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Machine learned reactive force fields based on polynomial expansions have been shown

to be highly effective for describing simulations involving reactive materials. Never-

theless, the highly flexible nature of these models can give rise to a large number of

candidate parameters for complicated systems. In these cases, reliable parameteri-

zation requires a well-formed training set, which can be difficult to achieve through

standard iterative fitting methods. Here we present an active learning approach based

on cluster analysis and Shannon information theory to enable semi-automated gen-

eration of informative training sets and robust machine learned force fields. Use of

this tool is demonstrated for development of a model based on linear combinations

of Chebyshev polynomials explicitly describing up to four-body interactions, for a

chemically and structurally diverse system of C/O under extreme conditions. We

show that this flexible training repository management approach enables develop-

ment of models exhibiting excellent agreement with Kohn–Sham density functional

theory (DFT) in terms of structure, dynamics, and speciation.

a)To whom correspondence should be addressed.lindsey11@llnl.gov
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I. INTRODUCTION

Machine Learning (ML) has gained significant traction in the force field development

community1–3, largely due to the afforded versatility and potential to significantly decrease

the human effort required to generate high fidelity, complex models. ML methods are

well suited for problems demanding first principles-level accuracy in conjunction with the

computational efficiency of force field-based methods. This is particularly true for materials

under extreme conditions (e.g. 1000s of K and 10s to 100s of GPa) which can be highly

reactive and exhibit phase separation over several ns, leading to chemical and structural

heterogeneity on several-nm scales (e.g. in the case of reaction-driven carbon condensation

in shock-compressed materials4–6). In these cases, machine learned interatomic potentials

can offer an ideal balance between predictive power and computational efficiency, allowing

simulations to more closely approach experimental time and length scales than possible with

quantum simulations alone.

Machine-learning can be leveraged in a diversity of manners for model development,

ranging from the model and/or mathematical representation7,8 to the scheme used for train-

ing9–14 and data generation15–19. Though powerful, each of these applications have significant

associated challenges. For example, the literature contains several success stories surround-

ing neural network- and polynomial expansion-based interatomic interaction potentials, but

these models can be enormous (e.g. comprised of thousands to tens of thousands of pa-

rameters), and thus highly susceptible to overfitting. Generating quality training data for

these cases is difficult because the immense amount of training data needed to prevent over-

fitting makes human inspection challenging (i.e., determining what the data “looks like” is

not a trivial matter). Moreover, these data are often obtained from molecular dynamics

(MD) trajectories, which can yield correlated configurations on computationally accessible

timescales.

Active learning (AL) has become a popular means of managing these challenging training

problems. Typically, this concept centers around the manner in which a training repository

is updated and maintained and can be accomplished through a variety of methods20. In gen-

eral, these approaches involve an iterative framework (i.e. initial models are fit to DFT-MD

data and subsequent refinements are made via single-point DFT calculations on frames gen-

erated through MD simulations with the ith model and subsequent addition to the training
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repository, from which the i+1th model is generated), but also include a scheme for deciding

which new configurations should be added to the central training repository. The first such

method applied to force field development was based on the concept of “committee-driven”

decisions, where configurations yielding large disagreement among multiple models fit to

distinct subsets of a training set are added to the central repository15,18,19. Other successful

methods include “distance” based decisions, where configurations exhibiting a great enough

distance from previous configurations in fingerprint space are added to the central reposi-

tory16, as well as approaches arising from design of experiments17, etc21. The success and

efficiency of each of these methods is strongly linked to the nature of the target model and

its implementation. For example, committee-based active learning is best used with models

of high computational efficiency but relatively slow non-linear fitting as the final “model”

requires evaluating each run-time simulation frame with the entire “committee.”

Here, we are concerned with developing an active learning approach well suited for param-

eterically linear machine learned models (e.g. SNAP12, ChIMES22, Shapeev’s moment tensor

potentials23, etc.), for which the parameter solution step is rapid compared to parametri-

cally nonlinear models. We present an alternative active learning approach leveraging cluster

analysis in conjunction with Shannon information theory,24 and demonstrate its application

to one such model with explicit two-, three-, and four-body interactions (i.e. approximately

4000 parameters and thus highly susceptible to overfitting) for a C/O system under reactive

conditions. The following sections provide the model functional form and description of

the proposed AL approach. Resulting models are benchmarked against DFT in terms of

predicted small molecule chemistry, pressure, diffusion coefficients, atomic forces, as well as

molecular and overall system energetics.

In this section, we provide an overview of ChIMES (i.e. the testbed machine-learned

force field for this work), revisit a fitting problem for which the necessary model complexity

precluded generating a ChIMES force field through the standard iterative approach, and

present the active learning framework developed to overcome this challenge.

A. The ChIMES Force Field

The recently developed machine-learned Chebyshev Interaction Model for Efficient Sim-

ulation (ChIMES) provides an excellent testbed for the proposed active learning framework.
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ChIMES models are comprised of linear combinations of Chebyshev polynomials explicitly

describing many-body interactions, where the high degree of flexibility afforded by the basis

makes ChIMES highly suitable for problems in chemistry and capable of “quantum accuracy.”

As a consequence of this polynomial basis, ChIMES models are completely linear in fitted

coefficients and thus rapidly parameterizable, computationally efficient and scale linearly

with system size. As will be described in greater detail below, ChIMES force fields are fit

to forces (and optionally energies and stresses) arising from Kohn–Sham density functional

theory (DFT) simulations of 2-20 ps and have typically leveraged 2+3-body interaction

terms and an iterative refinement scheme, where frames from molecular dynamics (MD)

simulations with the ith ChIMES force field are occasionally sent back to DFT for single

point calculation and combined with the training repository, from which an i+ 1th ChIMES

model is generated; the cycle is repeated until desired model performance is achieved. This

iterative approach has worked well for molten carbon22, ambient water25, and dissociative

carbon monoxide26, where in all cases species were small and chemistry was rapid when

present. However, upon application to systems in which larger and more complex species

form, shortcomings arising from use of a 2+3-body ChIMES many-body truncation have

been identified26. Though the ChIMES equations can be easily extended to include higher-

bodied interactions, the resulting increase in model complexity necessitates intelligent and

automated model development tools.

The generalized ChIMES potential energy equation is given by:

EnB
=

na∑
i1

1Ei1 +
na∑

i1>i2

2Ei1i2 +
na∑

i1>i2>i3

3Ei1i2i3 + · · ·+
na∑

i1>i2... inB−1>inB

nBEi1i2...inB
, (1)

where EnB
is the total ChIMES system energy, nB is the maximum bodiedness, nEi1i2... in is

the n-body ChIMES energy for a given set of n atoms with indices i = {i1, i2, . . . , in}, and

na is the total number of atoms in the system.

In the ChIMES framework, single-body energies are constant values and n-body ener-

gies are constructed from the product of polynomials of transformed atom pair distances.

Thus, a 2-body interaction would involve a single pair, ij, while a three-body interaction

would involve 3 pairs, ij, ik, jk, a 4-body interaction would involve
(

4
2

)
pairs, and so on.

