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Abstract

Motivation: A global effort is underway to identify drugs
for the treatment of COVID-19. Since de novo drug design is
an extremely long, time-consuming, and expensive process,
efforts are underway to discover existing drugs that can be
repurposed for COVID-19.
Model: We propose a machine learning representation
framework that uses deep learning induced vector embed-
dings of drugs and viral proteins as features to predict
drug-viral protein activity. The prediction model in-turn is
used to build an ensemble framework to rank approved drugs
based on their ability to inhibit the three main proteases
(enzymes) of the SARS-COV-2 virus.
Results: We identify a ranked list of 19 drugs as potential
targets including 7 antivirals, 6 anticancer, 3 antibiotics,
2 antimalarial, and 1 antifungal. Several drugs, such as
Remdesivir, Lopinavir, Ritonavir, and Hydroxychloroquine,
in our ranked list, are currently in clinical trials. Moreover,
through molecular docking simulations, we demonstrate that
majority of the anticancer and antibiotic drugs in our ranked
list have low binding energies and thus high binding affinity
with the 3CL-pro protease of SARS-COV-2 virus.
Availability: All code is available at: https:

//github.com/raghvendra5688/Drug-Repurposing

1 Introduction

The breakout of Covid-19 started in December 2019, in
China’s Hubei province (Dong et al., 2020), and to date, this
pandemic has caused over 10 million infections and over 500k
deaths worldwide in just eight months (Organization, 2020).
There is an immediate need for effective treatment and vac-
cines to contain the spread of this pandemic. Based on the
time and resources required to develop new drugs to treat
Covid-19, it is not feasible to rely completely on the tradi-
tional process of drug discovery, which takes an average 15
years and costs $2-3 billion to bring a new compound to mar-
ket (Pushpakom et al., 2019). A more pragmatic approach
would be to perform drug repurposing.

Drug repurposing is a strategy for identifying new uses for
approved or investigational drugs that are outside the scope of
their original medical usage (Ashburn and Thor, 2004; Push-
pakom et al., 2019). Given a large number of already ap-
proved drugs, there is a significant chance that one or several
of these could help to treat Covid-19. There are several ad-
vantages of drug repurposing compared to de novo drug de-
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sign. The repurposed drug will have a low risk of failure on
several critical criteria as it has already been tested in pre-
clinical models and humans (Pushpakom et al., 2019). The
time frame for testing is relatively compact because its safety
assessment has already been conducted (Pushpakom et al.,
2019; Cheng et al., 2016, 2017; Cheng, 2019). The investment
required is low for repurposing of a drug (Pushpakom et al.,
2019; Cheng et al., 2016, 2017; Cheng, 2019). The repurposed
drugs can also reveal new targets for a given medical condi-
tion (Oprea et al., 2011; Pushpakom et al., 2019). For drug
repurposing, computational approaches offer advantages over
costly and time-consuming experimental techniques (Cheng
et al., 2018) and can be the only feasible solution given the
large number of candidate drugs which makes in vitro or in
vivo testing impractical.

In this paper, we present an integrative computational ap-
proach, which combines data from a variety of sources to
identify already known drugs as candidates for viral diseases,
using Covid-19 as a specific use case. The crux of our ap-
proach is based on the observations that a) we can map drug
and virus information to the small molecule activity such that
drugs with similarities in structure and physio-chemical prop-
erties tend to have similar activities for given protein targets,
and b) proteins serving as drug targets for other similar vi-
ral diseases may be potential targets for Covid-19. For our
use case, we focus on primary protein targets of severe acute
respiratory syndrome-related coronavirus 2 (SARS-CoV-2) to
identify potential drugs that can inhibit these target proteins
to prevent viral activity.

Our analysis follows a data-driven perspective. We collect
information about various viral organisms, their main pro-
teases and their known (published) small molecule interac-
tions from plethora of resources including ChEMBL (Gaulton
et al., 2017), PubChem (Kim et al., 2016), NCBI (Wheeler
et al., 2007), UniProt (uni, 2017), DrugBank (Wishart et al.,
2018) etc. In this work, we used the term drugs for
small molecules and compounds interchangabley. The
traditional approach for estimating drug (ligand) activity
for a particular viral protein (enzyme) is through molecu-
lar docking (Kitchen et al., 2004). For performing molec-
ular docking, an inherent requirement is the availability of
high-quality 3d crystal structure of the protein of interest
as well as annotation information about the presence of ac-
tive sites (Chakraborti and Srinivasan, 2020). Moreover, it
is computationally expensive to perform the docking simula-
tions for a large number of drugs in combination with many
viral proteins. However, it is relatively easy to collect infor-
mation about the primary structure (linear chain of amino
acids) for proteases associated with viruses from resources
such as UniProt. Moreover, structural and chemical infor-
mation for drugs in the form of SMILES strings is readily
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available in resources such as DrugBank and ChEMBL. Fi-
nally, standardized activity (inhibition/potency/affinity) in-
formation for a plethora of drug-viral protein combinations is
available in PubChem, ChEMBL, and NCBI. These are es-
sential to building data-driven supervised predictive models.
The primary notion is that by providing a large dataset of
drug-viral activity, machine learning (ML) models can iden-
tify frequently occurring patterns in the form of presence of
k-mers in the viral protein sequences and subsequences in
SMILES representation of drugs that together drive the ac-
tivity values to be high or low. Our primary contributions
are:

• Collection, curation, and assimilation of drug-viral pro-
tein activity from resources such as PubChem, ChEMBL,
and NCBI leading to ¿60k interactions between ¿50k
drugs and ≈ 100 viral organisms.

• Propose autoencoder frameworks to obtain numeric vec-
tor representations for drugs and viral proteins respec-
tively, which can be utilized by state-of-the-art tradi-
tional supervised ML techniques.

• Propose 4 different end-to-end deep learning techniques
to predict drug-viral protein activity scores based on
SMILES strings and primary structure of viral proteins.

• Identify a ranked list of 19 drugs as potential therapeutic
agents for COVID-19 by targeting the three main pro-
teases of the SARS-COV-2 virus using our data-driven
approach. These include 7 antivirals, 3 antibiotics, 6 an-
ticancer, 2 antimalarial, and 1 antifungal drugs, several
of which are currently involved in clinical trials.

