazinecarbonyl)phenyl]-2-	
[(4-methyl-4H-1,2,4-triazol-3-yl)sulfanyl]acetamide	

 
 

MPRO	

 
 

-7.719529	

 
 
Cn1cnnc1SCC(=O)Nc1cccc(c1)C(=O)N	

N(c1ccccc1)c1ccccc1	

 
 

 
N-{[4-(dimethylamino)phenyl]methyl}-N-methyl-2-	

[(2-oxo-1,2,3,4-tetrahydroquinolin-6-	
yl)oxy]acetamide	

 
 

MPRO	

 
 

-7.769056	

 
 
CN(C)c1ccc(CN(C)C(=O)COc2ccc3NC(=	

O)CCc3c2)cc1	

 

 

 
 
3-[3-(1,3-benzothiazol-2-yl)piperidine-1-carbonyl]-	
1-phenyl-4,5-dihydro-1H-pyrazole-5-carboxamide	

 
 

MPRO	

 
 

-7.602391	

 
 
NC(=O)C1CC(=NN1c1ccccc1)C(=O)N1C	

CCC(C1)c1nc2ccccc2s1	

 

 

 
(2-{[(2-methylphenyl)carbamoyl]methyl}-1,3-	
thiazol-4-yl)methyl	5-carbamoyl-1-phenyl-4,5-	

dihydro-1H-pyrazole-3-carboxylate	

 
 

MPRO	

 
 

-7.69133	

 
 
Cc1ccccc1NC(=O)Cc1nc(COC(=O)C2=N	

N(C(C2)C(N)=O)c2ccccc2)cs1	

 
 

 
N-{3-[1-({[1-(3-	

fluorophenyl)ethyl]carbamoyl}amino)ethyl]phenyl}	
acetamide	

 
 

MPRO	

 
 

-7.802171	

 
 
CC(NC(=O)NC(C)c1cccc(NC(C)=O)c1)c1	

cccc(F)c1	

 

 

 
N-{3-[1-({[(2,5-	

dimethoxyphenyl)methyl]carbamoyl}amino)ethyl]p	
henyl}acetamide	

 
 

MPRO	

 
 

-7.721882	

 
 
COc1ccc(OC)c(CNC(=O)NC(C)c2cccc(N	

C(C)=O)c2)c1	

 

 

 
 
N-[(2-ethoxypyridin-3-yl)methyl]-2-[2-methyl-4-(4-	

methylphenyl)-1,3-thiazol-5-yl]acetamide	

 
 

MPRO	

 
 

-7.648012	

 
 
CCOc1ncccc1CNC(=O)Cc1sc(C)nc1-	

c1ccc(C)cc1	

 

 

 
 
N-[(2,3-dihydro-1-benzofuran-2-yl)methyl]-2-oxo-	

1,2,3,4-tetrahydroquinoline-6-carboxamide	

 
 

MPRO	

 
 

-7.632513	

 
 
O=C(NCC1Cc2ccccc2O1)c1ccc2NC(=O)	

CCc2c1	



 

 

 
 
3-{3-cyclopropyl-1-[2-(pyridin-4-yl)acetyl]pyrrolidin	
2-yl}-4-methyl-4,5-dihydro-1H-1,2,4-triazol-5-one	

 
 

MPRO	

 
 

-7.675123	

 
 
Cn1c(n[nH]c1=O)C1C(CCN1C(=O)Cc1c	

cncc1)C1CC1	

 

 

 
2-[(3,4-dichlorophenyl)methyl]-N-({4-oxo-4H-	

pyrido[1,2-a]pyrimidin-2-yl}methyl)-2,7-	
diazaspiro[4.5]decane-7-carboxamide	

 
 

MPRO	

 
 

-7.628686	

 
 
Clc1ccc(CN2CCC3(C2)CCCN(C3)C(=O)N	

Cc2cc(=O)n3ccccc3n2)cc1Cl	

 
 

 
N-{4-[1-({[(2H-1,3-benzodioxol-5-	

yl)methyl]carbamoyl}amino)ethyl]phenyl}propana	
mide	

 
 

MPRO	

 
 

-7.656456	

 
 
CCC(=O)Nc1ccc(cc1)C(C)NC(=O)NCc1c	

cc2OCOc2c1	

 

 