Taking as an example a 3-body interaction, we define the following: A = {i, j, k} is the

index over atoms within an interaction cluster, with the corresponding set of pairs given

by P = {ij, ik, jk}, their element pair types by E = {eiej, eiek, ejek}, and the polyno-
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mial orders for each pair given by O = {α, β, γ}. Analogous conventions are used for

a 4-body interaction. A = {i, j, k, l}, P = {ij, ik, il, jk, jl, kl}, element pair types are

E = {eiej, eiek, eiel, ejek, ejel, ekel}, and the polynomial orders for each pair are given by

O = {α, β, γ, δ, ε, ζ}. Two mapping functions are used to relate pair indices P to the three

aforementioned pair properties: m1 = P → E, and m2 = P → O. The index y refers to a

particular component of P , defining an interaction pair.

Using these definitions, we write the generalized ChIMES energy for a cluster of n atoms

as:
nEA =

∏
y∈P

fm1(y)
s

(
ry
)
×
O∗

n∑
O

cEO
∏
y∈P

Tm2(y)

(
sm1(y)
y

)
. (2)

As is given above, the
∑

O notation indicates a multiple sum for which there are
(
n
2

)
distinct

indices, O∗n is the maximum polynomial order for an n body interactions, and the asterisk

indicates a sufficient number of non-zero terms exist that the graph formed by the edges

of interacting atoms connects all n atoms, which guarantees a true n-body interaction.

Tm2(y)

(
s
m1(y)
y

)
is a Chebyshev polynomial of order m2(y) that depends on pair distance

s
m1(y)
y for pair y of atom types m1(y) that has been transformed from ry, to ensure it exists

in the [−1, 1] domain over which Chebyshev polynomials are defined, and f
m1(y)
s

(
ry
)
is a

cutoff function that ensures smooth behavior at the outer cutoff. For the special case of a

two-body interaction one has:

2Eij = f eiejp

(
rij
)

+ f eiejs

(
rij
) O2B∑
α=1

ceiejα Tα

(
s
eiej
ij

)
, (3)

where fp is a short-ranged repulsive interaction described later. Higher body interactions

follow the form of Eq. 2. We have for a three-body interaction:

3Eijk = f eiejs

(
rij
)
f eieks (rik) f

ejek
s

(
rjk
) O3B∑
α=0

∑
β=0

∑
γ=0

∗

cEα,β,γTα

(
s
eiej
ij

)
Tβ
(
seiekik

)
Tγ

(
s
ejek
jk

)
, (4)

and for a four-body interaction:

4Eijkl = f eiejs

(
rij
)
f eieks (rik) f

eiel
s (ril) f

ejek
s

(
rjk
)
f ejels

(
rjl
)
f ekels (rkl)

O4B∑
α=0

∑
β=0

∑
γ=0

∑
δ=0

∑
ε=0

∑
ζ=0

∗

cEα,β,γ,δ,ε,ζTα

(
s
eiej
ij

)
Tβ
(
seiekik

)
Tγ
(
seielil

)
Tδ

(
s
ejek
jk

)
Tε

(
s
ejel
jl

)
Tζ
(
sekelkl

)
(5)
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Transformed pair distances sm1(y)
y are obtained via8:

xm1(y)
y = exp(−ry/λm1(y)) (6)

xm1(y)
avg = 0.5(x

m1(y)
c,out + x

m1(y)
c,in ) (7)

x
m1(y)
diff = 0.5|xm1(y)

c,out − x
m1(y)
c,in | (8)

sm1(y)
y = (xm1(y)

y − xm1(y)
avg )/x

m1(y)
diff (9)

where sm1(y)
y is the pair distance and λm1(y) can be considered a characteristic bonding

distance, typically set to the location of the first peak in the DFT radial distribution function

for the m1(y) atom pair type, and r
m1(y)
c,in /rm1(y)

c,out are the corresponding inner/outer cutoff

radii. We note that Eq. 6 enforces a natural decrease in interaction strength as distance is

increased, and increasing λm1(y) has the effect of decreasing the rate of interaction decay as

r
m1(y)
c,out is approached, in a Morse-like8 fashion.

Finally, fm1(y)
s

(
ry
)
in Eq. 2 ensures the potential goes smoothly to zero at the outer

cutoff, rm1(y)
c,out . In departure from earlier ChIMES work where fm1(y)

s

(
ry
)
took on a cubic

form, we employ a Tersoff style cutoff function27 in the present work:

fm1(y)
s

(
ry
)

=



0, if ry > r
m1(y)
c,out

1, if ry < dt

1
2

+ 1
2
sin

(
π

[
ry−dt

r
m1(y)
c,out −dt

]
+ π

2

)
, otherwise

(10)

where the threshold distance is given by dt = r
m1(y)
c,out (1− fO), and fO is a value in [0,1]

taken to be 0.5, here. This new form exhibits a smooth step, allowing nEA to remain

unmodified by the smoothing function for all rm1(y) < dt; this is particularly useful for

many-body interactions of large n, where the product of
(
n
2

)
f
m1(y)
s

(
ry
)
factors is used, and

can otherwise severely reduce nEA contributions to the total energy for n > 2.

To prevent spurious close contact, a penalty term is added to each two-body energy 2E

in the system:

fm1(y)
p

(
ry
)

=


A
m1(y)
p

(
r
m1(y)
c,in + d

m1(y)
p − ry

)3

, if ry < r
m1(y)
c,in + dp

0, otherwise
(11)
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where Am1(y)
p is the penalty prefactor and dm1(y)

p is the penalty initiation distance set to 105

kcal/(mol Å3) and 0.01 Å here, respectively.

Permutational invariance of the energy is explicitly enforced. In particular, we require
nEA = nEΠA, where Π is a permutation operator acting on the n atoms in the cluster. This

leads to equality conditions among the coefficients

cEO = cΠE
ΠO. (12)

As an example, for a 4-body interaction we have

c
eiej ,eiek,eiel,ejek,ejel,ekel
αβγδεζ = c

ejei,ejek,ejel,eiek,eiel,ekel
αδεβγζ (13)

which is derived by permuting atoms i and j. In our implementation of ChIMES, permu-

tational invariance is enforced by treating permutationally related coefficients as the same

unique fitting variable.

In this work, we will consider the following objective function, which contains terms for

per-atom forces and per-system-configuration energies, though we note additional terms for

the system stress tensor can also easily be included14,22,25,26:

Fobj =
1

nf (3na + 1)

nf∑
i=1

 na∑
j=1

3∑
k=1

w2
Fijk

(
∆Fijk

)2
+ w2

Ei
(∆Ei)

2

 , (14)

where ∆X = XDFT − XChIMES{c}. Fobj and {c} are the weighted root-mean-squared error

and model coefficients, respectively. The number of frames and atoms are given by nf and

na, respectively, and the factor of 1 in the denominator arises from inclusion of a single per-

configuration energy, Ei. Fijk indicates the kth Cartesian component of the force on atom j

in configuration i. Units of kcal mol−1 Å−1 and kcal mol−1 and weights of 1.0 and 5.0 were

used for forces and energies, respectively (i.e. wFijk
and wEi

). The superscripts “ChIMES”

and “DFT” indicate forces/energies predicted from the present force-matched model and the

DFT molecular dynamics (DFT-MD) training trajectory, respectively.