• Showcase efficiency of the predicted anticancer and an-
tibiotic drugs for inhibiting the 3CL-Pro protease (low
binding energy) of the SARS-COV-2 virus through
molecular docking simulations.

Figure 1 provides a flowchart of our proposed drug-viral ac-
tivity prediction framework.

2 MATERIALS

In order to build data-driven predictive models, we collected
information about drugs, viral protein sequences, and drug-
viral protein interactions (activity scores) from resources such
as MOSES (Polykovskiy et al., 2018), ChEMBL, UniProt,
PubChem and NCBI. Below we describe in detail the data
collection and curation steps required for the preparation of
quality data, essential for downstream predictive models.

2.1 Data Collection & Curation

2.1.1 Drugs:

We initially collected 556, 134 SMILES strings for drugs
used in (Gupta et al., 2018). However, in order to have
more robust and realistic molecules, the dataset was aug-
mented with 1, 936, 962 drugs available in the MOSES dataset
(Polykovskiy et al., 2018). Together these two datasets rep-
resented ≈ 2.5 million SMILES for drugs. We then filtered
this dataset to remove salts and stereochemical information
and confined the length of the SMILES strings in the range

Figure 1: Flowchart of our proposed drug-viral protein activ-
ity predictor.

[34, 128] characters resulting in a final set S of 2, 459, 695
canonical SMILES for small molecules.

To train the majority of ML algorithms, it is essential to
have numeric vector representation for drugs. We used the
set S to train a teacher forcing long short term memory neu-
ral network (TF-LSTM) (Gers et al., 1999; Lamb et al., 2016)
based autoencoder (Kramer, 1991) which generates a low di-
mensional vector representation (LSd) for each drug. A de-
tailed description of the TF-LSTM model is provided in the
Methods section.

2.1.2 Viral Proteins:

We downloaded all the viral protein sequences available in
UniProt (uni, 2017) comprising a total of 2, 684, 733 protein
sequences. Among these 10, 685 are deposited in SwissProt
(Boeckmann et al., 2003) i.e. are manually curated and func-
tionally annotated, whereas the remaining 2, 674, 048 are ob-
tained from TrEBML (Boeckmann et al., 2003) and are not
well-curated. These viral proteins span over 2, 742 viral or-
ganisms. We then perform two preprocessing steps as uti-
lized in (Rawi et al., 2018; Khurana et al., 2018) to avoid
any unwanted bias and to ensure heterogeneity of sequences
within the dataset. Similar to previous works (Smialowski
et al., 2007; Elbasir et al., 2019), we first used CD-HIT (Li
and Godzik, 2006; Fu et al., 2012) method to decrease se-
quence redundancy within the dataset with a maximum se-
quence identity of 90%. This resulted in a reduced set of
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214, 915 primary viral protein sequences. We finally removed
all protein sequences of length L¿2, 000 resulting in a final set
V of 212, 057 viral protein sequences.

In order to train most ML methods, it is essential to have
numeric vector representation for viral protein sequences. We
utilized the set V to train a convolutional neural network
(CNN) (LeCun et al., 1995) based autoencoder which gener-
ates a low dimensional vector representation (LSv) for each
viral protein sequence. A detailed description of the CNN
autoencoder (CANN) is provided in the Methods section.

2.1.3 Drug-Viral Protein Activities:

The primary focus of our work is the 3 main proteases of
the SARS-COV-2 virus including papain-like proteinase (PL-
PRO), 3C-like proteinase (3CL-PRO also referred as cleav-
age protein) and the Spike glycoprotein (S glycoprotein). We
centered our work on these SAR-COV-2 proteins due to the
following reasons: a) availability of high-quality 3d struc-
tures deposited in protein data bank (Bank, 1971) (PDB Ids:
6W02, 5R7Y, 6M0J respectively); b) for several other viral
organisms, the PL-PRO and 3CL-PRO are the main proteases
that have been targeted by drugs; c) It has been shown (Lan
et al., 2020), that spike protein attaches the virion to the cell
membrane by interacting with host receptor, initiating the in-
fection. It binds to human ACE2 and CLEC4M/DC-SIGNR
receptors and the internalization of the virus into the endo-
somes of the host cell induces conformational changes in the
S glycoprotein.

As the SARS-COV-2 is a new virus, it is harder to get qual-
ity data about drug-viral protein activity. However, informa-
tion about similar viruses, their main proteases and small
molecules used to target these viral proteins are available in
repositories such as NCBI, PubChem, ChEMBL, BindingDB
(Liu et al., 2007). We initially searched for compound ac-
tivity information related to SARS-COV-1 (SARS-1), Mid-
dle East Respiratory Syndrome (MERS), Human Immunod-
eficiency Virus (HIV) and Hepacivirus C (HepC) using the
“PUG-REST” API of NCBI (Wheeler et al., 2007) which
was used to download raw information from various NCBI
records. We further processed only those records which con-
tain Assay Id’s (AID). A given assay can report different kinds
of compound bioactivities depending on the objective of the
study. These bioactivities include measurements such as IC50,
EC50, AC50, Ki, Kd, Potency etc. as described in (Haas et al.,
2017). These biological activities are standard potency mea-
sures that are derived from dose-response assays at different
concentrations designed to measure activation, inhibition of
targets, and pathways of pharmacological significance (Haas
et al., 2017) for a drug. We further filter those records which
don’t contain a PubChem standard value for activity (as oth-
erwise, it makes it difficult to have an unbiased comparison
of compound activities).

In this work, we pivoted on IC50 value as done by (Ullah
et al., 2017), which is based on the concentration of a com-
pound at which 50% inhibition of a viral protein is observed.
The PubChem standard value for IC50 is reported in micro-
molar (10−3) concentration (Kim et al., 2016). Furthermore,
it is known from enzyme kinetics (Cheng-Prusoff Equation
(Beck et al., 2017)) that when a ligand (drug) binds to a pro-
tein in an uncompetitive scenario i.e. an assay, the Ki value
determined is equal to IC50 value. Thus, we can augment our
dataset with records containing Ki values. We then removed

records where drugs contain salt and those whose SMILES
string exceeds 128 characters, resulting in an interaction set
of 13, 763 drug-viral protein activities.