 
N-{4-[1-({[(2,3-dihydro-1,4-benzodioxin-6-	

yl)methyl]carbamoyl}amino)ethyl]phenyl}propana	
mide	

 
 

MPRO	

 
 

-7.740255	

 
 
CCC(=O)Nc1ccc(cc1)C(C)NC(=O)NCc1c	

cc2OCCOc2c1	

 

 

 
 
N-[3-(3-carbamoyl-1H-pyrazol-1-yl)phenyl]-1-(2-	
phenylethenesulfonyl)piperidine-4-carboxamide	

 
 

MPRO	

 
 

-7.715121	

 
NC(=O)c1ccn(n1)-	

c1cccc(NC(=O)C2CCN(CC2)S(=O)(=O)C	
=Cc2ccccc2)c1	

 

 

 
 

N-(3-cyanophenyl)-2-[4-(3-phenylprop-2-en-1-	
yl)piperazin-1-yl]propanamide	

 
 

MPRO	

 
 

-7.756551	

 
 
CC(N1CCN(CC=Cc2ccccc2)CC1)C(=O)N	

c1cccc(c1)C#N	

 

 

 
4-methyl-5-{2-[(4-oxo-3-propyl-3,4-	

dihydroquinazolin-2-yl)sulfanyl]acetyl}-2,3,4,5-	
tetrahydro-1H-1,5-benzodiazepin-2-one	

 
 

MPRO	

 
 

-7.768639	

 
 
CCCn1c(SCC(=O)N2C(C)CC(=O)Nc3ccc	

cc23)nc2ccccc2c1=O	

 

 

 
 
N-[3,5-bis(trifluoromethyl)phenyl]-2-(2-oxo-1,2-	

dihydropyridin-1-yl)acetamide	

 
 

MPRO	

 
 

-7.623712	

 
 
FC(F)(F)c1cc(NC(=O)Cn2ccccc2=O)cc(c	

1)C(F)(F)F	

 

 

 
N-[1-(2,3-dihydro-1,4-benzodioxin-6-yl)ethyl]-2-[4-	

(N-methyl4-	
methylbenzenesulfonamido)phenoxy]acetamide	

 
 

MPRO	

 
 

-7.61314	

 
 
CC(NC(=O)COc1ccc(cc1)N(C)S(=O)(=O)	

c1ccc(C)cc1)c1ccc2OCCOc2c1	

 

 

 
N-(2-{2,4-dioxo-3-azatricyclo[7.3.1.0⁵,¹³]trideca-	

1(13),5,7,9,11-pentaen-3-yl}ethyl)-N-(3-	
fluorophenyl)pyridine-3-carboxamide	

 
 

MPRO	

 
 

-7.63636	

 
 
Fc1cccc(c1)N(CCN1C(=O)c2cccc3cccc(	

C1=O)c23)C(=O)c1cccnc1	

 

 

 
 

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-	
(thiophen-2-yl)quinoline-4-carboxamide	

 
 

MPRO	

 
 

-7.800731	

 
 
O=C(Nc1cccc2C(=O)c3ccccc3C(=O)c12	

)c1cc(nc2ccccc12)-c1cccs1	

 

 

 
[(9,10-dioxo-9,10-dihydroanthracen-1-	
yl)carbamoyl]methyl	5-oxopyrrolidine-2-	

carboxylate	

 
 

MPRO	

 
 

-7.792261	

 
 
O=C(COC(=O)C1CCC(=O)N1)Nc1cccc2	

C(=O)c3ccccc3C(=O)c12	

 

 

 
N-(2,6-dimethylphenyl)-2-[(5-{3-[(4-	

methoxyphenyl)sulfamoyl]phenyl}-4-(6-	
methylheptan-2-yl)-4H-1,2,4-triazol-3-	

yl)sulfanyl]acetamide	

 
 

MPRO	

 
 

-7.635464	

 
COc1ccc(NS(=O)(=O)c2cccc(c2)-	

c2nnc(SCC(=O)Nc3c(C)cccc3C)n2C(C)C	
CCC(C)C)cc1	

 

 

 
2-methoxy-4-{[(4-	

methoxybenzenesulfonamido)imino]methyl}pheny	
l	N-phenylcarbamate	

 
 

MPRO	

 
 

-7.623766	

 
 
COc1ccc(cc1)S(=O)(=O)NN=Cc1ccc(OC	

(=O)Nc2ccccc2)c(OC)c1	

 