Since ChIMES is entirely linear in its fitted parameters, the model optimization problem

can be recast as the following over-determined matrix equation:

wMc = wXDFT, (15)

where XDFT is the vector of FDFT
ijk and EDFT values, w is a diagonal matrix of weights to

be applied to the elements of XDFT and rows of M , and the elements of design matrix M
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are given by:

Mab =
∂Xa,ChIMES{c}

∂cb
. (16)

In the above, a represents a combined index over force and energy components, and b is the

index over permutationally invariant model parameters.

To avoid overfitting in determining c, we find that a regularization method must be used

for most problems. In the present work, the least absolute shrinkage and selection operator

(LASSO)28 method is used to regularize c. The LASSO method minimizes the objective

function:

FLASSO = Fobj + 2λ

np∑
i=1

|ci|, (17)

where np is the total number of unique fitting parameters. The parameter λ penalizes large

magnitude coefficients and reduces the likelihood of overfitting. Moreover, the absolute

values (L1 norm) used in the LASSO objective function have the effect of setting certain

coefficient values ci to 0, which can lead to substantial gains in model efficiency.

We use a locally written code that implements the Least Angle Regression (LARS) algo-

rithm29,30 for LASSO. The LARS algorithm proceeds in stages where variables are added or

removed one at a time. Each stage in the LARS algorithm is a solution of LASSO optimiza-

tion for a value of λ larger than the requested value. When the requested value is reached,

the algorithm terminates. We find that the LARS algorithm has better convergence proper-

ties than direct optimization of FLASSO, and additionally allows the analysis of solutions for

each iteration. Our code distributes the M matrix between computing nodes, allowing for

solution of large (e.g. > 1 TB) problems, and uses rank 1 Cholesky decomposition updates

to solve linear equations that arise in LARS.

The standard ChIMES iterative fitting approach is given below. We note that the success

of this method hinges upon the notion that the relatively inaccurate models produced during

early iterations are more likely to reach unsampled regions of physicochemical space and

can thus be considered a means of rare-event sampling. As briefly mentioned above, this

approach has been successful for systems of non-reactive small molecules, or those exhibiting

rapid chemistry. To generate these models, a simple iterative refinement framework was

employed, where (i) training trajectories were obtained from short DFT-MD trajectories

at the state points of interest for the system, (ii) a model was obtained by minimizing the

objective function (i.e. Eq. 14), (iii) a MD trajectory was launched using this ith force
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field, (iv) configurations from this simulation were periodically sent to DFT for single point

calculation to be merged with the existing repository, and (v) steps ii through iv were

repeated until the model exhibited the target level of accuracy.

B. Shortcomings of the Standard Parameterization Approach

The ChIMES model development scheme described above, (i.e. iterative fitting), has

been found insufficient when at least one of the following two conditions are met: the

system undergoes relatively slow chemistry, with species lifetimes exceeding 1 ps (i.e. where

kinetics are limited by relatively large reaction barriers), or the system contains structurally

complex species, e.g. oligomers, heterocycles, fused rings, etc. where greater-than 3-body

interactions (e.g. intramolecular torsion) have been shown26 to play a significant role. As

an example of this, consider a system of 50/50% C/O at 2400 K at 1.79 g cm−3. As

shown in Fig. 1a and 1c, DFT simulations predict that both criteria are met for the above

system. Previously, a ChIMES model was developed with the intention of transferability

over T = 9350, 6500, and 2400 K, and ρ = 2.56, 2.5, and 1.79 g cm−326. This model was

fit through the standard iterative approach using 2+3-body interactions and was found to

work well between the 9350 and 6500 K state points, but failed at 2400 K. As indicated

in Fig. 1b and 1c, one of two structural themes emerged during ChIMES MD simulations

at 2400 K using models derived from successive iterative iterations; either exclusively small

linear species, or unphysical ring-like structures featuring highly coordinated oxygen. These

two outcomes arose from an insufficiently complex ChIMES interaction model; to a model

containing only 2- and 3-body interactions, the coordinated oxygen structure is reasonable,

containing bond and angle distances reminiscent of those found in carbon dioxide, ethylene

oxide, dimethyl ether, etc. However, when iteratively added to the training repository, DFT

assigns a high energy, resulting in subsequent models that bias away for cyclic structures.

As a consequence, predicted chemistry is far off from the DFT-computed vales.

The above issues can be resolved through addition of 4-body terms, which in the language

of molecular mechanics force fields would allow for description of bonds (2-body), angles (3-

body) and dihedrals/impropers (4-body). However, doing so substantially increases the

number of parameters considered in the fitting process. For example, in a system with

two atom types, polynomial orders of O2B/O3B/O4B = 12/7/0 yields a maximum of 806

9



Or

aDFT

bChIMES: 2+3-Body

cSpeciation: Mole Fractions

DFT
ChIMES (2+3B)

FIG. 1. Sample system configuration predicted by (a) DFT and (b) successive, iteratively generated

2+ 3−body ChIMES force fields26 for carbon monoxide at 2400 K and 1.79 g/cm3; (c) comparison

of corresponding mole fractions predicted by DFT and ChIMES.

parameters, whereas O2B/O3B/O4B = 12/7/3 (i.e. the polynomial orders used in the present

work), yields a maximum of 3978 parameters. Increasing model complexity gives rise to an

additional set of problems; beyond the concomitant increase in risk of over-fitting, a far

greater number of iterative cycles are required to generate a converged force field, which

is prohibitive for reactive carbon-containing systems (i.e. that exhibit significantly higher

chemical complexity than those of only O, H, and/or N). In the following sections we describe
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Launch FFi
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(s)

Get FFi E’s for s
(and optionally
scent), initialize 

selection

Select subset 
of new 
species

(ssel)
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Refinement

Active 
Learning

(a)

(d) (c)

(b)

FIG. 2. The ChIMES active learning framework.

strategies to overcome these challenges, through development of an active learning framework

combining cluster analysis and Shannon information theory.

C. Active Learning Framework Overview

As described in section IA, development of our active learning framework began with

examination of our standard fitting approach. ChIMES training repositories contain both

DFT- and iteratively-obtained frames from MD trajectories, comprised of 3na coordinates

and forces, and a single overall system energy. The convoluted nature of this fitting problem

becomes apparent if one considers fitting a O2B/O3B/O4B = 12/7/3 force field for a C/O

system to only energies from DFT; doing so requires assignment of 3978 parameters such

that the energies for each dimer, trimer, and tetramer sum to the single value for each frame.