We next downloaded all drugs and viral protein interac-
tion information available in ChEMBL (Gaulton et al., 2017)
repository. As a part of internal quality checks provided by
ChEMBL, we include only those drug-viral protein interac-
tions which have a confidence score of at least 5. The confi-
dence score value reflects both the type of target assigned to
a particular assay and the confidence that the target assigned
is the correct target for that assay. As stated in (Gaulton
et al., 2017), assays assigned a non-molecular target type,
e.g. a cell-line or an organism, receive a confidence score of
1, while assays with assigned protein targets receive a confi-
dence score of at least 5. Moreover, we remove those activ-
ities for which a standard pChEMBL value is not available.
The myriad published activities from heterogeneous resources
utilized by ChEMBL are converted into a standardized activ-
ity, namely, the pChEMBL value. This value allows us to
compare different measures of half-maximal response (con-
centration/potency/affinity) on a negative logarithmic scale.
For instance, an IC50 value of 1 nano-molar (nM) would have
a pChEMBL value of 9. The standard pChEMBL value is
associated with standard PubChem value through a simple
mathematical formulae (pChEMBL = − log10(PubChem ×
10−3) + 6).

We initially obtain a set of 92, 638 such drug-viral protein
activities and after filtering for only those records which con-
tain IC50, Ki, and Potency as standard types, we limit the
set to 62, 219 interactions. We then remove records where
the compounds contain salt and their corresponding SMILES
string exceeds 128 characters. We truncated viral protein se-
quences to have a maximal length L=2000 amino acids in the
interaction set. This results in a final set of 54, 756 drug-viral
protein interactions obtained and curated via ChEMBL.

We finally perform a union of the set of drug-viral protein
activities obtained via PubChem and ChEMBL, resulting in
the dataset D consisting of 60, 195 such interactions. These
interactions comprise 54, 617 unique drugs, 153 unique vi-
ral protein sequences (based on Uniprot accession ids), and
span over 97 different viral organisms. We randomly split the
dataset D into Dtrain (54, 175 interactions) and Dtest (6, 020
activities) in the ratio of 0.9 : 0.1, which are used as the train-
ing and independent test set respectively for the purpose of
predictive modelling.

3 Methods

3.1 Overview

Drug-viral protein activity prediction can be modeled as a
regression task. We learn a mapping function g that takes as
input a joint drug and viral protein representation, (xd, xv)
and outputs the activity score ydv. Here ydv corresponds to
the -log10(IC50) and is used as standardized pChEMBL ac-
tivity score. If ` is the model-specific loss function, then the
regression task reduces to estimating the parameters w which
minimizes

min
w

∑
d,v

`(ydv, g(xd, xv;w))

In this work, the mapping function g is a ML method in-
cluding Random Forests (Breiman, 2001), XGBoost (Chen
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Figure 2: Overview figure depicting our predictive modelling process. For each drug d and each viral protein v,
we use representations xd and xv based on SMILES strings and primary structure respectively. For each drug-viral protein
interaction, the activity value used in the training set is obtained from resources such as PubChem, ChEMBL and NCBI. We
used the -log10(IC50) value measured in nano-molar units i.e. -log10(103 × 10−9)=6 as the standardized pChEMBL activity
score (ydv) in Figure 2.

and Guestrin, 2016), Support Vector Machines (Suykens and
Vandewalle, 1999; Mall and Suykens, 2015) and ` is the
squared loss function.

For these techniques, xd and xv are passed to a TF-LSTM
(Gers et al., 1999) and a CANN (LeCun et al., 1995) respec-
tively to generate numeric vector representations LSd and LSv

which are utilized by the aforementioned ML models to esti-
mate activity scores, such that ŷdv = g(LSd,LSv;w).

Furthermore, we also considered end-to-end deep learning
models using CNN, LSTM, CNN-LSTM and Graph Atten-
tion Network (GAT)-CNN as function g, where xd corre-
sponds to SMILES representation for drugs and xv reflects
the primary structure or linear chain of amino acids for vi-
ral protein sequences and ŷdv = g(xd, xv;w). The SMILES
representation, is parameterized by a sequence of vectors,
xd = {xd,1, xd,2, . . . , xd,l}, where xd,i is a one-hot coded vec-
tor (Harris and Harris, 2010) i.e. a binary vector of length
51 (51 unique characters appears in SMILES of all possi-
ble drugs) with 1 bit active for ith character in the SMILES
string and l = 128. Similarly, for each viral protein sequence,
xv = {xv,1, xv,2, . . . , xv,L}, where xv,j is a one-hot coded vec-
tor of length 22 (20 for amino acids, 1 for gap and 1 for
ambiguous amino acids) and L=2000. Figure 2 provides an
overview of our modeling process.

3.2 Drug Autoencoder: TF-LSTM

The goal of a drug autoencoder model (Kramer, 1991) is
to learn the innate low dimensional representation LSd from
SMILES strings of drugs (xd) in an unsupervised setting such
that compounds with similar patterns tend to be closer in
the low dimensional space. Our drug autoencoder framework
consists of an encoder, a decoder, and a sequence to sequence
(seq2seq) model which encapsulates the encoder and decoder
and provides a way to interface with each. The encoder con-
sists of a multi-layered LSTM (Gers et al., 1999) which over-
comes limitations like vanishing gradients experienced by a
traditional recurrent neural network (RNN) models (Dupond,

2019). The output of LSTM encoder can be represented as
(h, c) = EncoderLSTM(e(xd)). Here e(xd) represents the em-
bedding representation for drug, h and c correspond to hidden
state representations encapsulating sequential information.

The decoder component does a single step of decoding i.e.
it outputs single (ŷtdv) token per time-step t. Since, we are
building a drug autoencoder model, ŷtdv = xt

d i.e. the vector
corresponding to the tth character in the drug representation
xd. The decoder can mathematically be depicted as st =
DecoderLSTM(xt

d, (h, c)). The hidden state st obtained from
DecoderLSTM is passed through a linear layer f to make
a prediction for the next token in the target sequence i.e.
ŷt+1 = f(st).

Our seq2seq method takes the source drug representation
(xd), target drug representation (xd) and a teacher-forcing ra-
tio. The teacher forcing ratio is used when training our model.
When decoding, at each time-step we predict what the next
token in the target sequence will be from the previous tokens
decoded, ŷt+1

dv = f(st). With probability 1 - teacher forcing
ratio, we will use the token that the model predicted as the
next input to the model, even if it doesn’t match the actual
next token in the sequence. The latent space representation
LSd for a given drug is equivalent to the hidden state repre-
sentation h for our TF-LSTM model.