 

 
 

[(2,3-dimethylcyclohexyl)carbamoyl]methyl	5-	
(benzylsulfamoyl)-2-hydroxybenzoate	

 
 

MPRO	

 
 

-7.691032	

 
 
CC1CCCC(NC(=O)COC(=O)c2cc(ccc2O)	

S(=O)(=O)NCc2ccccc2)C1C	



 

 

 
 

4-fluoro-3-({[2-(2-oxopyrrolidin-1-yl)-1-	
phenylethyl]carbamoyl}amino)benzamide	

 
 

MPRO	

 
 

-7.779582	

 
 
NC(=O)c1ccc(F)c(NC(=O)NC(CN2CCCC	

2=O)c2ccccc2)c1	

 

 

 
2-({[(4-fluorophenyl)carbamoyl]methyl}sulfanyl)-N-	

({[1,2,4]triazolo[4,3-a]pyridin-3-	
yl}methyl)benzamide	

 
 

MPRO	

 
 

-7.678648	

 
 
Fc1ccc(NC(=O)CSc2ccccc2C(=O)NCc2n	

nc3ccccn23)cc1	

 

 

 
3-({[(2,3-dihydro-1,4-benzodioxin-2-	

yl)methyl]carbamoyl}methyl)-4-oxo-3,4-	
dihydrophthalazine-1-carboxamide	

 
 

MPRO	

 
 

-7.677514	

 
 
NC(=O)c1nn(CC(=O)NCC2COc3ccccc3	

O2)c(=O)c2ccccc12	

 

 

 
 
1-[(4-carbamoylphenyl)methyl]-2-methyl-1,2,3,4-	

tetrahydroquinoline-4-carboxamide	

 
 

MPRO	

 
 

-7.686286	

 
 
CC1CC(C(N)=O)c2ccccc2N1Cc1ccc(cc1	

)C(N)=O	

 
 

 
2-[(4-fluorophenyl)methyl]-3-{[6-oxo-1-(2-	
phenoxyethyl)-1,6-dihydropyridazin-3-	

yl]formamido}propanamide	

 
 

MPRO	

 
 

-7.656212	

 
 
NC(=O)C(CNC(=O)c1ccc(=O)n(CCOc2c	

cccc2)n1)Cc1ccc(F)cc1	

 

 

 
3-({[3-(1-cyclopropyl-1H-1,2,3,4-tetrazol-5-	

yl)phenyl]carbamoyl}amino)-2-[(4-	
ethoxyphenyl)methyl]propanamide	

 
 

MPRO	

 
 

-7.739139	

 
 
CCOc1ccc(CC(CNC(=O)Nc2cccc(c2)-	

c2nnnn2C2CC2)C(N)=O)cc1	

 

 

 
 
N-[(1,3-diphenyl-1H-pyrazol-4-yl)methyl]-2-methyl-	

5-sulfamoylbenzamide	

 
 

MPRO	

 
 

-7.629789	

 
 

Cc1ccc(cc1C(=O)NCc1cn(nc1-	
c1ccccc1)-c1ccccc1)S(N)(=O)=O	

 

 

 
 
N-(3-carbamoylphenyl)-1H-indole-3-carboxamide	

 
 

MPRO	

 
 

-7.65138	

 
 
NC(=O)c1cccc(NC(=O)c2c[nH]c3ccccc2	

3)c1	

 

 

 
N-[1-(1,3-benzothiazol-2-yl)ethyl]-2-({[(3-	

cyanophenyl)carbamoyl]methyl}sulfanyl)-N-	
methylbenzamide	

 
 

MPRO	

 
 

-7.604902	

 
 
CC(N(C)C(=O)c1ccccc1SCC(=O)Nc1ccc	

c(c1)C#N)c1nc2ccccc2s1	

 
 

 
2-{3-[(cyclooctylcarbamoyl)methyl]-2,4-dioxo-	
1,2,3,4-tetrahydropyrimidin-1-yl}-N-(nonan-4-	

yl)acetamide	

 
 

MPRO	

 
 

-7.685229	

 
 
CCCCCC(CCC)NC(=O)Cn1ccc(=O)n(CC(	

=O)NC2CCCCCCC2)c1=O	

 

 

 
 

5-tert-butyl-N-[5-chloro-2-(1H-1,2,4-triazol-1-	
yl)phenyl]-2-methylbenzene-1-sulfonamide	