The total energy in a given frame arises from the sum of bonded and non-bonded inter-

actions, inter- and intra-molecular interactions, etc. Thus, by decomposing a given frame

into a collection of individual atom clusters (i.e. nominal molecules), computing the corre-

sponding DFT forces and energies, and adding them to the training repositories, resulting
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fits contain greater information on how to assign the 10s to 1000s of of parameters giving

rise to different 2-, 3-, and 4-body energetic contributions. This concept is similar to gener-

ating training configurations from a direct cluster expansion, but can be more effective for

molecular systems because resulting configurations are relevant to both the model and the

target physicochemical space. Note that the ChIMES model space can allow formation of

unphysical many-body cluster configurations (e.g. 3 atoms forming an equilateral triangle

with all distances equal to the corresponding 3-body inner cutoff). Thus, it is important

that the training repository contain configurations of this nature to inform the fit of their

unfavorability and prevent their spurious appearance during MD simulations. However, this

approach is still highly inefficient for several reasons: (1) successive MD frames are highly

correlated (e.g. due to the limited exploration of physicochemical space in short-time MD

simulations at a fixed temperature(s)), (2) the species contained in each frame can be very

similar (e.g. distributed about some chemical and/or conformational minimum energy), and

(3) the computational cost of evaluating the possible tens of thousands of species via DFT

would be prohibitive from a practical standpoint. In order to increase the efficiency of our

fits, we aim to increase the information contained in the training repository while simulta-

neously maintaining a minimal size, by developing a method for selecting subsets of possible

species. As will be discussed in greater detail in following sections, we do so by defining

a “feature” for each species, simply taken to be EChIMES,i, the energy per species atom as

computed by the ith ChIMES force field; using this construct, the information contained in

any given subset of species is maximized when the corresponding probability distribution of

EChIMES,i values is flattened. These concepts can be combined with the standard ChIMES

iterative fitting procedure to form the active learning cycle shown in Fig. 2. We note the

distinction between active learning (“AL”), represented by the orange components of the cy-

cle in Fig. 2, and an active learning cycle (“ALC”), which involves both iterative refinement

and active learning, i.e. the blue and orange components in Fig. 2.

D. Cluster-Based Species Identification

Fig. 3 provides a pictorial representation of the active learning (i.e. orange) portion of the

overall fitting scheme given in Fig. 2. The first step of this process is extraction of all possible

molecular species from the MD trajectory, i.e. step “a” in both Figs. 2 and 3. In this section,
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)

ChIMES MD trajectory Sample frame
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.
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.
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.
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.

.
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Central Training Repository (scent)

(a)

(b)

(c)

(d)...

...

Initial
distribution final

distribution

FIG. 3. Schematic representation of the active learning (i.e. orange) portion of an active learning

cycle (i.e Fig. 2). Arrow a indicates species extraction via clustering and per-cluster energy as-

signment by the ith ChIMES force field. Arrow b indicates randomized initialization of the cluster

selection process by splitting all extracted species into an initial selection subset and candidate

pool. The c arrows indicate exchange of species between the pool and selection subset via MC

(i.e. flattening the histogram of selected cluster energies), and arrow d indicates single point DFT

evaluation for each selected cluster and subsequent addition to the ever-growing central repository.

we describe the simple clustering approach through which this is achieved. Note that, for the

remainder of this work, “cluster” is used to mean a collection of atoms presumed to be bonded

or in the process of bonding, and can simply be considered an umbrella term for molecule,

intermediate, and/or transition state species. High accuracy condensed phase chemistry is a

central ChIMES goal and requires both molecules and “transition”/intermediate species be

well described - capturing the former is critical for recovering reaction energy minima and

thus speciation, while the latter influences reaction barriers, and thus predicted lifetimes. To

ensure both types of species are identified we use a simple double-pass clustering approach.

The first pass is used to identify nominal molecules, where a relatively short-ranged

distance-based criterion is identified for each possible pair type; atoms are then considered
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part of the same cluster if their distance to any other cluster member are within this “tight”

criteria. The second pass identifies nominal transition-state species, and uses looser distance

criteria; typically, this pass results in a smaller number clusters with larger overall sizes.

Because species identified in the second pass may be identical to those in the first pass

(i.e. in the case of well-separated molecules), we take the final set, s of identified species as

those unique across both passes, noting that in our algorithm, two clusters are considered

identical only if they are obtained from the same frame with the same atomic coordinates

and indices. In this work, respective values of 1.9, 1.8, and 1.7 Å are used as the “tight”

criteria for CC, CO, and OO pairs, respectively (i.e. location of the first minima in each

pair radial distribution function), while “loose” criteria were taken as ≈ 117% these values,

(i.e. corresponding roughly to the midpoint between the first minima and second maxima).

Species were extracted from 250 evenly-spaced frames from the 6 ps MD simulations.

E. Monte Carlo for Cluster Subset Selection

Once the set of candidate clusters have been extracted from the MD trajectory as de-

scribed above, the next task is identification of a much smaller subset of those clusters which

are maximally informative to the fit (i.e. steps b and c in Figs. 2 and 3). This batch mode

pool-based process20 is critical from an efficiency standpoint as it drastically reduces the

number of single-point DFT calculations required during addition to the training repository

(i.e. step d); moreover, in selecting this subset by maximizing information, fewer active

learning cycles (i.e. Fig. 2) will be required to achieve a converged result.

To achieve this, we look to statistical mechanics (SM) and Shannon information theory

(IT). IT provides a measure of the information entropy (I) contained in a given dataset

according to I = −
∑
pi ln pi, where pi is the probability to observe the ith value; the in-

formation contained in the data set is said to increase with increasing I. Note that the

definition of I differs from the statistical mechanical definition of entropy by only a factor

of kB, where in SM, pi is the probability to observe the ith energy state; in both cases,

information (entropy) is maximized when the distribution of pi is uniform. In the present

work we are concerned with obtaining a subset of all extracted clusters that will maximally

inform our fits. According to SM, a subset constructed via random selection from a larger set

will exhibit the same energetic distribution (e.g. Boltzmann). Randomly generated clusters
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avoid this problem; however, generation of such a set would be computationally inefficient

as our training data needs only to contain clusters of relevance to the model domain. Thus,

we have implemented an intermediate approach which combines the SM and IE definitions

of entropy to establish that the down-selected subset of fixed size nsel possessing the maxi-

mum possible information in our feature space (i.e. EChIMES,i, the energy per cluster atom

predicted by the ith ChIMES force field), yield a uniform probability distribution. Because

our goal is selection of a finite number of species from a set, our probability distributions

are comprised of bins with finite width, where high complexity species within a given bin

can be structurally or conformationally isoenergetic. Thus, we devise a simple Monte Carlo

(MC) approach for cluster selection; by using a statistical method (i.e. rather than selection

of clusters from each bin in a single pass), we ensure a degree of randomness across selected

species contained in each distribution bin.