We trained this TF-LSTM model on ≈ 2.5 million SMILES
strings for small molecules. During the training phase, the
teacher forcing ratio is set to 0.5 and during the test phase
of our experiments, it is set to 0. Interestingly, 96.7% of the
SMILES generated by our TF-LSTM model were valid small
molecules (tested using RDKit (Landrum, 2013) package) and
had a mean categorical cross-entropy (Goodfellow et al., 2016)
error of 0.001. The convergence of the reconstruction error for
our TF-LSTM model is depicted in Supplementary Figure 1a.
Figure 3a illustrates our TF-LSTM drug autoencoder model.
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(a) TF-LSTM Drug Autoencoder
(b) Protein Convoluational Autoencoder Neural Network

Figure 3: Drug and Protein autoencoder models designed to generate numeric vector representations LSd and LSv from
drugs and viral proteins.

3.3 Protein Autoencoder: CNN

The goal of the viral protein autoencoder model is to learn
a low dimensional representation LSv from the amino acid
sequences of viral proteins xv. We used a convolutional au-
toencoder neural network for this purpose. Our protein au-
toencoder framework consists of two main components: an
encoder and a decoder as shown in Figure 3b. The autoen-
coder was trained in an unsupervised fashion to learn a low
dimensional space (LSv).

The encoder consists of multi-layered convolution and sub-
sampling layers followed by a fully connected layer. The pur-
pose of using the convolution layers is to extract features that
preserve input neighborhood interactions and spatial local-
ity, which is important to capture local protein structures
and frequently occurring k-mers. The max-pooling layers are
used for subsampling to obtain translation-invariant represen-
tations and reduce the number of convolution filters required
resulting in a lesser number of trainable parameters. The
max-pooling layers also perform regularization and help to
generalize the learned latent space. The decoder consists of
multi-layered deconvolution and upsampling layers preceded
by a fully connected layer. These layers perform the inverse
function of the encoder layers in the reverse order to generate
the initial input.

We trained our autoencoder on 212, 057 viral proteins. The
mean categorical cross-entropy (Goodfellow et al., 2016) error
for the autoencoder was 0.1. The convergence of the recon-
struction error for the autoencoder is depicted in Supplemen-
tray Figure 1b.

3.4 Traditional Machine Learning Models

We used three state-of-the-art ML models, namely, Random
Forests (Breiman, 2001), XGBoost (Chen and Guestrin, 2016)
and Support Vector Machines (SVM) (Suykens and Vande-
walle, 1999; Mall and Suykens, 2015) as mapping function
g. Thus, our predicted activity score can be represented as
ŷdv = g(LSd,LSv;w) for a given drug d and viral protein v.
It has been shown that Random Forests, XGBoost and SVMs
can be used efficiently for a variety of bioinformatics problems
(Mall et al., 2017; Rawi et al., 2018; Mall et al., 2018; Ullah
et al., 2018; Palotti et al., 2019; Elbasir et al., 2020).

Random Forests (RF) belong to the class of ensemble

supervised learning techniques. RF algorithm applies the
technique of bagging or bootstrapped aggregating (Breiman,
2001) to decision tree learners. Our training dataset is de-
picted as Dtrain = {(LSi

d,LSi
v), yidv}, where d ∈ S, v ∈ V and

i = 1, . . . , N . Here yidv ∈ R and N is the total number of
drug-viral interactions in the training set. Given Dtrain, the
bagging procedure repeatedly selects random samples with
replacement and fits separate trees to these samples.

Gradient boosting machine (GBM) (Friedman, 2001) be-
longs to that family of predictive methods that uses an itera-
tive strategy s.t. the learning framework will consecutively fit
new models to have an accurate estimate of the response vari-
able after each iteration. The notion behind this technique
is to construct new tree-based learners to be as correlated as
possible with the negative gradient of a given loss function (`),
calculated using all the training data Dtrain. The advantage
of the boosting procedure is that it works by decreasing the
bias of the model, without increasing the variance. A more
scalable and accurate version of GBM is XGBoost (Chen and
Guestrin, 2016). XGBoost is based on the principle of tree
boosting. It uses a scalable end-to-end tree boosting system
with a weighted quantile sketch for approximate tree learning.
More importantly, XGBoost can scale for a large number of
samples using very little computational resources and achieve
state-of-the-art predictive performance.

Support vector machines (SVM) were originally introduced
in (Drucker et al., 1997; Suykens and Vandewalle, 1999) and
belong to the family of non-linear optimization technique
used as a function estimator (regression) by constructing non-
linear hyperplanes. A crucial step in building SVM mod-
els is the choice of the non-linear kernel function that en-
codes the similarity structure in the input data. In this
work, we use the radial-basis function (RBF) kernel which
is optimized using a standard cross-validation procedure. We
used the ‘sklearn’ package (Pedregosa et al., 2011) available
in python (https://www.python.org) for building our opti-
mal RF, XGBoost and SVM models after performing hyper-
parameter optimization using 5-fold cross-validation.

3.5 End-to-End Deep Learning Models

We built 4 end-to-end deep learning models for our regression
problem where the mapping functions g were CNN, LSTM,
CNN-LSTM, and GAT-CNN. These models directly work on
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(a) CNN model (b) LSTM model
(c) CNN-LSTM model (d) GAT-CNN model

Figure 4: Different end-to-end deep learning models used as data-driven predictive models for the task of estimating drug-viral
protein activity.

the drug (xd) and viral protein (xv) representations, unlike
traditional ML techniques. It has been shown previously
(Khurana et al., 2018; Elbasir et al., 2019) that end-to-end
deep learning models are useful for various bioinformatics ap-
plications.

3.5.1 CNN Model:

This deep learning architecture comprises two CNN encoders.
For the drug and protein CNN encoders, each of the drug (xd)
and viral protein (xv) representation is passed through an em-
bedding layer (e(·)) to generate drug embedding matrix and
viral protein embedding matrix respectively. A single convo-
lutional layer with multiple filter sizes, k ∈ K = {3, 6, 9, 12},
is applied on top of the embedding matrix followed by a max-
pooling operation to generate hidden state vector for small
molecules as well as viral protein sequences as depicted in
Figure 4a. The hidden state vector hd for drugs and hv for
viral protein sequences are then concatenated together (h)
and are considered as the output of the CNN encoders.