 
 

MPRO	

 
 

-7.628456	

 
 
Cc1ccc(cc1S(=O)(=O)Nc1cc(Cl)ccc1-	

n1cncn1)C(C)(C)C	

 

 

 
({2-[(2H-1,3-benzodioxol-5-	

yl)carbamoyl]phenyl}carbamoyl)methyl	4-oxo-3,4-	
dihydrophthalazine-1-carboxylate	

 
 

MPRO	

 
 

-7.796552	

 
 
O=C(COC(=O)c1n[nH]c(=O)c2ccccc12)	
Nc1ccccc1C(=O)Nc1ccc2OCOc2c1	

 

 

 
6-amino-5-(2-{[3-(3-chloro-2-methylphenyl)-4-oxo-	

3,4-dihydroquinazolin-2-yl]sulfanyl}acetyl)-1-	
methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione	

 
 

MPRO	

 
 

-7.617443	

 
Cc1c(Cl)cccc1-	

n1c(SCC(=O)c2c(N)n(C)c(=O)[nH]c2=O	
)nc2ccccc2c1=O	

 

 

 
 
5-chloro-2-{2-[2-(2,3-dihydro-1,4-benzodioxin-6-	

yl)pyrrolidin-1-yl]-2-oxoethoxy}benzamide	

 
 

MPRO	

 
 

-7.637594	

 
 
NC(=O)c1cc(Cl)ccc1OCC(=O)N1CCCC1	

c1ccc2OCCOc2c1	

 

 

 
 
{4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yl}methyl	3-(4-	

methylbenzenesulfonyl)propanoate	

 
 

MPRO	

 
 

-7.770157	

 
 
Cc1ccc(cc1)S(=O)(=O)CCC(=O)OCc1cc(	

=O)n2ccccc2n1	



 

 

 
 
{4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yl}methyl	3-	

(benzyloxy)benzoate	

 
 

MPRO	

 
 

-7.60401	

 
 
O=C(OCc1cc(=O)n2ccccc2n1)c1cccc(O	

Cc2ccccc2)c1	

 

 

 
 

N-(6-fluoro-2,3-dihydro-1H-inden-1-yl)-N'-[3-	
(methylsulfanyl)phenyl]ethanediamide	

 
 

TMPRSS2	

 
 

-7.129755	

 
 
CSc1cccc(NC(=O)C(=O)NC2CCc3ccc(F)	

cc23)c1	

 

 

 
 

N-(2-hydroxy-2-phenylpropyl)-5-methyl-1-	
benzofuran-2-carboxamide	

 
 

TMPRSS2	

 
 

-7.090923	

 
 
Cc1ccc2oc(cc2c1)C(=O)NCC(C)(O)c1cc	

ccc1	

 

 

 
 
2-(3-fluorophenyl)-N-{[(2-hydroxy-2,3-dihydro-1H-	

inden-1-yl)carbamoyl]methyl}acetamide	

 
 

TMPRSS2	

 
 

-7.083628	

 
 
OC1Cc2ccccc2C1NC(=O)CNC(=O)Cc1c	

ccc(F)c1	

 

 

 
 

3-(3-cyanophenyl)-N-(2-hydroxy-2-	
phenylpropyl)prop-2-enamide	

 
 

TMPRSS2	

 
 

-7.100698	

 
 
CC(O)(CNC(=O)C=Cc1cccc(c1)C#N)c1c	

cccc1	

 

 

 
 
N-[2-(1-benzothiophen-2-yl)-2-hydroxyethyl]-2-[2-	

(3-fluorophenyl)acetamido]acetamide	

 
 

TMPRSS2	

 
 

-7.173833	

 
 
OC(CNC(=O)CNC(=O)Cc1cccc(F)c1)c1c	

c2ccccc2s1	

 

 

 
 

N-[2-(5-fluoro-1H-indol-3-yl)ethyl]imidazo[1,2-	
a]pyridine-3-carboxamide	

 
 

TMPRSS2	

 
 

-7.082199	

 
 
Fc1ccc2[nH]cc(CCNC(=O)c3cnc4ccccn	

34)c2c1	

 

 

 
N'-[(1,3-dimethyl-2,4-dioxo-1,2,3,4-	

tetrahydropyrimidin-5-yl)sulfonyl]-2-(4-	
ethylphenyl)acetohydrazide	

 
 