Prior to the start of the Monte Carlo (MC) selection process, clusters extracted from

the trajectory of interest are stored in a set (s), of size n, as shown in Fig. 3. An energy

(EALC−X
cluster ) is assigned to each of the clusters in s with the Xth ChIMES model. The MC

process aims to select a subset (ssel) of nsel clusters from s which yields a flat distribution

in energy. To initiate the process, nsel random clusters are moved from s to ssel and the

remainder are put into a pool ("spool") containing npool = n − nsel clusters. A histogram

(h) of cluster energies in ssel is then constructed, defined over [min(s),max(s)], with nbins

bins. We note that later sections will explore alternative definitions of h and the effect of

changing nbins. Fig. 3 shows that, as expected, this initial histogram is sharply peaked (i.e.

the orange line), and closely resembles the histogram obtained by considering all possible

clusters (i.e. the blue line). In the remainder of this section we discuss how this histogram

shape, indicating the the ssel contains many similar clusters, can be flattened to evolve

ssel into a maximally informative subset of species for subsequent addition to our training

repository (i.e. step d).

The MC selection process proceeds as follows: (1) a random cluster (iold) having as-

sociated energy EALC−X
iold

is selected from ssel and its probability is taken as pi,old =

h(EALC−X
iold

)/nbins (2) a random cluster (inew) having associated energy EALC−X
inew

is selected

from spool and its probability is taken as pi,new = h(EALC−X
inew

)/nbins (3) if 1.0 +
pi,new−pi,old

2
> rand[0, 1]

the attempted move is rejected; otherwise the move is accepted (i.e. iold is moved to spool,

inew is moved to ssel, and h is recomputed). rand[a, b] is defined to be a uniformly distributed
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random number between a and b. We note that many MC acceptance criteria could be used

here, and that ours is simply intended to bias toward selections yielding a flat probability

distribution (i.e. equivalent histogram bins). In particular, the present criteria only accepts

moves for which pi,new < pi,new, forcing the MC process to converge (i.e. stop accepting

moves) once the histogram is completely flattened. This process is repeated for the total

requested number of MC cycles (ncyc), where one cycle is equal to the number of requested

Monte Carlo steps divided by n, allowing each cluster in s to be considered for selection at

least ncyc times, in principle. Typically, ncyc is set to nbins/10.

The Monte Carlo process is rapid, contributing only ≈ 5 minutes to the overall time

required for any given ALC. Users must specify the following options to execute the above

MC algorithm: nsel, ncyc, the number of histogram bins (nbins), and the specific definition of

h utilized. The two former options are set to 400 and 2 in this work unless otherwise stated.

We note that choice of nsel was based on identification of four small molecules present in the

DFT-MD simulation with mole fractions of at least 0.02, i.e. CO, CO2, C2O2, and C3O2. In

principle, nsel = 400 allows for 100 of each aforementioned species to appear in the final ssel

set; however in practice, a diversity of species is observed. We note that optimal values of

ncyc can be rapidly identified by tracking evolution of Shannon information (which increases

as the histogram flattens) during the MC process and will depend on the target system and

we calculate information via trapezoidal numerical integration of the normalized histograms

(i.e. rather than by summation) to ensure calculated information does not significantly differ

for calculations of the same distribution using different numbers of histogram bins. The

discussion section will present studies on influence of the latter two user-specified options,

nbins and h definition, as they can significantly impact ALC efficiency.

F. Computational details

The initial training trajectory comprised full frames arising from short (< 10 ps) spin-

restricted DFT-MD simulations of dissociative carbon monoxide at (9350, 2.56), (6500, 2.5),

and (2400, 1.79) (K, g cm−3). We note that previous studies have shown choice of spin

restriction minimally impacts condensed-phase and isolated molecule forces for the present

system26. Simulations at 9350 K were comprised of 64 atoms, while simulations at 6500 and

2400 K contained 128 each. We note that DFT-MD simulations at each temperature are
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initialized as molecular CO, but decompose into various species as the simulation progresses.

All DFT data was generated with VASP31–34, where a planewave cutoff of 700 eV, Fermi

smearing with width equivalent to the ion temperature, the Perdew-Burke-Ernzerhof gener-

alized gradient approximation functional35,36 (PBE), projector-augmented wave pseudopo-

tentials37,38 (PAW), and the DFT-D2 method for description of dispersion interactions39.

DFT-MD simulations utilized a 0.5 fs time-step and a Nose-Hoover thermostat40,41. The

initial training trajectory contained 80 evenly spaced full frames from the 2400 and 6500 K

state points, and 160 from the 9350 state point, for a total of 320 initial frames. Simulations

at higher temperature were included because they are likely to sample a broader region of

configuration space as well as close contacts, which informs the repulsive portion of the po-

tential and ultimately reduces the number of required iterative cycles. All other simulations

(i.e. during active learning) are conducted at 2400 K and 1.79 g cm−3, which we emphasize

are the target thermodynamic conditions for benchmarking the actively-learned models.

Recall that an active learning cycle involves both a simple iterative and an active learning

component (i.e the blue and orange portions of Fig. 2). During active learning cycles,

ChIMES simulations contained 128 atoms and were run at 2400 K and 1.79 g cm−3 for 6 ps

with our locally developed ChIMES-MD software using a global Hoover thermostat with

periodic boundary conditions. A 0.1 fs timestep is used during the ALC process since early

models generally learn from incomplete training repositories and tend to exhibit rapidly

varying potential energy surfaces. As will be discussed in later sections, models generated

in successive cycles yield far smoother potential energy surfaces, enabling use of a larger

timestep during production simulations. The present 2400 K/1.79 g cm−3 DFT simulations

yield significantly slower kinetics than is observed at the two higher T/p state points, which

serves to exacerbate uncertainty in predicted chemistry arising from small system sizes and

the effects of initial conditions. Because multiple independent DFT-MD simulations are too

time consuming and block averaging is dubious for short (i.e. non-equilibrated) simulations,

we instead estimate errors in examined properties by computing standard deviation across

eight independent ChIMES-MD simulations.

In addition to cluster selection, the iterative component of any given ALC involves se-

lection of a handful of full frames from ChIMES-MD for single-point DFT calculation and

subsequent addition to the central training repository, for more complete exploration of

training phase space. For this process, we select 20 frames evenly spaced over the duration
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of the simulation, rather than using a special technique to identify optimal frames. We

take this approach for two reasons: (i) to ensure the entire simulation progression is repre-

sented in the training repository, and (ii) because the AL portion of each ALC is performed

on much more frequently sampled frames (i.e. 250), and thus should identify important

events. In addition to the 20 frames discussed above, any frames for which pair distances

r
m1(y)
c,in < ry < r

m1(y)
c,in + dp are sampled are added to the repository and considered during the

ALC process to inform the fit in the typically undersampled region near the model’s inner

cutoffs.

II. ACTIVE LEARNING RESULTS AND DISCUSSION

In the following sections we present application of the AL approach discussed above to

development of ChIMES models explicitly describing 2-, 3- and 4-body interactions for a C/O

system under reactive conditions. As described in sections I B and IC, coupling between

model and physicochemical complexity make this a particularly challenging problem and

thus well suited for validating the present AL scheme. Three versions of our AL approach

are described, which vary by how the histogram h used during MC selection is constructed.