We then have multiple feed-forward layers on top of h which
are ultimately connected to the output unit corresponding to
the activity score. The CNN encoders can capture contigu-
ous sequences in the SMILES representations and k-mers in
viral protein sequence, whereas the feed-forward layers cap-
ture the co-occurrence of such patterns that drive the activ-
ity score to be either high or low based on our training set
Dtrain. We use non-linear activations at every layer and opti-
mize the model architecture w.r.t. hyper-parameters such as
filter sizes, learning rate, etc.

3.5.2 LSTM Model:

The LSTM model consists of two LSTM encoders. We have
an LSTM encoder based on the drug representation (xd) and
another one based on the viral protein representation (xv).
The drug LSTM encoder generates the hidden state vector
(hd) while the viral protein encoder generates the hidden state
vector (hv). The two hidden vectors are then concatenated
together (h) as illustrated in Figure 4b.

We again have multiple feed-forward layers on top of h
which is connected to the output unit representing the activ-
ity score. The LSTM encoders not only capture short but long
term dependencies as well, due to the availability of memory
units, based on SMILES strings and viral protein sequences
and the feed-forward layers encapsulate the co-occurrence of

such patterns driving the activity score to be high or low for
a given drug-viral protein combination.

3.5.3 CNN-LSTM Model:

The CNN-LSTM model is a combination of CNN and the
LSTM model. Similar to the previous two models, it con-
sists of two encoders, one for the drug representation (xd)
while the other for the viral protein representation (xv). For
each encoder, the output of the convolutional layer instead
of being passed to a max-pooling layer is directly passed to
the recurrent layer (LSTM) which then generates the hidden
state vector representations (hd,hv) for the compounds and
the viral protein sequences respectively.

By combining the CNN and LSTM models, this model can
better capture contiguous and well as long-term dependencies
in the SMILES strings and viral protein sequences. The out-
put of each encoder is concatenated together to generate hid-
den representation h which is passed to multiple feed-forward
layers and is ultimately connected to the output layer con-
sisting of one unit for the activity score.

3.5.4 Graph Attention Networks-Convolutional
Neural Networks (GAT-CNN) Model:

This deep learning architecture is composed of two parts,
graph attention networks (Veličković et al., 2017) and con-
volutional neural networks. For a given drug, the compound
structure can be presented as a graph consisting of the atoms
in the compound (as nodes) and connected by edges if a bond
exists between a pair of atoms. To convert a compound struc-
ture to the form of graph representations, we use the RD-
Kit package which takes SMILES strings and converts them
to a multi-dimensional binary feature vector. Furthermore,
RDKit allows us to extract different atom features such as
atom’s degree, the total number of hydrogen, the number of
hydrogen with the number of bonded neighbors, atom status
as aromatic or not, the implicit value of atoms, and atom
symbol. These features can be utilized as node properties
for atoms. In total, we extract 78 such features from the
SMILES strings. Given the graph-based representation of a
drug molecule (xd) along with the extracted node features,
the GAT model learns an embedding representation for a
drug encapsulating the topological information available in
the graph of each drug.

The second component of this architecture is convolutional
neural networks which take protein sequence as an input.
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This component is composed of the embedding layer and
multiple convolutional layers. At each convolutional layer,
a non-linear activation function is applied and is followed by
a max-pooling operator. This component of our GAT-CNN
architecture learn protein embeddings (hv) and then concate-
nates it with the SMILES embedding (hd) generated by GAT
to generate h which is then passed to feed-forward layers.
The output layer outputs the score corresponding to the com-
pound activity. The weights associated with GAT and CNN
models are learned jointly through backpropagation proce-
dure during the training phase while training on drug-viral
protein samples.

The optimal model architecture hyper-parameters (like
hd = 256, hv = 64) for each of the end-to-end deep learn-
ing models are provided in Supplementary Table 1.

4 RESULTS

4.1 Experimental Results on Dtest

We perform 10 randomizations for each of our predictive
models by randomly splitting the full dataset D into Dtrain

and Dtest in proportions (0.9:0.1) for training and testing
purposes respectively as mentioned earlier in the Materials
section. Table 1 provides a comprehensive comparison of
the mapping functions g utilized in our work including RF,
SVM, XGBoost, CNN, LSTM, CNN-LSTM and GAT-CNN
models These models are evaluated over 4 quality metrics,
namely, mean absolute error (MAE), mean squared error
(MSE), pearson correlation R (Pearson R) and the coeffi-
cient of determinination (R2), where each of these metrics
are estimated using the predicted pChEMBL values vs the
groundtruth pChEMBL values for drug-viral protein inter-
actions (Dtest). For metrics, MAE and MSE, the lower the
value and closer to 0, the better the predictive performance
of the model, whereas for metrics, Pearson R and R2, the
higher and closer the value to 1, the better the efficiency of
the predictive model.

Model MAE MSE Pearson R R2
RF 0.630 ± 0.004 0.855 ± 0.015 0.739 ± 0.006 0.546 ± 0.003

SVM 0.596 ± 0.005 0.779 ± 0.016 0.767 ± 0.003 0.588 ± 0.005

XGBoost+ 0.567 ± 0.002 0.753 ± 0.007 0.775 ± 0.003 0.599 ± 0.005
CNN 0.587 ± 0.005 0.826 ± 0.017 0.758 ± 0.005 0.575 ± 0.008
LSTM 0.597 ± 0.003 0.809 ± 0.008 0.756 ± 0.001 0.571 ± 0.002

CNN-LSTM 0.646 ± 0.004 1.005 ± 0.013 0.700 ± 0.003 0.490 ± 0.004
GAT-CNN∗ 0.576 ± 0.005 0.761 ± 0.015 0.772 ± 0.004 0.597 ± 0.006

Table 1: Comparison of performance of devised ML tech-
niques for our drug-viral activity prediction problem evalu-
ated w.r.t. 4 metrics.