TMPRSS2	

 
 

-7.112836	

 
 
CCc1ccc(CC(=O)NNS(=O)(=O)c2cn(C)c(	

=O)n(C)c2=O)cc1	

 

 

 
 

N'-(2-methanesulfinyl-1-phenylethyl)-N-[3-(5-	
methyl-1H-1,2,4-triazol-3-yl)phenyl]ethanediamide	

 
 

TMPRSS2	

 
 

-7.126673	

 
Cc1nc(n[nH]1)-	

c1cccc(NC(=O)C(=O)NC(CS(C)=O)c2ccc	
cc2)c1	

 

 

 
N-(6-amino-1-benzyl-2,4-dioxo-1,2,3,4-	
tetrahydropyrimidin-5-yl)-2-{[1-benzyl-5-	

(trifluoromethyl)-1H-1,3-benzodiazol-2-yl]sulfanyl}-	
N-butylacetamide	

 
 

TMPRSS2	

 
 

-7.099033	

 
CCCCN(C(=O)CSc1nc2cc(ccc2n1Cc1ccc	
cc1)C(F)(F)F)c1c(N)n(Cc2ccccc2)c(=O)[	

nH]c1=O	

 

 

 
 
2-oxo-2-(1,2,3,4-tetrahydroquinolin-1-yl)ethyl	2-	

(3,4-dimethylbenzenesulfonamido)acetate	

 
 

TMPRSS2	

 
 

-7.148417	

 
 
Cc1ccc(cc1C)S(=O)(=O)NCC(=O)OCC(=	

O)N1CCCc2ccccc12	

 

 

 
 

(4-aminoquinazolin-2-yl)methyl	2-(2,3,4-	
trifluorobenzenesulfonamido)acetate	

 
 

TMPRSS2	

 
 

-7.160395	

 
 
Nc1nc(COC(=O)CNS(=O)(=O)c2ccc(F)c

(	
F)c2F)nc2ccccc12	

 
 

 
 

N-[2-(2,4-difluorophenyl)-2-hydroxypropyl]-2-	
(oxan-4-yl)-1,3-oxazole-4-carboxamide	

 
 

TMPRSS2	

 
 

-7.159434	

 
 
CC(O)(CNC(=O)c1coc(n1)C1CCOCC1)c	

1ccc(F)cc1F	

 

 

 
 
1-oxo-1-(1,2,3,4-tetrahydroquinolin-1-yl)propan-2-	

yl	2-(1H-indol-3-yl)acetate	

 
 

TMPRSS2	

 
 

-7.120618	

 
 
CC(OC(=O)Cc1c[nH]c2ccccc12)C(=O)N	

1CCCc2ccccc12	

 
 

 
 
5-hydroxy-N-(2-hydroxy-4-phenylbutyl)-1,2,3,4-	

tetrahydronaphthalene-1-carboxamide	

 
 

TMPRSS2	

 
 

-7.139395	

 
 
OC(CCc1ccccc1)CNC(=O)C1CCCc2c(O)	

cccc12	



 

 

 
 

1-{6-bromo-2-methylimidazo[1,2-a]pyridine-3-	
carbonyl}azetidin-3-ol	

 
 

TMPRSS2	

 
 

-7.004282	

 
 
Cc1nc2ccc(Br)cn2c1C(=O)N1CC(O)C1	

 

 

 
 
3-[3-(2,5-dichlorophenoxy)-2-hydroxypropyl]-7-	

fluoro-3,4-dihydroquinazolin-4-one	

 
 

TMPRSS2	

 
 

-7.190593	

 
 
OC(COc1cc(Cl)ccc1Cl)Cn1cnc2cc(F)ccc	

2c1=O	

 

 

 
 

1-(ethanesulfonyl)-N-[(2-hydroxynaphthalen-1-	
yl)(phenyl)methyl]piperidine-4-carboxamide	

 
 

TMPRSS2	

 
 

-7.089504	

 
 
CCS(=O)(=O)N1CCC(CC1)C(=O)NC(c1cc	

ccc1)c1c(O)ccc2ccccc12	

 

 

 
 

N-{[2-(1H-imidazol-1-yl)phenyl]methyl}-1,2-	
dimethyl-1H-indole-3-sulfonamide	

 
 