In the protocol described in section I E and Fig. 3, (i.e. where h is constructed considering

only clusters in s) there is no memory of clusters selected in previous active learning cycles

(i.e. those in the central repository scent). In addition to this “no-memory” mode, we explore

cases where there is “partial memory” (i.e. only some scent clusters are remembered when

constructing h), and full memory (all scent clusters are remembered when constructing h).

A. No-Memory Active Learning

We begin with investigation of the most basic active learning approach. The first task is

generation of the ALC-0 force field, trained to the 320 frames extracted from the 2400, 6500,

and 9350 K DFT trajectory, each of which contain 3na coordinates and forces, and a single

frame energy. Following identification, all clusters are extracted from 250 evenly spaced

frames spanning each DFT-MD trajectory (i.e. forming s), using the clustering approach

described in section ID. Energies for these clusters, EALC−0
i are then computed with the

ALC-0 force field and a subset of these species, ssel is selected through the Monte Carlo
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FIG. 4. Evolution of normalized h (i.e. probability) (top) and Shannon information (bottom) with

Monte Carlo step for no-memory ALC-0.

(MC) approach presented in section I E (i.e. step a in Fig. 3). For the MC procedure (i.e.

steps b and c in Fig. 3), ncyc and nbins are set to 2 and 20, respectively for identification of

nsel = 400 species. We take h =
[
min (s) ,max (s)

]
, which gives a histogram over values in

the current ssel) as the “no-memory” definition of h. In this scheme, each active learning

cycle selects clusters “from scratch,” with no knowledge of clusters selected and added to the

central training repository, in previous ALCs.

Focusing on the top plot of Fig. 4, the black data show the normalized histogram over all

EALC−0
i values for clusters in s (i.e. all clusters extracted from the initial training trajectory).

The histogram spans approximately −125 to 45 kcal mol−1 and rather than exhibiting a

Boltzmann or normal distribution, is sharply peaked at −25 kcal mol−1 and has a tail
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extending to positive EALC−0
i values. The remaining lines in the top plot of Fig. 4 show how

the distribution of EALC−0
i in ssel change as the MC selection process continues. Initially,

these distributions are similar to that for s, but rapid flattening is observed with successive

MC steps. We note that the sloping feature at positive EALC−0
ChIMES,i of the final distribution is

due to an insufficient number of high energy configurations to yield nsel/nbins configurations

in each bin. The bottom plot of Fig. 4 provides evolution of Shannon Information, I, (i.e.

a measure of histogram flatness) as the MC selection process progresses and also indicates

rapid convergence during the selection process. Specifically, I values are converged within

≈ 5000 MC steps (i.e. ≈ 1 cycle) and result in 30% increase in information relative to the

initial value. The final 400 selected species are then sent to DFT for single point force/energy

calculation and added to the central training repository (i.e. step d in Fig. 3), completing

ALC-0. Successive ALCs progress by generating new ChIMES models fit to the updated

training repository, launching ChIMES-MD simulations with the resulting models, repeating

the MC selection, and updating the central repository with both selected clusters and 20

evenly-space full frames from the ChIMES-MD simulation. These steps are repeated until

target model accuracy is achieved.

Here, we consider eight active learning cycles (i.e. up to ALC-7). Each ALC requires

approximately 6 hours of walltime on Intel Xeon E5-2695 hardware, where tasks are either

serial on a single processor, or in parallel using 4 36-core nodes. Tasks used the following

number of walltime hours: two for model generation (parallel), molecular dynamics (par-

allel), and post-processing (serial), one for cluster extraction (serial), EALC−X
i calculations

(parallel), and ssel generation (serial), and 3 hours for single point DFT calculations (par-

allel), though we note that these timings do not necessarily represent an optimized process.

Fig. 5 shows evolution of normalized h for ALCs 3 and 6, from which several notable features

emerge. Distributions exhibit a similar overall shape to ALC-0, with a sharp peak (shifted

to −30 kcal mol−1) and a tail at positive EALC−X
i . We find the ranges of observed EALC−X

i

to be similar between the two ALCs, but substantially smaller than that observed in ALC-0;

here, values are found to fall between ≈ −40 to −10 kcal mol−1. We note that s for ALC-1

includes clusters extracted from DFT at 6500 and 9350 K in addition to 2400 K. This is in

contrast to configurations extracted in subsequent ALCs that are harvested from ChIMES-

MD simulations (i.e. which are only the target 2400 K state point); as a consequence, the

range of EALC−X
i considered in ALC-1 is expected to be greater than in successive ALCs.
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FIG. 5. Evolution of h with Monte Carlo step for no-memory ALC-3 (top) and ALC-6 (bottom).

Nevertheless, similarity in the range of EALC−X
i values between ALC-3 and ALC-6 speaks

to convergence in ChIMES force fields generated at late ALC and resulting ChIMES-MD

simulations.

For a more direct means of comparing performance of ChIMES models arising from

successive ALCs, we consider speciation of small molecules CO, CO2, C2O2, and C3O2, in

terms of mole fractions (xi), and corresponding lifetimes (ti). For this analysis, a molecule

was considered persistent if all constituent bonds remained within a specified cutoff distance,

for a specified time. The distance criteria for each pair were set to the location of the first

minimum in the radial pair distribution function (i.e. 1.9, 1.8, and 1.7 Å for CC, CO,

and OO pairs, respectively), while the lifetime cutoff was set to 50 fs, allowing one-to-

two bond vibrations. Overall, the results, given in Fig. 6 indicate a tendency for values
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FIG. 6. Evolution of predicted mole fractions (xi) and lifetimes (ti) as a function of no-memory

ALC, for carbon monoxide at 2400 K and 1.79 g/cm3. DFT results are given in gray while ALCs

1–7 are given in successively darker orange bars, with standard deviations given as error bars.

Horizontal dashed lines serve as a guide to the eye and give the DFT value for each species.

to converge to the DFT result at late ALC, with error bars generally decreasing for rarer

species such as C2O2 and C3O2. We note that, at early in early ALCs, simulations may

become unstable and terminate prematurely, contributing to large error bars in predicted

values. In terms of species lifetime, significant fluctuations about the DFT value for CO2 are

found in conjunction with relatively large error bars, which could indicate a large variance

in physically reasonable values.