From Table 1, we observe that the best predictive model
w.r.t. all quality metrics is the XGBoost model, highlighted
in Table 1 by +, and is built on the numeric vector representa-
tion of drugs and viral protein sequences (g(LSd,LSv;w)) re-
spectively. The XGBoost model achieves quality performance
when compared to an ideal model for which the Pearson R
and R2 would be 1. It is closely followed by the end-to-end
deep learning model (g(xd, xv;w)) based on graph attention
networks on the drugs and the convolutional neural networks
on viral protein sequence model (GAT-CNN, depicted in Ta-
ble 1 by ∗). Table 1 showcases that predictive performance of
all our designed ML models are comparable, suggesting that

these models can be used in an ensemble framework to rank
drugs which can have the highest activity against a given viral
protein of interest. It is noteworthy, that the standard devi-
ations of each of our predictive model w.r.t. the 4 evaluation
metrics are low, indicating low variance and high efficiency in
the generalization performance of our proposed models.

Next, we evaluate the predictive performance of the best
model obtained from the 10 randomizations for each map-
ping function g. The predictive capability of each of these
models is highlighted in Figure 5. In Figure 5, the x-axis rep-
resents the true pChEMBL values for drug-viral protein activ-
ities available in Dtest and the y-axis represents the predicted
pChEMBL value by individual ML model. Ideally, we want to
minimize the difference between predicted pChEMBL value
and the true pChEMBL value i.e. the predictions should be
aligned along the diagonal. Moreover, the smaller the scatter
of the predictions along the diagonal, the lower is the vari-
ance of the predictive model and higher is the generalization
performance as depicted in Figures 5c and 5g. Furthermore,
we are interested in accurately estimating larger pChEMBL
values as they suggest a higher activity for drug-viral protein
combinations, thereby suggesting potential inhibition. We
observe from Figure 5, that traditional ML models such SVM
(see Figure 5b) and XGBoost (see 5c) as well as end-to-end
deep learning models can efficiently estimate such pChEMBL
values. For true pChEMBL values greater than 8 and pre-
dicted pChEMBL values also greater than 8, these models
achieve MAE of 0.487, 0.545, 0.472, 0.562, 0.527, 0.645 and
Pearson R of 0.647, 0.668, 0.682, 0.554, 0.598 and 0.637 re-
spectively. However, the RF method fails to accurately esti-
mate higher pChEMBL values (identify potential inhibitors
efficiently), MAE of 0.945, and Pearson R of 0.525, as illus-
trated in Figure 5a.

We additionally compared the predictive performance of
these models w.r.t. the ground-truth drug-viral protein inter-
actions available in the test set Dtest as illustrated in Figure
6. It can be observed from Figure 6 that the x-axis represents
the sample id in Dtest, whereas, for each such sample, we have
8 values vertically spread along the y-axis. One of these val-
ues is the ground truth pChEMBL value, while the others
are predicted interaction scores by our data-driven models.
The closer the predicted scores are to the true pChEMBL
value, the smaller is the error in our predictions. The spline
fitted on the pChEMBL values for the ground truth (labeled
as ‘True’ in Figure 6) activities correlate well with the splines
fitted on the predicted pChEMBL values for each of our pro-
posed models. The convergence of loss function for the best
deep learning drug-viral protein activity prediction models
are highlighted in Supplementary Figure 1c.

4.2 Experimental Results for COVID-19
Use Case

For COVID-19, we utilized proposed ML models in an en-
semble framework to identify FDA approved drugs which can
be most potent against its viral proteins. We focused on the
3 main viral proteases of SARS-COV-2 virus including the
PL-pro, 3CL-pro and Spike protein whose primary structure
is depicted in Table 2. We initally used a set of 117 FDA ap-
proved drugs which are in some stage of clinical trial for any
known viral organism as indicated in (Andersen et al., 2020).
However, after filtering for large molecules (l > 128), we end
up with a set S comprising 101 compounds (SMILES strings)
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(a) RF Model (b) SVM model (c) XGBoost model

(d) CNN model (e) LSTM model (f) CNN-LSTM model (g) GAT-CNN model

Figure 5: Comparison of predictive performance of the optimal version of each ML model for 4 evaluation metrics on the
test set Dtest. The best performance w.r.t. R2 is observed for the XGBoost model. However, the GAT-CNN deep learning
model’s performance is highly competitive and second best to the XGBoost model.

including known antivirals, antibiotics, antifungal and anti-
cancer drugs (see Supplementary Table 2).

Figure 6: Comparison of predictions made by our proposed
data-driven models w.r.t. the underlying groundtruth activ-
ity scores available in Dtest.

We first obtain the predicted pChEMBL values for all our
proposed ML methods corresponding to the set of drugs (S)
for each of the three main proteases of the SARS-COV-2
virus. After obtaining the predicted pChEMBL values, we
average the predictions obtained from SVM, XGBoost, CNN,

Uniprot Id PDB Id Protein Fragment Sequence L
P0DTD1 6W02 PL-PRO (NSP3) GEVNS. . .SSFLE 170
P0DTD1 5R7Y 3CL-PRO SGFRK. . .GVTFQ 306
P0DTC2 6MOJ Spike Protein TNLCPF. . .ATVCG 229

Table 2: Main proteases of SARS-COV-2 virus targeted for
inhibition by our data-driven drug repurposing approach.
Here . . . is used to save space.

LSTM, CNN-LSTM and GAT-CNN models (top-performing
models w.r.t. accurately estimating high pChEMBL values)
to get a ranked list of drugs ordered by decreasing pChEMBL
values for each of the 3 viral proteins as depicted in Table 3.
By taking an average of the predictions, we allow our ranked
list to be influenced by each of the ML models and the top-
ranked predicted drugs should have high activity score for a
majority of the 6 ML models used in the ensemble framework.