TMPRSS2	

 
 

-7.124544	

 
 
Cc1c(c2ccccc2n1C)S(=O)(=O)NCc1cccc	

c1-n1ccnc1	

 

 

 
3-(1H-indol-3-yl)-2-({[(2-	

methylphenyl)methyl]carbamoyl}amino)propanoic	
acid	

 
 

TMPRSS2	

 
 

-7.196331	

 
 
Cc1ccccc1CNC(=O)NC(Cc1c[nH]c2cccc	

c12)C(O)=O	

 

 

 
 

2-(1H-indol-3-yl)-2-oxoethyl	2-	
benzenesulfonamidoacetate	

 
 

TMPRSS2	

 
 

-7.106572	

 
 
O=C(CNS(=O)(=O)c1ccccc1)OCC(=O)c1	

c[nH]c2ccccc12	

 

 

 
[(2H-1,3-benzodioxol-5-yl)carbamoyl]methyl	2-[2-	

(3,4-	
dimethylbenzenesulfonamido)acetamido]acetate	

 
 

TMPRSS2	

 
 

-7.118744	

 
 
Cc1ccc(cc1C)S(=O)(=O)NCC(=O)NCC(=	

O)OCC(=O)Nc1ccc2OCOc2c1	

 

 

 
 

2,5-difluoro-N-{3-hydroxy-2-[(pyridin-3-	
yl)methyl]propyl}benzene-1-sulfonamide	

 
 

TMPRSS2	

 
 

-7.123749	

 
 
OCC(CNS(=O)(=O)c1cc(F)ccc1F)Cc1ccc	

nc1	

 

 

 
 

N-cyclopropyl-2-{3-[(1,3-dioxo-2,3-dihydro-1H-	
isoindol-2-yl)methyl]benzamido}benzamide	

 
 

TMPRSS2	

 
 

-7.180751	

 
 
O=C(Nc1ccccc1C(=O)NC1CC1)c1cccc(C	

N2C(=O)c3ccccc3C2=O)c1	

 

 

 
N-(4-fluorophenyl)-3-[2-	

(trifluoromethyl)benzenesulfonamido]propanamid	
e	

 
 

TMPRSS2	

 
 

-7.088645	

 
 
Fc1ccc(NC(=O)CCNS(=O)(=O)c2ccccc2	

C(F)(F)F)cc1	

 
 

 
 
1-(2,5-dichlorophenoxy)-3-[5-(4-methylphenyl)-2H-	

1,2,3,4-tetrazol-2-yl]propan-2-ol	

 
 

TMPRSS2	

 
 

-7.115764	

 
 

Cc1ccc(cc1)-	
c1nnn(CC(O)COc2cc(Cl)ccc2Cl)n1	
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1-(4-nitrophenyl)propan-2-yl]benzamide	
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2-oxo-N-(3-{3-oxo-2H,3H-[1,2,4]triazolo[4,3-	
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benzazepine-7-carboxamide	
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O=C(NCCCn1nc2ccccn2c1=O)c1ccc2N	

C(=O)CCCc2c1	

 

 

 
 

methyl	3-(3-bromophenyl)-3-{[(4-	
ethoxyphenyl)carbamoyl]formamido}propanoate	
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CCOc1ccc(NC(=O)C(=O)NC(CC(=O)OC)	
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N'-[1,2-bis(3-fluorophenyl)ethyl]-N-[4-	
(cyanomethoxy)phenyl]ethanediamide	
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Fc1cccc(CC(NC(=O)C(=O)Nc2ccc(OCC#	

N)cc2)c2cccc(F)c2)c1	

 

 

 
 
N-[2-(2,4-difluorobenzenesulfonamido)ethyl]-2-(4-	

fluorophenyl)acetamide	

 
 

TMPRSS2	

 
 

-7.121373	

 
 
Fc1ccc(CC(=O)NCCNS(=O)(=O)c2ccc(F)	

cc2F)cc1	

 

 

 
{[2-(2-methoxyphenyl)ethyl]carbamoyl}methyl	2-(4-	

carbamoyl-1-oxo-1,2-dihydrophthalazin-2-	
yl)acetate	

 
 

TMPRSS2	

 
 

-7.108118	

 
 
COc1ccccc1CCNC(=O)COC(=O)Cn1nc(	

C(N)=O)c2ccccc2c1=O	
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