Per-atom force and system energy recovery were also investigated for the 2400 K ChIMES-

MD trajectory. As shown in Fig. 7, excellent force recovery is observed, suggesting the

22



-600

-400

-200

0

200

400

600

-600 -400 -200 0 200 400 600

F C
hI
M
ES
(k
ca
lm
ol
-1
Å
-1
)

FDFT (kcal mol-1 Å-1)

-218

-216

-214

-212

-210

-208

-218 -216 -214 -212 -210 -208

E F
,C
hI
M
ES
×
10
0-
1
(k
ca
lm
ol
-1
)

EF,DFT × 100-1 (kcal mol-1)

-900

-800

-700

-600

-500

-400

-300

-200

-900 -800 -700 -600 -500 -400 -300 -200

E s
m
al
l,C
hI
M
ES
(k
ca
lm
ol
-1
)

Esmall,DFT (kcal mol-1)

-80

-70

-60

-50

-40

-30

-20

-10

-80 -70 -60 -50 -40 -30 -20 -10

E l
ar
ge
,C
hI
M
ES
×
10
0-
1
(k
ca
lm
ol
-1
)

Elarge,DFT × 100-1 (kcal mol-1)

FIG. 7. Comparison of per-atom forces (top left), system energies (top right), small molecule ener-

gies (bottom left) and large molecule energies (bottom right) predicted by DFT and the ChIMES

force field arising from no-memory ALC-7, for carbon monoxide at 2400 K and 1.79 g/cm3. Note

that energies for full frames and large species have been divided by 100 for clarity.

model should yield good reproduction of DFT structure. The largest deviations are found

for large magnitude force, which generally corresponds to unusual and less favorable struc-

tures, which are useful for fitting purposes but generally not indicative of model performance

under the target conditions. Overall, we find a reduced root-mean-squared error in the forces

(i.e. RMSEr,F = RMSEF/〈|F |〉) of 0.345, consistent with previous ChIMES models22,25,26.

Fig. 7 also provides a comparison between overall frame energies predicted by DFT and

ChIMES. The data are found to be highly linear with an R2 and slope of 0.993 and 0.969,

respectively, however, the data are slightly offset from the x = y line, with an intercept
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at −5.978 kcal mol−1 100−1. This behavior is attributed to inclusion of frame energies

corresponding to simulations at 6500 and 9350, each of which used distinct electronic tem-

peratures and thus strictly correspond to different electronic potential energy surfaces; in

fact, when frame energies are plotted for all three state points, we find data for 6500 and

9350 K to be slightly below and above x = y, respectively. Nevertheless, we note that this

intercept improves substantially upon that of the previous 2+3-body parameterization26 (i.e.

≈ −57 kcal mol−1 100−1), by an order of magnitude. Rather than modifying the current

study to account for this effect, we simply note that it can be mitigated by excluding high-

est temperature state points or re-computing forces and energies using a smaller thermal

smearing parameter. Overall, these data exhibit a reduced RMSE of RMSEr,ET
= 0.003, i.e.

an order of magnitude less than in previous work26, suggesting the present model should

still yield high accuracy condensed phase energetics.

In systems such as the present, which exhibit a diversity of chemical species with varied

complexity, it is helpful to further decompose energetic contributions, thus the final two

plots of Fig. 7 provide comparisons between DFT and ChIMES energetics for small species

(i.e. CO, CO2, C2O2, and C2O3), and species for which 10 ≤ nC + nO ≥ 50; the former

plot speaks to the predicted concentrations and lifetimes of species that seed formation

of larger structures, and the latter to molecular conformations in complex species. We

note that these species correspond to the final ssel from ALC-0 and includes configurations

from all three temperatures identified as nominal molecules and nominal intermediates (i.e.

both high- and low-energy configurations). Focusing first on the small molecules, we find

reasonable agreement, with a corresponding reduced RMSE of RMSEr,Esml
= 0.036. The

largest discrepancies between DFT and ChIMES are found for higher-energy configurations

involving CO2, i.e. pseudo-intermediate state species which inform energetic maxima in

reaction coordinate space, and thereby play an important role in predicting species lifetimes.

Thus, it is somewhat unsurprising that the error bars for tCO2 are among the largest observed

for lifetimes given in Fig. 6. Possible explanations for this include insufficiently high 2- or

3-body order, or inconsistent DFT energetics for CO2 arising from the three considered

state points (i.e. due to use of different smearing parameters). We find excellent recovery

of large species energetics, with RMSEr,Elrg
= 0.009, suggesting the present model provides

a high-accuracy description of conformations in complex species. These RMSEr values are

also listed in table I along with pressures, diffusion coefficients, and minimized CO and CO2
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TABLE I. Pressures, diffusion coefficients, root-mean-squared errors in forces and energetics, and

geometries in CO and CO2 predicted by DFT and each examined AL approach.

DFT No-Memory Full-Memory Partial-Memory

nbins – 20 20 20 40

P (GPa) 9 10.83 8.98 9.61 11.44

dOs (10−8 m2/s) 1.8 1.72 1.42 1.52 1.44

dCs (10−8 m2/s) 1.5 1.42 1.42 1.32 1.44

RMSEr,F – 0.345 0.356 0.338 0.331

RMSEr,ET – 0.003 0.004 0.003 0.003

RMSEr,Esml
– 0.036 0.047 0.033 0.035

RMSEr,Elrg
– 0.009 0.010 0.009 0.008

lC−O
eq,CO (Å) 1.15 1.14 1.14 1.14 1.14

lC−O
eq,CO2

(Å) 1.18 1.18 1.17 1.17 1.17

θO−C−O
eq,CO2

(deg.) 180 180 180 180 180

structures predicted by DFT and the present ChIMES model. Noting that stress tensors

were not included in the present fits, we find a 20% over-prediction in pressure, but otherwise,

all other metrics are in excellent agreement with DFT.

B. Full-Memory Active Learning

Though the above “no-memory active” learning approach improved substantially upon

early parameterization efforts for CO at 2400 K and 1.79 g cm−3 (e.g. by removing the

propensity for the ChIMES-MD simulations to form hyper-coordinated structures), there is

still room for refinement, most notably in recovery of pressure and small molecule energetics.
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FIG. 8. Evolution of predicted mole fractions (xi) and lifetimes (ti) as a function of full-memory

ALC, for carbon monoxide at 2400 K and 1.79 g/cm3. DFT results are given in Gray while ALCs

1–7 are given in successively darker orange bars, with standard deviations given as error bars.

Horizontal dashed lines serve as a guide to the eye and give the DFT value for each species.

In this section, we consider an active learning framework with “full-memory” of the central

repository where we aim to flatten a histogram of both clusters selected in previous ALCs

(i.e. scent) and current selections from s, ssel. This is achieved by constructing h from both

the set of clusters in the central repository (scent) and those in ssel; h is defined over the

minimum and maximum values among both scent and s. In principle, this approach should

improve model performance by preventing redundancy among species selected in successive

ALCs. As a practical point, we note that this approach requires re-calculation of EALC−X
i

for scent species each ALC, which for the present system, adds no more than 15 minutes
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to the overall time required to complete an ALC. Fig. 8 provides the mole fractions and

lifetimes predicted from full-memory ALCs 1–7. In general, average mole fractions, 〈xi〉

predicted by the no-memory ALC-7 model are closer to DFT than those from full-memory

ALC-7, however both methods produce values within error of one another. In contrast,

ALC-7 full-memory average lifetimes, 〈ti〉, are generally closer to DFT, with 3 out of 4

values within error between the two methods. In both methods, 〈xi〉 and 〈ti〉 values across

ALCs 1–7 appear converged to the same extent. Moving to table I, we find pressure in

better agreement with DFT while diffusion coefficients and predicted CO/CO2 structures

are close to the no-memory values.