From Table 3, we observe that the list of top-ranked drugs
includes 7 antivirals, 3 antibiotics, 6 anticancer, 2 antimalarial
and 1 antifungal compound respectively. The power of drug
repurposing is reflected in these results as several of the drugs
identified are originally meant for a different disease or were
designed for different functionality (chemotherapeutic agent,
malarial drug, etc.) but can have potential antiviral capabil-
ities. It is noteworthy, that majority (10 out of 19) of these
drugs are commonly appearing in the top 15 ranked list of
drugs and hence predicted to be effective against all the three
main proteases of SARS-COV-2 virus. Similarly, 6 out of the
remaining 9 drugs in Table 3, have strong activity scores for
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Drug Name PL-Pro 3CL-Pro Spike Protein

Valaciclovir+ 6.3421 6.3051 6.3283

Remdesivir+ 6.1012 6.1294 6.25311

Nelfinavir+ 6.0873 6.1293 6.23113

Regorafenib∗ 6.0644 6.0488 6.19014

Trametinib∗ 6.0585 6.1532 6.4731

Lopinavir+ 6.0146 6.00810 6.3017

Mitoxantrone− 6.0097 6.1005 6.4052

Sorafenib∗ 5.9898 5.99411 6.10020

Mefloquine# 5.9799 6.0219 6.09921

Monensin− 5.95610 5.95415 6.25910

Topotecan∗ 5.92911 6.0666 6.3026

Hydroxychloroquine# 5.92812 6.0577 6.09822

Lobucavir+ 5.92313 5.89818 5.87941

Bortezomib∗ 5.90214 5.93016 6.3194

Posaconazole@ 5.89315 5.96214 6.3075

Tilorone+ 5.85117 5.96412 6.25012

Ritonavir+ 5.80323 5.96313 6.2948

Salinomycin− 5.83018 5.85321 6.2709

Raloxifene∗ 5.81921 5.92917 6.18215

Table 3: Top ranked 15 drugs for each of PL-Pro, 3CL-Pro
and Spike proteins of SARS-COV-2 virus ordered by PL-Pro,
3CL-Pro and Spike protein respectively. The values represent
the average predicted pChEMBL score by ensemble of our 6
proposed ML models. Here +, −, ∗, # and @ correspond
to antiviral, antibiotics, anticancer, antimalarial and antifun-
gal drugs respectively. The superscript for each predicted
pChEMBL score reflects the ranking of the drug for that par-
ticular viral protein based on the list of ranked drugs.

2 out of the 3 main proteases of SARS-COV-2. This suggests
that the drugs identified by the ensemble of our data-driven
models can be universally effective against the SARS-COV-2
virus.

Figure 7: Validation of the top-ranked drugs identified by
our data-driven approach. Several of the drugs identified by
our framework are in some stage of clinical trials and several
others (highlighted in boxes) have been identified as potential
drugs for COVID-19 in recent literature.

From Figure 7, we observe that drugs such as Remde-
sivir, Monensin, Tilorone, Hydroxychloroquine, Nelfinavir,
Lopinavir, Mefloquine, Ritonavir, Trametinib, identified as
potential candidate drugs against SARS-COV-2 viral proteins
by our data-driven framework, are in some stage of a clinical
trial for one or more coronavirus based disease as reported
in (Andersen et al., 2020). Moreover, antivirals Favipiravir
and Lobucavir have been reported in (Shannon et al., 2020;
Cai et al., 2020) and (Perricone et al., 2020; Basha, 2020)
respectively as potential drugs for SARS-COV-2 virus as de-

picted in Figure 7. While the authors in (Shannon et al.,
2020), showcase that Favipiravir can be used to target the
RNA polymerase process induced by the virus to produce
proteins by functioning as polymerase inhibitor, the author
in (Basha, 2020) identified Lobucavir as a potential drug us-
ing a computer-aided drug screening mechanism. Moreover,
in (Wu et al., 2020), a structure-based virtual ligand screening
was performed i.e. molecular docking was utilized to deter-
mine that antifungal drug, Posaconazole, had a high binding
affinity for the Spike protein (ranked 5th in our list for the
Spike protein).

Additionally, we observe a myriad number of anticancer
drugs such as Sorafenib, Regorafenib, Raloxifene, Topotecan
have been identified as potential treatments for COVID-19
as indicated in (Duarte et al., 2020; Arul et al., 2020) and
illustrated in Figure 7. By utilizing a data-driven approach,
combining connectivity map and transcriptomic signature of
lung carcinoma cells infected with the SARS-COV-2 virus,
the authors in (Duarte et al., 2020) identify anticancer drugs
such as Raloxifene and Topotecan as potential therapeutic
solutions. Similarly, in (Arul et al., 2020), it was observed
that anticancer drugs Regorafenib and Sorafenib have a high
binding affinity score for the Spike protein through molecu-
lar docking experiments. In another experiment in (Verma
et al., 2020), Mitoxantrone was determined to be one of the
most effective (highest binding affinity score) drugs against
the 3CL-pro viral protein. A series of stabilizing interactions
were observed between the drug and viral protease active sites
in the case of Mitoxantrone, leading to a high binding affinity
score.

Finally, in (Macchiagodena et al., 2020), it was shown that
the N3 ligand acts as a covalent inhibitor of 3CL-pro and
has a strong binding affinity with the lowest energy minimum
of -7.9 Kcal/mol, thereby inhibiting the 3CL-pro viral pro-
tease. We performed molecular docking for each of the 19
top-ranked drugs highlighted in Table 3 with the 3CL-pro
protein utilizing the Rosalind online tool (http://covid19.
glamorous.ai/). Rosalind uses Gypsum-dl (Ropp et al.,
2019) for compound preparation and Autodock vina (Trott
and Olson, 2010) for docking. By default, it runs processes
with the following parameters: exhaustiveness set to 8, the
number of binding modes corresponds to 9, and a random
seed.

From Table 4, we observe that majority of the 7 antiviral
drugs estimated by our data-driven approach (including Nel-
finavir, Remdesivir, and Lopinavir) have low binding energy
which is comparable to the one obtained for N3 ligand and
thus exhibit strong binding affinity against the 3CL-pro viral
protease. Interestingly, all the 6 anticancer drugs and 3 an-
tibiotics attain low binding energies, thereby exhibiting the
potential to inhibit this viral protease. Drugs such as Tram-
etinib and Monensin have shown to be effective inhibitors
against multiple coronaviruses as illustrated in Figure 7 and
in (Li and De Clercq, 2020) and (Pillaiyar et al., 2020) respec-
tively. It is also noteworthy, that even though our predictive
framework identifies Hydroxychloroquine as a potential tar-
get (in the top 10 ranked drug list for 3CL-pro as indicated in
Table 3) when performing molecular docking against 3CL-pro
viral protein, it achieves a relatively high binding energy score
(-6.472 Kcal/mol) suggesting weak binding affinity and hence
lack of effectiveness as an inhibitor against the virus. This
is complemented by the recent clinical trial (Geleris et al.,
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Category Antiviral Anticancer Antibiotics Antimalarial Antifungal
Drug Name Nelfinavir, Remdesivir,

Lopinavir, Valaciclovir, Lobu-
cavir, Tilorone

Trametinib, Topotecan, Rego-
rafenib, Raloxifene, Sorafenib,
Bortezomib

Monensin, Mitox-
antrone, Salinomycin

Mefloquine,
Hydroxychloro-
quine

Posaconazole

Binding Energy -8.386, -7.989, -7.872, -7.477, -
7.389, -7.185, -6.291

-9.439, -8.753, -8.661, -8.480, -
8.349, -8.170

-8.919, -8.349, -7.922 -8.274, -6.472 -8.308

Table 4: Comparison of the binding energy of the top-ranked drugs against 3CL-pro main viral protease estimated using
Rosalind. The lower the binding energy the better is the binding affinity between the drug and the viral protein. Each group
is ordered by increasing binding energy and a one-to-one correspondence exists between drug name and binding energy.