It is not entirely surprising that full-memory active learning yields such marginal im-

provements over the no-memory model. In the former framework, early ALC ChIMES-MD

simulations can give rise to unphysical structures to which DFT typically assigns high energy;

moreover, ALC-1 includes clusters from 6500 and 9350 K, which can exhibit substantially

higher energies than those sampled at 2400 K. As more ALCs are performed, resulting

ChIMES models begin yielding more reasonable configurations and assigning energies more

consistent with those arising from DFT. As a consequence, early ALCs set the upper bound

histogram value causing late ALCs to cluster about relatively low histogram values and giv-

ing rise to a long tail at high histogram values. The practical implication of this is that only

a fraction of the 20 available bins are allocated to histogram “active space” at late ALC.

C. Partial-Memory Active Learning

The pitfalls of full-memory active learning can readily be overcome setting an energetic

cutoff for central repository configurations “remembered” during the sub-selection process,

effectively imposing bounds on the possible range of h. In the present work, this is achieved

by constraining the domain of h to the minimum and maximum EALC−X
i values among only

s and populating it only with scent and ssel values that fall within this domain; any scent

values outside of that range are ignored during the MC selection process; henceforth we

refer to this approach as “partial-memory” active learning. Note that this is in contrast to

the full-memory approach, which constructed h from all clusters in scent and those in ssel.

Mole fractions and corresponding lifetimes predicted by ChIMES force fields developed with

partial-memory ALC are given in Fig. 9. Comparing with the no-memory model, we find
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FIG. 9. Evolution of predicted mole fractions (xi) and lifetimes (ti) as a function of partial-memory

ALC using 20 bins, for carbon monoxide at 2400 K and 1.79 g/cm3. DFT results are given in Gray

while ALCs 1–7 are given in successively darker orange bars, with standard deviations given as

error bars. Horizontal dashed lines serve as a guide to the eye and give the DFT value for each

species.

ALC-7 〈xi〉 for the present model are generally closer to DFT. Values for no-memory 〈ti〉 are

closer to those predicted by DFT for all but C2O2, however all partial-memory predictions

for these species are within error of the full-memory results. Table I also shows that the both

models predict pressure and diffusion coefficients within error of one another, and identical

predictions for CO and CO2 geometries. Additionally, table I indicates that, along with

no-memory, the partial-memory model exhibits the lowest value of RMSEr,ET
, and has the

lowest value for all other RMSEr considered. Ultimately, the partial-memory model is found
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to provide the best overall performance, though differences between the various models are

small.

It stands to reason that the present active learning framework should yield improved re-

sults when shist is constructed with finer resolution. Thus, we explore the effect of doubling

nbins, i.e. from 20 to 40. To ensure the MC selection process is converged, we also double

ncyc, i.e. from 2 to 4. Fig. 10 gives the mole fractions and corresponding lifetimes pre-

dicted from this 40-bin partial-memory active learning process. Most notably, the present

active learning approach yields speciation which is more obviously converged than that of

the previous methods, suggesting enhanced efficiency. Moreover, this indicates the likeli-

hood of serendipitous predictions are decreased in the 40-bin case. Comparing to ALC-7

speciation from the 20-bin-partial-memory approach, 40-bin 〈ti〉 are closer than DFT for

all but C2O2; 40-bin 〈ti〉 values are closer to DFT for only half the species, though they

are within error of the 40-bin prediction for the remaining two. Table I shows the 40-bin-

partial-memory model yields the worst pressure prediction relative to DFT, but diffusion

coefficients and CO and CO2 geometries are in agreement with the other three approaches

within error. Furthermore, RMSEr,ET
and RMSEr,F are both the smallest of all considered

models. Computed RMSEr,Esml
and RMSEr,Elrg

values for the 40-bin-partial memory model

are not directly comparable with the other three models, since the final ALC-0 ssel contains

different species (i.e. because they were selected using different nbin values). Nevertheless,

we find RMSEr,Esml
is the second smallest and RMSEr,Elrg

the smallest of the four active

learning methods considered. We note that additional simulations of the same size and

length were run for the 40-bin-partial memory ALC-7 model using an increased time-step

(i.e. from 0.1 to 0.5 fs), for which resulting predictions were consistent with the 0.1 fs re-

sults presented here. As a final comparison between each active learning approach, Fig. 11

provides the radial pair distribution functions (RDFs) predicted for the 2400 K system by

the ALC-7 model from each approach. As with all other explored validation metrics, the

RDFs are all similar to one another and DFT, though a slight over-structuring is observed

in the second CC 20-bin-partial-memory peak (r ≈ 2.5), and the first OO peak predicted

by the 20-bin-partial-memory and the no-memory models.
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FIG. 10. Evolution of predicted mole fractions (xi) and lifetimes (ti) as a function of partial-memory

ALC using 40 bins, for carbon monoxide at 2400 K and 1.79 g/cm3. DFT results are given in Gray

while ALCs 1–7 are given in successively darker orange bars, with standard deviations given as

error bars. Horizontal dashed lines serve as a guide to the eye and give the DFT value for each

species.

III. CONCLUSIONS

Active learning provides an automated and flexible means of achieving training repository

completeness, a primary factor determining accuracy and robustness of high complexity

machine-learned force fields. In this paper, we have demonstrated design of an AL approach

for semi-automated development of high-fidelity reactive ChIMES models by sampling only

from relevant configurations found in a condensed phase. Moreover, this approach is broadly
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FIG. 11. Radial pair distribution functions for C/O at 2400 K and 1.79 g cm−3. Curves have been

vertically offset by increments of 0.25 for clarity.

applicable and well-suited for any parameterically linear high-complexity model. At a high
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level, this approach involves identification, extraction and selection of potentially important

species by way of clustering, energetics and a criterion inspired by Shannon information

theory.. The result is an evolving central training repository that enables deconvolution of

inter- and intra-molecular contributions to DFT forces and energies, allowing for an improved

description of structure, dynamics, and speciation.

To demonstrate the suitability of this AL framework, we have applied it to development

of a high-complexity (i.e approximately 4000 parameter) explicitly many-bodied machine

learned force field for C/O systems under reactive conditions and shown resulting mod-

els exhibit excellent agreement with DFT. Model development through a partial memory

active learning process with 40 bins was found to yield convergent behavior by 8 active

learning cycles, and predicted structure, dynamics, and speciation in excellent agreement

with DFT. We note that the present AL approach has an added benefit; instabilities are

often encountered during initial ChIMES runs on large systems due to an enhanced proba-

bility of sampling new regions of phase space with increased system size. Using the present

AL approach, these unstable configurations can be dealt with on a cluster-scale, rather

than overall-system scale, drastically reducing the computational requirements for addi-

tional ALCs. This work represents a significant step forward in ML model development

methodology by substantially enhancing automation and reproducibility. Furthermore, this

approach is highly flexible; current efforts are focused on extending this fitting framework to

enable transferability through parallel learning at multiple state points and further refining

this process by addition of structural criteria during MC selection, as well as a configuration

filter based on the expected model change method20.
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