2020) showcasing that Hydroxychloroquine has no impact on
the survival of the most severe outcomes from the COVID-19
disease.

5 DISCUSSION & CONCLUSION

In this work, we showcase that the problem of predicting ac-
tivity score for drug-viral protein interactions can be formu-
lated as a regression task. We illustrate that data-driven ML
models (g(·)) based on a simplistic representation of drugs
(SMILES strings) and viral protein sequences (linear chain of
amino acids) can be used efficiently for the aforementioned
task. We demonstrated the effectiveness of 3 traditional ML
methods: RF, SVM, and XGBoost and 4 end-to-end deep
learning pipelines as mapping functions to accurately esti-
mate these activity scores (all these techniques achieve Pear-
son R > 0.7 on an independent test set Dtest). Moreover,
the majority of the models (except RF) can accurately de-
termine larger pChEMBL values (>= 8.0) with a Pearson
R > 0.55. Since our models are based on representations of
drugs (xd) and viral proteins (xv), we can enhance our mod-
els by using additional information such as physio-chemical
properties as well as 2d images of drugs. Similarly, we can
utilize supplementary information including physio-chemical
and structural properties of proteins as showcased in (Khu-
rana et al., 2018; Elbasir et al., 2019), to further strengthen
our models in the future.

Since our predictive framework is built on Dtrain which
contains information for over 97 different viral organisms
along with their main proteases, our models are generaliz-
able. This means that our models can efficiently produce
a ranked list of potential inhibitors for the next big viral
threat once the proteins associated with that viral organism
are known. Moreover, it known that viruses frequently mu-
tate (Fleischmann Jr, 1996). As a result, the viral protein
will also have multiple point mutations i.e. few amino acids
in the primary sequence of the viral protease can change.
This can have an immense impact on the 3d structure as
well as the functionality of the viral protein (Bhattacharya
et al., 2017). Thus, data-driven techniques identifying po-
tential drugs based on virtual ligand screening using docking
experiments (high-quality 3d structure of viral proteins) such
as (Wu et al., 2020; Basha, 2020; Verma et al., 2020; Duarte
et al., 2020; Arul et al., 2020) can suffer greatly in this situ-
ation. However, our models focus on the primary structure
(linear chain of amino acids) and with point mutations, the
vector representations LSv and xv will change. But since our
mapping functions are generalizable (based on frequently co-
occurring k-mers and subsequences in SMILES strings), we
will end up with a revised ranked list of drugs as potential
inhibitors for the mutated viral protein in a computationally
efficient manner.

For the COVID-19 use-case, an ensemble of our data-driven
models identifies a list of 19 drugs as potential inhibitors.
These drugs include Remdesivir, Lopinavir, Nelfinavir, Riton-
avir, Tilorone, Mefloquine, Hydroxychloroquine, Monensin,
and Trametinib, which are in some stage of a clinical trial
against one or more coronaviruses as depicted in Figure 7.
Moreover, drugs such as Remdesivir, Lopinavir, Favipiravir,
Hydroxychloroquine, and Trametinib were highlighted in a re-
cent study (Sanders et al., 2020) to potentially inhibit SARS-
COV-2 virus by targeting different biological processes in-
volved in the virus cycle. Furthermore, recent clinical trials
have suggested the efficacy of Remdesivir (Beigel et al., 2020)
and the ineffectiveness of Hydroxychloroquine (Geleris et al.,
2020) for the most severe cases of COVID-19. We observe
from our molecular docking experiments on the 3CL-pro vi-
ral protease of the SARS-COV-2 virus that a majority of the
anticancer drugs in our ranked list exhibit high binding affin-
ity, thereby demonstrating the true power of drug repurposing
and suggesting a further investigation of the same.

Finally, a limitation of our work is that our mapping func-
tion g currently only considers the drug representation (xd)
and viral protein representation (xv) and doesn’t include any
information about the host organism (xh). Recently, in (Gor-
don et al., 2020), the authors expressed 26 SARS-CoV-2 viral
proteins in human cells and identified 332 high confidence
human protein interactions with them. Based on this, they
identified 69 compounds which can potentially target 66 hu-
man proteins interacting with SARS-COV-2 viral proteins.
Similarly, in (Gysi et al., 2020), a network-based approach is
utilized to identify drug repurposing candidates. Their drug
repurposing strategy relies on network proximity, diffusion,
and AI-based metrics, allowing to rank all approved drugs
based on their likely efficacy for COVID-19 disease leading to
81 promising candidates. Several drugs such as Ritonavir, Hy-
droxychloroquine, Bortezomib, Lopinavir, and Mitoxantrone
appear in their set and are common to our ranked list of
drugs. In future, we plan to extend our mapping function
to become g(xd, xv, xh;w), by considering drug-viral protein
interactions, drug-human protein target interactions, human
protein-protein interactions, human protein-viral protein in-
teractions in a knowledge graph representation and utilize a
graph convolutional neural network (Kipf and Welling, 2016)
based approach to identify potentially repurposable drugs for
any viral disease. Another strand of work that we would like
to explore is the use of Transformer Networks which use self-
attention to capture long range dependency in sequence to
sequence modeling. Recent work in natural language process-
ing has convincingly demonstrated that Transfomer Networs
are substantially more efficient than LSTMs with compara-
ble level of accuracy Vaswani et al. (2017). In our particular
instance, both the SMILES representation for drugs and lin-
ear chain of amino acid or primary structure of proteins can
benefit from these newer approaches.
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